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Abstract. Identifying all cohesion subgroups in a complex network is a critical issue in social 

network analysis. Once new trends coming from new actors’ interactions, a community 

detection method has to adopt an effective mechanism to adjust to structural changes in 

community composition. This research proposes a novel two-phase distributed method for 

dynamic overlapping community discovery on the MapReduce framework to improve 

performance. The first phase implements a static overlapping community detection. First, all 

neighbors of each node are collected from the complex network, and the TTT algorithm is 

applied to enumerate all maximal cliques. Following that, all adjacent maximal cliques are 

merged to complete the overlapping detection operation. In the second phase, the proposed 

dynamic overlapping community detection method is applied on influence area to adjust the 

struct of detected community structure. This approach applies MapReduce to adjust detected 

community’s structure in order to avoid redundant analysis and enhance efficiency. The 

experiment’s data are derived from YouTube users’ interaction. The static overlapping 

community detection consists of six groups ranging from 50,000 to 300,000 nodes. The data for 

the dynamic overlapping community discovery consists of five groups ranging from 2,000 to 

10,000 nodes, which are in turn dynamically added to the static overlapping communities to 

generate the final clustering results.  
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1 Introduction 

As mobile networks become common, Internet users engage in frequent interactions with one another on 

social media platforms such as Instagram, Facebook, Twitter, Google+, Plurk and more. The 

phenomenon has encouraged virtual communities to form complex networks, each with its distinctive 

features. In general, a social network can be seen as a graph G(N, E) that includes a set of nodes, N, and a 

set of edges, E, between the nodes. Most of the time, each node represents an actor (like a user account or 

member) and each edge represents a binary relation between a pair of nodes.  

If a service provider collects social media information from its social media services, they can identify 

user habits and discover user opinions through long-term social listening. Social Network Analysis (SNA) 

[4-5] detects communities in complex networks to assist enterprises in understanding information of 

specific user groups and designing suitable marketing content to promote future business. 

The proposed distributed overlapping community detection method focuses on improving performance 

in using MapReduce to discover all maximal cliques from a complex network. Every two distinct nodes 

in the clique are adjacent. A maximal clique is the size of a clique that cannot be enlarged but still 

satisfies the structure constraints of a clique. To satisfy the constraints of a clique structure, most 

discovered communities become too small-scaled to correspond to facts happening in real life. In order to 

avoid the aforementioned drawbacks, this research adopts the Clique Percolation Method (CPM) [3] 

based on the subgroup structure of 1.5 club (3-clique in undirected graph) to detect all cohesion 

subgroups in a complex network.  
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The operation of distributed static overlapping community detection includes two levels: MapReduce 

[2] operations and maximal cliques merging. The purpose of the 1evel-1 MapReduce operation is to 

collect the neighborhood information of each node in the network. The output of the 1evel-1 MapReduce 

operation is employed as the input for the level-2 MapReduce operation to enumerate all maximal cliques 

by the TTT algorithm [7, 11]. Last, following the CPM algorithm, all adjacent maximal cliques will be 

merged incrementally. 

To respond to new coming events from new actors’ interactions, this paper reanalyzed the whole social 

network to complete community detection increase the computation load. Therefore, this research 

proposes a novel dynamic community detection method that only focuses on the influence area to adjust 

the discovered community structures to avoid mass amount of computation and enhance the performance. 

Generally speaking, new events can be categorized into four kinds: (1) generation of new communities, 

(2) the merging of communities, (3) addition of new member nodes to some communities, and (4) the 

community structure does not change.  

The criteria for evaluating this method’s effectiveness includes consideration of the number of 

communities, number of overlapping nodes in communities, and average cluster coefficient. The study 

compares the static community detection method compares against another famous overlapping 

community detection method, CPM. The original dataset collected from YouTube includes 1,134,890 

nodes and 2,987,624 binary relations between nodes in the social network; however, the study only 

employed six randomly selected sizes of datasets ranging from 50,000 to 300,000 nodes to observe the 

effectiveness of the proposed method. The evaluation of the dynamic overlapping community discovery 

was performed on five groups, each ranging from 2,000 to 10,000 nodes, which are in turn dynamically 

added to the static overlapping communities to generate the final clustering results. 

