
Journal of Computers Vol. 29 No. 3, 2018, pp. 210-219

doi:10.3966/199115992018062903020

210

A New Bidirectional Research Chord Method Based on

Bacterial Foraging Algorithm

Hang Li1, Lin Teng*, Shoulin Yin

Software College, Shenyang Normal University, Shenyang, 110034, China

1451541@qq.com, 1532554069@qq.com, ysl352720214@163.com

Received 31 October 2016; Revised 6 March 2017; Accepted 31 March 2017

Abstract. In order to improve mismatching problem between physical topology and the logical

topology in traditional Chord, and improve low search efficiency produced by space complexity,

we propose a new bidirectional research Chord method based on bacterial foraging algorithm,

which combines the advantage of bidirectional research method and bacterial foraging algorithm.

This new algorithm regards topology matching problem as one traveling salesman problem,

because bacterial foraging algorithm can get optimal solution for TSP, then we use the optimal

solution to construct Chord ring, which can solve the mismatching problem. On this basis, we

use the bidirectional search method to further accelerate the search speed. The experimental

results show that the new algorithm has better performance than the traditional Chord algorithm

on the aspect of query path length and finding the hop number. We also make comparison to

other latest algorithms with the new method.

Keywords: bacterial foraging algorithm, bidirectional research, chord method, physical

topology, traveling salesman problem

1 Introduction

With the development of computer technology and communication network, Internet has been used

widely, it plays an important role in people’s life [1]. So traditional C/S and B/S model have been

challenged. When facing the huge size of networks, the capacity and performance of current center server

becomes more and more impotent, so peer-to-peer networks arises.

P2P system divides the topological structure into three forms [2-3]: centralized, unstructured, and

structured. Structured topology has several advantages: (a) structural topology network is established

based on distributed hash table (DHT), DHT makes the resources index and node one-to-one mapping,

which ensures that nodes and resources are uniform distribution form. Finally it achieves load balancing

[4]; (b) resource location has high efficiency. Only the searched resource exists in this system, the system

finds this resource within (log)O N hoops. Aiming at physical matching, there are three study trends.

(1) Node ID allocation optimization based on topology.

(2) Optimization based on neighboring router.

(3) Optimization based on neighbor selection.

Based on the basic Chord algorithm, researchers improve it based on the above three optimization

methods. Manturov [5] defined a new module
2

M which was generated by chord diagrams on two

circles and factored by 4T-relations. Then they constructed a “covering” map from the module of framed

chord diagrams into
2

M and a weight system on
2

M . But it had long iteration time. Iyer [6] presented a

decentralized, peer-to-peer web cache called Squirrel. The key idea was to enable web browsers on

desktop machines to share their local caches, to form an efficient and scalable web cache, without the

need for dedicated hardware and the associated administrative cost. Manku [7] established lower-bounds

for greedy routing for these networks, and analyzed Neighbor-of-Neighbor (NoN)-greedy routing. Wang

et al. [8] proposed a Chord bi-directional search algorithm, based on the genetic algorithm, combining,

* Corresponding Author

Journal of Computers Vol. 29, No. 3, 2018

211

which combined the advantages of genetic algorithm and bi-directional routing look-up mechanism. The

algorithm combining genetic algorithm regarded the topology matching problem as a TSP. It used the

genetic algorithm to find the best solution of the problem, then constructed the Chord ring, which solved

the problem of mismatch between physical topology and logical topology. Vatsavai [9] proposed two

improvements in a structured P2P resource lookup protocol of Chord-based algorithms. First, the routing

information for accurate search of resource was low. Only clockwise direction of resource lookup could

be implemented and a unique algorithm was designed for enhancing the finger table in a Chord. A

counter-clockwise finger table was also included for generating resource queries in two direction clock

wise and anticlockwise increasing the density of neighboring fingers. The proposed model also employed

a new functionality of eliminating excess fingers generated by the inclusion of fingers by the suggested

model. Jeong [10] proposed an automatic melody composition system that could generate a sophisticated

melody by adding non-harmony tone in the given chord progression. An overall procedure consisted of

two steps, which were the rhythm generation and melody generation parts. In the rhythm generation part,

he designed new fitness functions for rhythm that could be controlled by a user setting parameters. In the

melody generation part, he designed new fitness functions for melody based on harmony theory. He also

designed evolutionary operators that were conducted by considering a musical context to improve

computational efficiency. However, they could lose some topological adjacent members. And the

convergence time is very long. Efficiency is very low. Therefore, we propose a new bidirectional

research Chord method based on bacterial foraging algorithm.
At last, our scientific contributions of this research work can be summarized as:

