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Abstract. The main drawbacks of mean-variance model are to generate corner solutions and low 

diversity in the portfolios. To overcome these defects, firstly, we propose a new proportion 

entropy function as an objective function to generate well-diversified portfolio. Secondly, 

considering the transaction cost and liquidity, we present a new fuzzy mean-variance-entropy 

multi-objective portfolio selection model to find tradeoffs between risk, return and the 

diversification degree of portfolio, which is able to address a more realistic portfolio selection 

problem. Thirdly, we combined several efficient schemes to form an efficient algorithm to 

maintain the diversity of obtained solutions and to solve the presented multi-objective portfolio 

selection model. The proposed multi-objective portfolio model combined with the multi-

objective evolutionary algorithm can overcome these defects fundamentally. Finally, to 

demonstrate the efficiency and effectiveness of the proposed model and algorithm, the designed 

algorithm is compared with two famous algorithms: multi-objective evolutionary algorithm 

based on decomposition (MOEA/D) and non-dominated sorting genetic algorithm II (NSGA-II) 

through some simulations based on the data of the Shanghai Stock Exchange Market. Simulation 

results show that the proposed algorithm is able to obtain better diversity and more evenly 

distributed Pareto fronts than the other two algorithms, and our proposed portfolio model can 

yield good performance of portfolio.  

Keywords: entropy, fuzzy variable, multi-objective evolutionary algorithm, portfolio selection, 

possibilistic moments 

1 Introduction 

Modern portfolio selection theory is derived from the mean-variance (MV) model by Markowitz [1], 

which considered the trade-off between return and risk under stochastic environment by combining 

probability theory with optimization methods. After that, a lot of works on the mean-variance problem 

have been done in stochastic theory. However, such works have some problems in practice owing to the 

error in estimation of the moments of asset returns. The main issues in optimal mean-variance (MV) 

framework are that the portfolios are often extremely concentrated on a few assets or extreme positions, 

which are contradiction to the notion of diversification. The portfolio with low diversity may lead to loss 

while some of the invested assets experience unexpected gains, and makes the performance of the 

portfolio models not very good. Therefore, to generate a well-diversified portfolio, some researchers used 

the Shannon’s entropy to measure the diversification in their portfolio selection model. For instance, Usta 

et al. [2] applied the Shannon’s entropy as theoretical foundation to construct a mean-variance-skewness-

entropy portfolio selection model, and obtained the good performance comparing with traditional 
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portfolio models. Yu et al. [3] considered different entropy measures in the mean variance portfolio 

model, and enhanced the diversity of the portfolios. More recently, Ayusuk et al. [4] used the Shannon’s 

entropy as the objective function to present a portfolio selection model based on mean-variance 

framework, and to find the optimal portfolio weights. However, these portfolio models with Shannon’s 

entropy have serious issue, and the major issue of these portfolio models is that the Shannon’s entropy 

measure is non-linear in portfolio selection since its weights take natural logarithm, which can result in 

very small positive weights for some asset in the portfolio [3]. As we known, in the practical investment 

management, such portfolios with very small positive weights are not effective for the purpose of 

diversity and are not what the investors really want. So using the Shannon’s entropy to achieve 

diversification may contradict with the investor’s notion of diversification. In order to overcome the 

shortcoming of the Shannon’s entropy mentioned above, we present a novel proportion entropy function, 

which can directly acquire a diversified portfolio due to the linear feature. The detailed illustration of the 

novel proportion entropy function will be given in Section 3. 

Notice that most of the existing portfolio selection models were based on probability theory under 

some random state. However, in financial markets, investors may face with imperfect information data 

and hence must deal with uncertain, imprecise and vague data. Furthermore, the uncertain returns of risk 

assets are influenced by economic change, politics, social conditions and the status of the related 

company, etc. In addition, security markets are usually very sensitive. An accident or a hard-to-verify 

message may influence security prices or returns greatly. Thus, in reality, the uncertain security returns 

are hard to get because of the complexity of the financial markets and many unexpected factors. 

Obviously, in many situations, it is more suitable to estimate the returns of risk assets by using fuzzy 

variables. In fact, with the development of security market and introduction fuzzy set theory, more and 

more researchers have investigated portfolio optimization problems by using fuzzy set theory, for 

example, Deng et al. [5] replaced the probabilistic mean, variance and covariance by the possibilistic 

mean, variance and covariance in mean-variance model, and used the gradually tolerant constraint 

method to solve the portfolio model. Nguyen et al. [6] proposed the fuzzy Sharpe ratio concept to 

evaluate the reward-to-volatility of portfolios in the fuzzy modeling context, and used the fuzzy approach 

and genetic algorithm to solve the model. More recently, Rubio et al. [7] used the weighted fuzzy time 

series methods to forecast the future performance of returns on portfolios, and modeled the uncertain 

parameters in the fuzzy portfolio selection model by using a possibilistic interval-valued mean approach. 