2 Related Works 

2.1 MapReduce 

The MapReduce framework was first introduced by Google in 2004 to provide an easy-to-use 

programming framework to develop distributed applications [2]. The basic operation of MapReduce is 

for the JobTracker of MasterNode to divide a job into several tasks and then deliver them to the 

TaskTracker of SlaveNodes. Following that, both map tasks and reduce tasks are applied to complete the 

received tasks, and the results are returned to the JobTracker, as shown in Fig. 1. The input consists of 6 

edges between 6 nodes. Given the key-value format, both the mapping and reducing operations conduct 

rearrangement and collection of these information, and these nodes form into two node clusters as a 

result of a distributed processing. 

 

Fig. 1. The operation flow of MapReduce 

Wu et al. [1] proposed a two-level MapReduce framework to realize the Maximal Clique Enumeration 

(MCE) algorithm. When using only the clique structure to present the discovered community, the 

constraint becomes too strict to detect large-scale communities. On the other hand, communities of too 

small a size cannot reply to real community structures in the observed cases and this will reduce the value 
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of future applications of the detected community structure. 

2.2 Maximal Cliques 

In social network analysis, a high-quality community contains high dense intra-relations and infrequent 

inter-relation with other communities. The maximal clique is a clique that cannot be enlarged but still 

satisfies the constraints of a clique structure. If using the maximal clique enumeration (MCE) algorithm 

[1] to list all maximal cliques in a complex network, all detected communities are cliques. For example, 

Fig. 2(a) employs 7 nodes and 12 edges as the input to detect all maximal cliques. Fig. 2(b) illustrates the 

result, which includes 3 cliques-{1,2,3,4}, {3,4,7}, and {5,6,7}. 

   

(a) The input undirected graph  (b) The subgrouping result of MCE 

Fig. 2. An example of MCE operation 

 

In 1973, Bron and Kerbosch [6] presented the BK algorithm to enumerate all maximal cliques from a 

complex network. However, it was Tomita et al. that designed the TTT algorithm [7] in 2006 to improve 

performances by applying the depth first search (DFS) with branch pruning method. The research 

adopted the TTT algorithm in the level-2 MapReduce operation to find all maximal cliques in an input 

complex network. 

2.3 Clique Percolation Method 

A clique has the highest intra-relation density compared to other subgroup structures. Given that the 

clique structure condition is too strict, it is hard to form a large-sized subgroup. The CPM algorithm 

incrementally merges adjacent k-cliques with the k-1 common members to enlarge the size of cohesive 

subgroups [3]. The CPM not only keeps the structure quality of detected communities, but also 

successfully enlarges the size of discovered subgroups. For example, Fig. 3(a) shows a 4-clique, 

{1,2,3,4}, and a 3-clique, {3,4,5}. Since the two 3-cliques, {1,3,4} and {3,4,5}, share two common 

members, {3,4}, the flip over operation will merge the smaller one, {3,4,5}, into the bigger one, 

{1,2,3,4}. Fig. 3(b) shows the final subgrouping result-a 5-node subgroup, {1,2,3,4,5}, and an isolate 

node, {6}. 

 
 

 

(a) Before the CPM operation  (b) After the CPM operation 

Fig. 3. Example of a CPM 3-Clique operation 

2.4 Cluster Coefficient 

Community detection is an important research topic in SNA. The most cohesive subgroup in a complex 

network is a complete subgraph, also called a “clique”, where all member node pairs are connected by an 
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edge. In large-scale complex networks, a high-quality result of community detection holds a much higher 

intra-relationship density of communities than the inter-relationship density between communities [8]. 

The most popular method to evaluate detection result is Clustering Coefficient (CC) [10, 12]. The CC of 

community Ci is calculated as shown in Equation (1): 
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where community Ci contains a set of nodes Ni and a set of edges Ei. Meanwhile, ejk presents the 

relationship between a pair of nodes, vj and vk, that belong to Ni while ki stands for the number of nodes 

in community Ci. 

The overall subgrouping quality CC can be evaluated by calculating the average cluster coefficient of 

communities, as shown in Equation (2): 
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where k stands for the number of detected communities in a complex network.  

3 Research Method 

To improve the performance of dynamic community detection, this research adopts a distributed method 

in designing a two-phase community detection method, which includes a static phase and a dynamic 

phase. In the static phase, a two-level MapReduce is adopted to propose a distributed method that 

completes the static overlapping community detection. All listed maximal cliques are checked for 

whether they are adjacent to other maximal cliques. Once the case is established, the CPM algorithm is 

adopted to incrementally merge them into larger size of subgroups. With these features, the proposed 

community detection method not only solves performance issues but also enlarges the size of discovered 

communities. 