(1) we analyze the typical Chord algorithm in P2P. Topology matching problem can be considered as

traveling salesman problem (TSP).

(2) And we use bacterial foraging algorithm (BFA) to find the optimal solution, then we construct

Chord ring based on the optimal solution, which can solve the mismatching problem between physical

topology and the logical topology.

(3) The next step is that we use the bidirectional search method to further increase the search speed

and find the resource.

(4) Finally, we make experiments to demonstrate that the new algorithm has better performance than

the traditional Chord algorithm.

The following is the structure of this paper. In section2, we introduce the chord algorithm, TSP and

bacterial foraging algorithm. New bidirectional research chord method is detailed explained in section3.

We make experiments to verify the performance of new algorithm in section4. Section5 conducts a

conclusion for this paper.

2 Preliminaries

2.1 Basic Chord Algorithm

Chord algorithm [11] is as one of distributed look-up algorithms, it can make all the resources and nodes

get their own unique ID through hash operation. If the length m of hash value is long enough in hash

function, it can ensure that node ID will not be repeat mapped. Chord algorithm uniformly distributes all

resource and nodes to network by consistent hash. And Chord algorithm clockwise constructs a ring from

small to large order of the node ID. Each node maintains rout information in a predecessor node and a

subsequent node. Algorithm allocates resources ID along the clockwise direction to ensure that the node

ID is greater than or equal to the object ID, this node is called subsequent node of k written as

()successor k [12]. In Fig. 1, Chord algorithm has eight positions, where three nodes are there, namely

3m = . Nodes ID are 0, 1, 3 respectively. Subsequent node keeps the index of object 1, (1) 1successor = .

So (2) 3successor = , (6) 0successor = .

A New Bidirectional Research Chord Method Based on Bacterial Foraging Algorithm

212

Fig. 1. Framework of chord ring

Each node in Chord maintains only one finger table. It can rapidly and efficiently look for resources

through finger table. In order to guarantee the real-time accuracy of Chord network, when a new node n

joining, part of rout information maintained by subsequent node will be transferred to node n . Similarly,

when all nodes in Chord leaving, rout information will be transferred to subsequent node. For example, if

node 7 joins, the route information of resource 6 will transfer from node 0 to node 7 in Fig. 1, namely

(6) 7successor = .

Because of the subsequent relationship, it can guarantee that local ring in chord works normally. There

are m route information in finger table, i-th information leads to node ,s
1(2)(1)i

s successor n i m
+

= + ≤ ≤ . Node s is at least 1
2
i− apart from first node n along with clockwise

direction, written as . [].n finger i node . Finger table records node ID, IP and other information, so

. [1]. .n finger node n successor= .

To determine ()successor k , node n needs to find the node nearest to k . In that the distance apart

from k is closer, the route information is more. According to this finding rule, n will be gradually close

to k by continuously recursive search until finding the predecessor node of resource k , written as

()predecessor k .

2.2 TSP and Bacterial Foraging Algorithm

TSP is one of the famous mathematics questions. It requires to find a loop through all the cities, but the

path is the minimum. In fact, all the nodes in Chord can form a loop ring. On the other hand, it is actually

a problem of solving physical path. Through the analysis of the existing algorithms, the essence of which

is the nearest neighbor, that is to say, it searches the nearest node in each iteration. But it lacks global

topological consideration, which results in a poor local solution. When inquiring Chord ring, it actually

makes a traversal for all nodes alike TSP. Therefore, it considers global TSP to get better effect. Theory

has been proved that the optimal retention bacterial foraging algorithm (BFA) can find global optimal

solution for TSP, so we choose BFA to solve the Chord ring TSP. The main characteristic of BFA is

group search strategy and information exchange among individuals, searching does not dependent on the

gradient information. BFA builds three steps: chemotaxis, reproduction and elimination-dispersal based

on foraging behavior. It establishes individual information sharing mechanism and weeds out poor

solution in each iteration, keeps better fitness (solution). It effectively uses a lot of historical information,

makes search towards to the best direction every iteration. In actual network, due to the limit of network

communication efficiency and computational cost, it is difficult to get optimal solution for TSP of large

size nodes. However, BFA is as heuristic algorithm, its aim is to find good or close to the optimal

solution with relatively low computational cost.

3 New Bidirectional Research Chord Method

3.1 BFA-Chord Method

Assuming that the number of stored nodes is n , population size is m . Importing the network topology, it

can get communication latency (i.e., the path length between nodes) between nodes through node

Journal of Computers Vol. 29, No. 3, 2018

213

broadcasting and will be stored in matrix [][]dis n n . [][]dis i j denotes the path length from node i to j .

Its value is as (1),

, (,) [0, 1]
[][]

0

delayv i j i j n
dis i j

i j

≠ ∈ −⎧
= ⎨

=⎩
. (1)

Chemotaxis operation. It mainly simulates the movement process of bacteria including two processes:

move forward and turn to move as shown in Fig. 2.

Fig. 2. Bacteria movement

Supposing that (, ,)iP j k l is the position after j-th chemotaxis operation, k-th copy operation, l-th

migration operation of i-th bacteria.

 (1, ,) (, ,) () ()i iP j k l P j k l C i V j+ = + . (2)

Where ()C i is step length vector after move forward or turn to move. ()V j is randomly generated

direction vector.

Copy operation. When the bacteria completes number of settings, bacteria will be divided, this process

mainly simulates the breeding process of bacteria individual with fittest survive rule. Setting bacteria

population size N , (, ,)iF j k l is the fitness value. First it makes descending order for fitness of whole

population. The top N/2 individual with bigger fitness are kept and they become to divide. The rest N/2

individual with smaller fitness are given up. So the bacteria population will be unchanged after one copy

operation.

Migration operation. From the perspective of the bacteria foraging behavior, actually there is no

behavior in its real movement, it is introduced into the process in order to improve the global search

ability of the algorithm. Because when solution space of a problem has several extremum points, it will

make the algorithm easily fall into local extremum duo to the bacteria clustering. This process is to use

new individual instead of the original individual, which is different from the copy operation, the

migration occurs with a certain probability p . When one bacteria meets the requirements of migration,

the bacteria will be randomly assigned to the solution space.

Finishing iteration processes. According to the best position obtained by the above processes, it

constructs Chord ring after combining all the nodes (best position).

3.2 Bidirectional Resource Location

Chord algorithm uses a compatibility hash function to map all nodes as a virtual logical topology. The

logical topology is a ring structure. Then it adopts one-way search mechanism based on ring logical

topology, i.e,. the node received inquiry request starts to search resource along clockwise direction of the

ring. But there is a question that the nodes far apart from each other will be found through multiple hops.

Based on the improved Chord physical topology, we introduce bidirectional resources location. Improved

two-way Chord algorithm, each node in the ring maintains two pointers routing table (clockwise and

anticlockwise pointer routing table). When a node receives a query request, the node in the ring will

make resource location along with clockwise or counterclockwise direction, until it finds the target node.

A New Bidirectional Research Chord Method Based on Bacterial Foraging Algorithm

214

3.3 Route Table Establishment

In a single direction clockwise resource searching process, if the target node is close to starting node in

anticlockwise direction, which means that the query process needs to search the entire Chord ring. If the

two nodes are in the same physical domain, resources location could be through multiple domains, delay

will greatly increase and the performance will decline substantially [13]. Therefore, we propose resource

bidirectional search algorithm based on the physical topology and adopt bidirectional location

mechanism to search resource. Bidirectional location requires that each node maintains two pointers

route table to store part nodes information in clockwise and anticlockwise direction in Chord ring. The

different from directional searches is that one pointer route table (length is m) is expanded as two

pointers route table (each length is 1m −) which is responsible for clockwise and anticlockwise direction

search.