The static phase operation of the distributed community detection method is divided into three steps. 

First, the level-1 MapReduce gathers the neighborhood information of each node from the input social 

network. Following that, the level-2 MapReduce utilizes the collected neighborhood information to 

enumerate all maximal cliques. Using MCE’s clique set, the CPM completes the community detection 

process by continually merging adjacent k-cliques.  

Most of the previous research on community detection focused only on the static community detection; 

however, the static community structure cannot effective work with the new coming events. Therefore, a 

dynamic community structure adjustment mechanism is needed to avoid reanalysis of the whole network 

any time a new event happens. In the dynamic phase, the operations of the distributed community 

detection method follow an operating order that includes 5 steps. In Step 1, MapReduce is employed to 

identify the influence area of new coming events and it tags new interactions between nodes with new 

event labels. Steps 2 to 4 follow similar procedure to that of the static phase operations to retrieve all 

information concerning community structure changes while Step 5 utilizes subgroup merge information 

to adjust the community structure. 

3.1 Level-1 MapReduce Operation in the Static Phase 

The target of the level-1 MapReduce is to retrieve the neighborhood information of each node in the 

input graph. The input of Mapper is the ascending order edge set. Following the order of keys, the output 

is the key-value combination-but the key has to be larger than the value. Each node serves as an output in 

Reducer, and its neighbor nodes also follow the same node order.  

Fig. 4 serves as the input undirected graph for finding the potential cohesive subgroups. Fig. 5 is the 

output of the level-1 MapReduce operation. The input contains all 12 edges of the input graph. To take 

Node 1 as an example: the map operation collects all of Node 1’s neighbor nodes into an edge set that 

includes 4 edges. Then, the reduce operation merges the four edges into a tuple, Node 1a and its 

neighbors {2,3,4,5}.  
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Fig. 4. The input graph of community detection 

 

Fig. 5. The operation of Level-1 MapReduce 

Algorithm 1 includes Map and Reduce operations. The input of Map is the list of all edges in the 

complex network. To avoid duplicate processing of the same relations in Reduce operation, all edges 

must follow the ascending order of the node index by the emit() function, and the output format is a key-

value list.  

 

Algorithm 1: Level-1 MapReduce 
Input: List of Edges (k,v) 
Mapper (k,v) 
  if (k>v) 
    emit (v,k); 
    return; 
  end if 
  emit (k,v);  //key-value list 
 

Reducer (k, list(v)) 
  output (k, list(v)); 

3.2 Level-2 MapReduce Operation in the Static Phase 

The level-2 MapReduce swaps the location of the key node with its neighbor nodes to retrieve 

information about neighbors’ neighbors for preparing the MCE work, as shown in Fig. 6. Taking Node 2 

as an example, <2,<3,4>> means that Node 2 has two neighbor nodes, node 3 and node 4. To retrieve 

information about neighbors’ neighbors, the swap operation is executed and the result is <3,<2,4>> and 

<4,<2,3>>. To avoid collecting the same cliques in the reduce operation, the key has to be the biggest 

value in the identified cliques among all enumerated maximal cliques. Therefore, the keys, including 2, 3, 

5, 6, cannot be used to generate cliques. 
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Fig. 6. The operation of Level-2 MapReduce 

The TTT algorithm is adopted to list all maximal cliques, as shown in Fig. 7. The symbols in MCE 

operation includes □, which stands for u, the node with the largest degree. Node ● is the neighbor of node 

u, and node ○ does not connect to node u. After the DFS processing, node △ is adopted to avoid 

generation of duplicate cliques. The value of node ▽ is always higher than the value of the key node. 

Take Key 4 as an example. Node 4 has the neighbors {1,2,3,7}. Since Node 3 has the highest degree in 

the ● node set {1,2,3,7}, Node 3 is selected to be the next key. After processing the key node 1, Node 2 

is the last key node. Because 7 is bigger than 4, Node 7 is marked with ▽ and does not have advance 

searching.  

 

Fig. 7. Using the TTT algorithm to reach MCE 

In Algorithm 2, the input is the output of level-1 MapReduce, including node k and its neighbors list(v) 

as the key-value list. Following the neighbors’ sequence to swap the location, the reduce operation can 

collect all neighbors’ neighbor information by emit() function and executes the TTT algorithm to list all 

maximal cliques. The Reducer transfers list(v) to node k’s relation graph k

sub
G  and stores node k’s 

neighbors in two sets, SUBG and CAND, which will later be applied in the TTT algorithm to find out all 
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maximal cliques. 