Clockwise route table is similar to single search. In 1[(1)mod2 ,(2)mod2],m m m

n n
−

+ + there are 1m −

nodes, the divided interval is [(1)mod2 ,(2)mod2],m m

n n+ + [(2)mod2 ,(4)mod2],m m

n n+ + … ,
2 1[(2)mod2 ,(2)mod2].m m m m

n n
− −

+ + Anticlockwise route table is built in anticlockwise direction of

Chord ring. In 1[(1)mod2 ,(2)mod2],m m m

n n
−

− − there are 1m − nodes, the interval is

[(1)mod2 ,(2)mod2],m m

n n− − [(2)mod2 ,(4)mod2],m m

n n− − …, 2 1[(2)mod2 ,(2)mod2].m m m m

n n
− −

− −

3.4 Search Process

Traditional Chord algorithm is signal direction search process, its disadvantage is that when there is a big

distance between the resource needed to search and the node received search request, it needs bigger hop

count. As shown in Fig. 3, node N3 receives search request and its target node is N38, it nearly searches

all the Chord ring.

Fig. 3. Single direction search

Bidirectional search not only searches in a clockwise direction, but at the same time can search in a

anticlockwise direction. When a node receives a query request, first it determines whether the local has

the resource. If NOT. According to the condition, it judges that whether the query belongs to which

direction search or not.

Detailed bidirectional search process is as follows:

(1) Step1. After receiving the inquiry request, it judges whether the local has the resource. If YES,

search finishes. Otherwise return to step 2.

(2) Step2. Judge the value of key NodeID− . If 0key NodeID− ≥ , return to step 3. Otherwise return to

step 4.

(3) Step3. If 1
2
mkey NodeID −

− ≥ , then it chooses anticlockwise direction to search. According to

anticlockwise route table, it continues next hop. Otherwise, it chooses clockwise direction to search.

According to clockwise route table, it continues next hop.

(4) Step4. If 1
2 2
m mkey NodeID −

− + ≥ , then it chooses anticlockwise direction to search. According to

Journal of Computers Vol. 29, No. 3, 2018

215

anticlockwise route table, it continues next hop. Otherwise, it chooses clockwise direction to search.

According to clockwise route table, it continue next hop.

In Fig. 3, if it adopts bidirectional search, it only needs 1 hop and finds the target node.

3.5 Node Join and Exit

Chord ring constructed by BFA-Chord algorithm can be explained that it is a best path passing each node

in iteration process. Due to node join and exit, this free behavior will make the the whole network

physical topology structure different from real network physical topology. Therefore, it is very important

to keep the largest matching degree of physical topology and logical topology under the condition of

node join and exit.

We propose grouping idea based on physical topology Chord search algorithm. Grouping divides the

network into several groups, each group chooses a node with a better performance as reference node. If

one node needs to join Chord ring, this node must send round-trip time (RTT) to all reference nodes.

Assuming that the node in minimum RTT is nearest reference node, it will be joined in this group. The

reference node here is not the same as the traditional super node, just as the reference of the physical

location, provides topology information, it does not affect the performance of DHT, The nodes in same

group have the nearest physical location. Constructed Chord ring is divided into three groups as Fig. 4.

Fig. 4. Three groups in Chord ring

When there is a new node joins, firstly it needs to calculate RTT value of the node and each reference

node, and selects the minimum RTT as the joining group (i.e., Determine physical location). After

joining Chord ring, it updates other existed nodes information. New node will share its own information

with other nodes. Other nodes update their own bidirectional route table information in time.

In the new Chord ring, if the node actively exits Chord ring, it will transfer the keywords to the

subsequent nodes, and inform the other nodes pointer to update route table, ensure that the data is not lost.