 

Algorithm 2: Level-2 MapReduce 
Input: k, list(v) //key-value list 
Mapper (k,list(v)) 
  emit (v, list(v)) ; 
  for each v’∈list(v) 
    emit(v’, {k} U (list(v)-v’)); 
  end for 
 

Reducer (k, list(v)) 
  SUBG = Γ(k); //node k’s neighbors 
  CAND = Γ(k); 
  Q = {k}; 

  TTT (k, k

sub
G , SUBG, CAND, Q) 

 

In algorithm 3, the TTT algorithm enumerates all maximal cliques via the DFS method. Set SUBG 

includes both processed nodes and unprocessed nodes while Set CAND stores only unprocessed nodes. 

Set Q includes nodes that have relations connecting itself to all others. Initially, SUBG is used to 

determine whether there still exists unexplored nodes. If the set is empty, it means no more nodes need to 

be explored or to perform clique output. The variable u stands for the node in SUBG that has the most 

number of neighbors in CAND. The set EXTu includes Node u and nodes without relations to Node u. 

Next, Node q is retrieved from the set EXTu and DFS is performed until all nodes in EXTu have been 

processed, with the exception of skipping nodes whose value is larger than the key node. SUBGq and 

CANDq narrow down the search space to only the nodes related to Node q and insert Node q to Set Q. 

Both SUBGq and CANDq are recursively pass to the algorithm TTT to complete the maximal cliques 

search. 

 

Algorithm 3: The Distributed TTT Algorithm 

TTT (k, k

sub
G , SUBG, CAND, Q ) 

  if (SUBG = Φ) 
    print (Q); 
    return; 
  end if 
  node u ∈ SUBG & u has Max. degree; 
  EXT

u
=CAND–Γ(u); // Γ(u), node u’s neighbors  

  while (EXT
u
≠ Φ) 

    for each q ∈ EXTu; 
      if (q>k) 
      CAND = CAND-{q} ; 
      end if 
      Q =Q U {q}; 
      SUBGq = SUBG ∩ Γ(q); 
      CANDq CAND ∩ Γ(q); 

      TTT (k, k

sub
G , SUBG

q
, CAND

q
, Q); 

      CAND = CAND-{q}; 
      Q = Q-{q}; 
  end for 
wend 

3.3 Merging Adjacent Maximal Cliques in the Static Phase 

Once all maximal cliques are identified, all of them will be inserted into the clique table, and each record 

has a unique index number. When two maximal cliques are adjacent, the merge table will keep the record 

and assign one merge id to it. Because clique <1,2,3,4>, with id 1, and clique <2,3,7>, with id 2, are 
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adjacent, the merge table set contains two records with the same merge id, 1, as shown in Fig. 8. Because 

the clique <5,6,7>, with id 3, does not have any adjacent clique, the merge table holds only one record 

with the merge id 3. There are two different merge ids in the merge table. Therefore, the final result of 

community detection is two communities, <1,2,3,4,7> and <5,6,7>. In addition, Node 7 is present at two 

communities, rendering it an overlapping node. 

 

Fig. 8. Example of maximal cliques merging 

3.4 Identifying Influence Area in Dynamic Phase 

In the dynamic phase, in order to meet performance requirements, MapReduce is also applied in 

discovering influence area by new coming events from a complex network. First of all, all relations 

between nodes are tagged with one of the three kinds of event tags, including original event, new event, 

and grouped event. Each kind of tag serves as the input of the same kind of mapper of MapReduce. 

Fig. 9, for example, contains two subgroups 1 and 2. The three kinds of relations illustrate new events 

En={2-4, 5-6, 6-7} as the input of Map(En), the key-value, original relations Eo={1-2, 1-3, 2-3, 3-4, 3-6, 

4-6, 5-7} as the input of Map(Eo), and grouped relations Eg including the relations {1-2, 1-3, 2-3} of 

Group 1 and relations {3-4, 3-6, 4-6} as the input of Map(Eg). 

 

Fig. 9. An ungrouped undirected graph 

The operation of Map focuses on the preprocessing the influence area as the input for the Reduce. 