In order to guarantee the maximum matching degree between logical topology structure and the physical

topology in Chord ring, it must periodically update the logical topology structure of the whole system

Again it constructs a new Chord ring through the BFA-Chord algorithm. Meanwhile, in order to keep that

the system still would be able to locate resources when the node status changes, it must timely update

bidirectional route table of each node.

4 Experiments and Result Analysis

We use MATLAB platform to randomly generate 1024 nodes. Population size is 100, simulation time 5h.

Data package sending interval is 1s. Iteration of experiments is 100. We make comparison with

traditional Chord algorithm as Fig. 5.

A New Bidirectional Research Chord Method Based on Bacterial Foraging Algorithm

216

Fig. 5. Comparison of path length

From the experimental results in Fig. 5, it shows that the traditional path length based on Chord search

algorithm is far greater than the improved Chord search algorithm path length. Proving that the improved

Chord search algorithm on path length has more efficient performance. We select 1000 nodes in data set

to search 20 key value. Original node is
20

N . Select top of 10 key values, and satisfy
1

0 2 .
mkey NodeID −

≤ − ≤ Select latter 10 key values, and satisfy 1
2 .
mkey NodeID −

− ≥ Calculate hop

count with different key values. Fig. 6 shows the comparison between improved Chord search algorithm

and original Chord search algorithm.

Fig. 6. Comparison of hop in same range

From Fig. 6, we can know that the hop of improved Chord algorithm is superior to the traditional

Chord search algorithm and the its effect is obvious at the top 10 inquiries. In the latter 10 inquiries,

improved Chord algorithm adopts anticlockwise search and traditional Chord algorithm uses clockwise

search. The average search hop value using new Chord method nearly is half of that using traditional

Chord algorithm. Results show that the improved Chord bidirectional search algorithm based on BFA on

the hop count performance is superior to the traditional Chord search algorithm.

In order to verify the performance of our new method, we calculate the average hop as Fig. 7.

Experiment result is obvious, the range of key value is below 50, overall hop value of improved Chord

algorithm is less than traditional Chord algorithm. With the increase of network scale, the total hop of

search resource is growing too. But the average search hop count of the improved Chord algorithm in this

article grows slowly, significantly it is less than the traditional Chord algorithms. It further proves that

the performance of proposed Chord bidirectional search algorithm based on BFA is superior to the

traditional Chord search algorithm on finding the hop.

Journal of Computers Vol. 29, No. 3, 2018

217

Fig. 7. Comparison of average hop count

To illustrate the effectiveness of our new method, we select modified particle swarm optimization

(MPSO) algorithm [14] and temporal correlation support vector machine algorithm (TCSVM) in [15] to

make comparison with our new method BFA. Under the same population quantity condition, set the

maximum iteration number 27. Fitness evaluation function determines the space distribution of solutions.

For the support vector machine, it needs to find the optimal generalization performance solution. In

practical application, support vector machine requires to optimize penalty factor C and kernel function

parameter γ . We assume that the fitness function in this paper is (,)fitness f C γ= .
1
S is training sample,

2
S is testing sample. The precision value obtained by testing is as the fitness value. 5 15

2 2C
−

< < and
5 5

2 2γ
−

< < . Fig. 8 is the graph of population’s fitness value with iteration change.

Fig. 8. Comparison of Fitness value with different methods

From Fig. 8, we can know that the fitness value will increase when iteration number increasing. When

the iteration reaches to a constant value, the fitness value stops at a certain level. In fact, migration

operation is introduced into BFA, so the convergence time is shortened. Clearly, MPSO method needs

nearly 20 iterations, when fitness value reaches to the biggest, which has the slowest evolution speed.

Followed by TCSVM method, it needs about 15 iterations. However, the new method only needs 7

iterations. It obviously improves the convergence time.

In Table1, it shows the optimal fitness value, stop iteration number and convergence time under same

running environment. Compared to the two methods, our method needs the least running time. Therefore,

it is the best choice for Chord algorithm.

A New Bidirectional Research Chord Method Based on Bacterial Foraging Algorithm

218

Table 1. Experiment results with different methods.