Map(En) reverses the order of input relations and tags them with label En. Map(Eo) and Map (Eg) reverse 

their input relations with tag Eo and Eg. Then, the Reduce operation receives the aforementioned three 

kinds of relations and arranges them in order. To detect the influence area, once a set of relations shares 

the same key and includes edges with tag En, then this edge set will be reserved; otherwise, it can be 

ignored. In Fig. 10, there is no edge with tag En in the Key-1 set and Key-3 set; the Key-1 group and 

Key-3 group are not influenced by new events. However, Key-2, Key-4, Key-5, Key-6 and Key-7 groups 

are all influenced. Next, it checks for whether duplicate relations exist in the input data, abiding by the 

key-value reserving order to divide all events into three categories grouped events, original events, and 

new events. In addition, if a relation bears tag En and key larger than the key-value, then it does not 

output the relation to the next operation. 
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Fig. 10. Detection of influence area by MapReduce 

3.5 Merging Adjacent Maximal Cliques 

The last operation in the dynamic phase is to merge all adjacent maximal cliques. All detected maximal 

cliques are the output of the MCE operation of TTT algorithm. As shown in Fig. 11, for example, the 

input lists all detected maximal cliques in the influence area by new coming events and follows the order 

of clique id to insert all cliques to the cliques table for merging adjacent maximal cliques. The merge 

table records all information about subgroup merging, c_id shows the index number of the subgroup, and 

m_id stands for the id of the merged group.  

 

Fig. 11. The flow of adjacent maximal cliques merging 
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In Fig. 11, the first set of data, 2,3,4~1,2, shows that the clique contains three nodes, <2,3,4>, causing 

subgroup 1 and subgroup 2 to merge. The smaller id, 1, will be reserved as the id of the merged group 

and all member nodes to the field nodes. The Merge table keeps the merging information about clique:1 

and clique:2. Given that the second clique, clique:2, contains three nodes, <3,4,6>, that share the same 

relation 3-4 with clique:1, clique:1 and clique:2 will be merged as a new clique with the clique id 1. The 

third input record, 5, 6, 7~En, bears a new event tag, En, and does not share any relation with other 

cliques. It will become a new clique with the clique id 3 and its information is inserted to the Merge table. 

 

Fig. 12. Number of communities in different datasets 

 

The output of the dynamic phase is illustrated in Fig. 13. There are two detected subgroups: 

<1,2,3,4,6>, with group id 1, and <5,6,7>, with group id 2. 

 

Fig. 13. The result of dynamic community detection 

4 Experiment Results 

The experiment’s hardware environment consists of two parts, one for the MapReduce distributed 

experiment and the other one for the centralized experiment. The distributed environment is constructed 

through MapReduce and has one master node and two data nodes. The hardware specification includes 

the following: the CPU is Intel Core i7-3770 with 3.4 GHZ clock rate, the size of RAM is 8GB, and the 

HDD space is 500GB. The software environment includes the following: the operating system of each 

distributed experiment is Ubuntu 12.04 and Hadoop 1.2.1 while the operating system of the centralized 

experiment is MS Windows 7. 

4.1 Experiment of Static Community Detection 

The dataset is retrieved from the website SNAP (http://snap.stanford.edu), which provides the user-

relation network of YouTube [9] that includes 1,134,890 nodes and 2,987,624 relations. Six datasets 

were randomly selected from the YouTube network. The size of the datasets ranges from 50,000 nodes to 

300,000 nodes, as shown in Table 1. 
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Table 1. The list of the six datasets 

Index No. of Nodes No. of Relations 

1 50,000 73,151 

2 100,000 165,730 

3 150,000 376,664 

4 200,000 672,992 

5 250,000 1,036,038  
 

The result of community detection is checked with the number of communities, the average cluster 

coefficient, and the execution time. In Fig. 12, it can be seen that when the size of dataset increases from 

50,000 nodes to 300,000 nodes, the number of detected communities also increases, from 1,015 to 14,040. 

When the size of dataset is smaller than or equal to 200,000 nodes, each time the dataset receives 50,000 

more nodes, the number of detected communities doubles itself. Once the size of dataset becomes larger 

than 200,000 nodes, the number of detected communities increases at a slower rate. 

As shown in Fig. 14, when the size of dataset falls between 50,000 and 300,000, the average values of 

cluster coefficient (CC) of the six datasets fall between 0.919 to 0.937. If the value of CC is high, it 

signifies that the intra-relationship within a group is concrete. Although the CC value of detected 

communities is lower than the CC value of clique structure, but the subgrouping quality of these six 

datasets are still acceptable.  

 

Fig. 14. Average cluster coefficient in different datasets 

In Fig. 15, the CPM algorithm runs on only one computer, requires more memory to store the whole 

complex network’s data, and demands more computation time to complete the task of community 

detection with single thread operation. By comparison, this research’s proposed distributed community 

detection method can run simultaneously on three computers, requires less memory space for 

computation, and thus speeds up the subgrouping task. It can also be seen from Fig. 12 that when the size 

of dataset increases, the execution time of CPM’s one-computer approach increases sharply; on the other 

hand, the increase in the distributed method is much less obvious.  

 

Fig. 15. Comparison of execution time 
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4.2 Experiment of Dynamic Community Detection 

The experiment of the dynamic community detection focuses on observing changes that occur with the 

addition of new events. Table 2 presents six different-sized complex network datasets that each receive 

five different number of new events, including 2,000, 4,000, 6,000, 8,000, and 10,000. Once new events 

happen in the 50,000- to 150,000-node complex networks, new groups form at a faster rate. Because the 

structure of a smaller-scale complex networks is not stable, when new events happen, there are more new 

relations between nodes, in turn leading to higher relation density and formation of more cohesion 

subgroups. The same idea is illustrated in Table 3, in which smaller-scale complex networks also gain 

more nodes to groups when new events happen. 

Table 2. Number of new groups after new events happen 

 No. of New Events 

No. of Nodes 2,000 4,000 6,000 8,000 10,000 

50,000 49 100 150 207 268 

100,000 70 158 231 317 402 

150,000 81 168 249 335 421 

200,000 74 149 225 302 361 

250,000 43 94 155 216 270 

300,000 32 59 91 119 150 

Table 3. Number of new nodes that are added to groups after new events happen 

 No. of New Events 

No. of Nodes 2,000 4,000 6,000 8,000 10,000 

50,000 279 604 1,098 1,427 1,789 

100,000 474 1,029 1,641 2,204 2,738 

150,000 530 1,158 1,842 2,456 2,979 

200,000 525 1,128 1,828 2,423 2,921 

250,000 419 874 1,410 1,875 2,304 

300,000 267 499 812 1,091 1,327 

 

Fig. 16 shows the change in average cluster coefficient in six different-sized six datasets when new 

events happen. Because the community structure is not stable, the datasets of 50,000 and 100,000 nodes 

show greater change when addition of different number of new events occur. When the complex is bigger 

in size, the change in average cluster coefficient when varying-sized new event sets are added is not 

obvious. 

 

Fig. 16. The comparison of average cluster coefficient 
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This study executed three cases of community detection using different approaches with different 

number of computers, as shown in Fig. 17, including static community detection with 3 machines and 

dynamic community detection with 3 machine and 5 machines respectively. It is clear that the static 

community detection approach takes far more execution time than the other two dynamic solutions, but it 

can work well on complex networks of a smaller scale. For example, for complex networks with 52,000 

to 160,000 nodes, because the dynamic community detection method runs on one additional MapReduce, 

the static community detection method yields better execution time. However, when the scale of complex 

network increases to 202,000 nodes and 310,000 nodes, the advantage of the dynamic method becomes 

more obvious. The same case is also true when it comes to number of machines. Once the number of 

machine increases from 3 to 5, the performance enhances sharply when the scale of complex network is 

larger than 152,000 nodes. 

 

Fig. 17. The comparison of execution time between static/dynamic community detections 

5 Conclusion 

Past researches on community detection employed centralized approaches that easily to slow down 

computation processes, especially when the scale of complex network is large. Therefore, this research 

proposes a distributed community detection method to improve community detection. The CPM 

algorithm is also adopted to counter the disadvantage of MCE, which only uses maximal cliques as small 

size communities. The CPM incrementally merges adjacent cliques into a group to solve the problem of 

community structure being too strict.   

This research proposes not only a distributed static community detection method but also a dynamic 

community detection method. The novel method can effectively avoid analysis of whole complex 

networks when new events happen by focusing on the influence area when adjusting the detected 

community structure, in turn saving mass amount of computation. 

The experiment results indicate that the distributed community detection method can effectively 

improve performance. In addition, the average cluster coefficient is employed to measure the overall 

subgroup quality. As for measurements of the subgrouping quality, the lowest value of cluster coefficient 

was 0.919, when the dataset contained 300,000 nodes. The reduced amount of CC is still acceptable.  

The experiment results also show that the dynamic community detection method yields better 

performance than the static method. The results prove that the dynamic method can work well on large-

scale complex network. This research will continue with future works in the same direction of striving to 

lower down the execution time of community detection and enhancing the quality of overall subgrouping.  
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