C γ Fitness value Iteration Time/s

2.5834 1.0672 98.7879 20 15.3894

18.1257 0.0112 98.7879 15 7.6187

2.7618 0.0673 98.7879 7 2.3468

4 Conclusions

In order to solve the inconsistent problem between physical topology and logical topology caused by

ignoring the physical location in traditional Chord algorithm, we use BFA method and regard topology

matching problem as a traveling salesman problem (TSP) in this paper. By using the BFA to find the

optimal solution of the problem, then it is used to construct Chord ring, which not only effectively solves

the problem, but uses bidirectional search strategy on the basis of the traditional single direction search to

further improve the search efficiency. Through experiments simulation, it shows that the improved

algorithm has more advantages than the traditional Chord algorithm on the querying path length and

finding the hop. The limitation of the work is that calculation amount is very huge. In the future, we will

study more advanced Chord algorithms to apply them into practical engineering applications and reduce

our disadvantage.

References

[1] S. Ahmed, A. Nawal, M. Nada, Admission control algorithm for MPLS-TE networks, International Journal of Computer

Applications 160(5)(2017) 11-16.

[2] F. Constantinou, P. Mavrommatis, Identifying known and unknown peer-to-peer traffic, in: Proc. IEEE International

Symposium on Network Computing and Applications, 2006.

[3] P. Narang, C. Hota, V.N. Venkatakrishnan, PeerShark: flow-clustering and conversation-generation for malicious peer-to-

peer traffic identification, Eurasip Journal on Information Security (1)(2014) 15.

[4] Y. Li, M. Cong, Z. Sai, D. Wang, Structural topology optimization for column based on variable density method, in: Proc.

IEEE International Conference on Mechatronics and Automation, 2015.

[5] D.P. Ilyutko, V.O. Manturov, A parity map of framed chord diagrams, Journal of Knot Theory & Its Ramifications

24(13)(2015) 1541006.

[6] S. Iyer, A. Rowstron, P. Druschel, Squirrel: a decentralized peer-to-peer web cache, in: Proc. Symposium on Principles of

Distributed Computing, 2015.

[7] G.S. Manku, M. Naor, U. Wieder, Know thy neighbor’s neighbor: the power of lookahead in randomized P2P networks, in:

Proc. the 36th ACM Symposium on Theory of Computing (STOC), 2015.

[8] T. Wang, X. Wu, Y. Zhang, Improved Chord-based method based on genetic algorithm, Application Research of Computers,

2016.

[9] V. Vatsavai, S. Suravarapu, N.F. Mir, Implementation of P2P File Sharing Using Bi-directional Chord Protocol Algorithm,

in: H.A. Sulaiman, M.A. Othman, M.F.I. Othman, Y.A. Rahim, N.C. Pee (Eds.), Advanced Computer and Communication

Engineering Technology, Springer International, New York, 2016, pp. 51-62.

[10] J. Jeong, W.A. Chang, An automatic rhythm and melody composition system considering user parameters and chord

progression based on a genetic algorithm, Journal of KISE 43(2)(2016) 204-211.

[11] C. Fan, Q. Liao, J. Zhao, GA_Chord: An improvement to Chord algorithm based on group autonomy in structed P2P

network, in: Proc., the 3rd IEEE International Conference on Broadband Network and Multimedia Technology (IC-BNMT),

Journal of Computers Vol. 29, No. 3, 2018

219

2010.

[12] D.-G. Zhang, Y.-X. Hu, D. Wang, Y.-P. Liang, A new algorithm of service discovery based on DHT for mobile application,

Journal of Networks 6(10)(2011) 1466-1474.

[13] Y. Liu, P. Yang, An advanced algorithm to P2P semantic routing based on the topologically-aware clustering in self-

organizing mode, Journal of Software 17(2)(2006) 339-348.

[14] F. Miao, H.S. Park, C. Kim, S. Ahn, Swarm intelligence based on modified PSO algorithm for the optimization of axial-

flow pump impeller, Journal of Mechanical Science and Technology 29(11)(2015) 4867-4876.

[15] Z. Rao, X. Guan, J. Teng, Chord recognition based on temporal correlation support vector machine, Applied Sciences

6(5)(2016) 157.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