Calvo et al. [8] proposed a fuzzy portfolio selection model for dealing with the investor’s subjective 

preferences about the desired return and acceptable risk properly, and used a nonlinear integer 

programming for solving the fuzzy portfolio selection problem. Additionally, Guo et al. [9] constructed a 

fuzzy multi-period portfolio selection problem under the credibility theory, and designed a fuzzy 

simulation method based on genetic algorithm for obtaining optimal solutions.  

All of the above works mentioned mainly concern the risk-return trade-off. However, a reasonable 

investment decision requires considering many criteria simultaneously. In addition to risk and return of 

portfolio, the transaction cost and liquidity are very important factors for investors. As we know, ignoring 

transaction costs and liquidity would result in inefficient portfolios. Therefore, some researchers took 

into account the transaction cost or the liquidity in their portfolio selection models. For example, Mei et 

al. [10] analyzed the optimal portfolio policy for a multi-period mean-variance investor when he/she 

faced multiple risky assets in the presence of general transaction costs, they provided a closed-form 

expression for a no-trade region shaped as a parallelogram. Liu et al. [11] discussed the assets allocation 

in the presence of small proportional transaction costs and kept the asset portfolio close to a target 

portfolio when the trading cost is being reduced. Pae et al. [12] studied a log-robust portfolio 

optimization problem including transaction costs and developed an approximation method for the 

portfolio problem. Recently, Lin et al. [13] proposed a portfolio model with the minimum transaction lost, 

and used a fuzzy goal programming method for solving the portfolio model. But they did not consider the 

liquidity in their portfolio selection model. Although some researchers studied portfolio liquidity in the 

portfolio selection problems, they did not consider the diversification of portfolios in their models. For 

examples, Barak et al. [14] incorporated portfolio liquidity in their proposed model, and presented the 

liquidity as a trapezoidal fuzzy number and measured it by fuzzy credibility theory. Liu et al. [15] 

represented the liquidity of assets by interval variables and proposed a fuzzy multi-period portfolio 

optimization problem, and used the fuzzy decision-making theory to deal with the model. Gaigi et al. [16] 

researched a portfolio optimization problem under liquidity risk and price impact, and used a numerical 
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approximation algorithm based on quantization procedure to solve the portfolio model. In practice, 

except for return, risk, transaction cost and liquidity, the diversification is one of the important principles 

of financial investment where investors should allocate their capital among different assets according to 

their own preferences. Therefore, the purpose of this paper is to increase the diversity of the portfolios 

and to overcome the shortcoming of Shannon’s entropy by using our proposed proportion entropy 

function. 

Although the great progress has been made in the previous studies, the vast majority portfolio selection 

problems focused on single objective portfolio selection model, which fails to meet the demand of 

investors who have multiple investment objectives. The main reason is that the multi-objective portfolio 

optimization problem cannot be easily solved because the challenge arises due to conflicting objectives, 

high occurrence of non-dominance of solutions based on the dominance relation, and under-

diversification optimization solutions. On the other hand, in real investment environment, the investors 

usually have multiple conflicting and competing objectives, such as the total return, the total risk and the 

diversification degree of portfolio, to be optimized simultaneously and investors generally seek the best 

combination of assets among their investment objectives. Thus, in essence, the portfolio selection 

problem inherently involves multiple conflicting criteria. In problems of portfolio selection, financial 

decision makers explain objectives and investment purposes in the frame of multi-objective optimization 

problems which are more consistent with decision making realities. So, it is natural for us to construct the 

portfolio selection model in multi-objective framework. In order to achieve the better portfolio selection 

and set up a reasonable portfolio selection model, in this paper, in addition to consider the risk and return 

for portfolio selection, we also propose a new proportion entropy function as an objective function for the 

diversification of portfolio. To handle the imperfect information data and vague data, we introduce the 

fuzzy variable in the designed model. Furthermore, the transaction cost and liquidity are also considered 

in our model.  

Since the proposed portfolio models are not differentiable, nonlinear and non-smooth multi-objective 

optimization problems (MOPs) which are very challenging and intractable optimization problems. From 

the viewpoint of optimization, a single solution that simultaneously optimizes all the conflicting 

objectives hardly exists in practice. Instead, there exists a set of acceptable efficient solutions (largely 

known as Pareto-optimal solutions or non-dominated solutions) which are optimal in such a way that no 

other solutions are superior to them when all objective are considered simultaneously. So, this demands 

us to find Pareto-optimal portfolios as many as possible. Among various multi-objective optimization 

algorithms, multi-objective evolutionary algorithms (MOEAs), which make use of the strategy of the 

population evolutionary to optimization the problems, are effective method for solving MOPs. In recent 

years, some famous MOEAs, such as non-dominated sorting genetic algorithm II (NSGA-II) [17], multi-

objective evolutionary algorithm based on decomposition (MOEA/D) [18], a favorable weight-based 

evolutionary algorithm (FWEA) [19] and the p-optimality criteria evolutionary algorithm (p-OCEA) [20], 

have been proposed for solving the MOPs. In comparison with other traditional optimization algorithms, 

the MOEAs aim at finding a set of representative Pareto optimal solutions in a single run. Overall, the 

multi-objective optimization nature of the portfolio selection problem is unquestionable and the use of 

multi-objective optimization techniques has received a great deal of attention for solving these problems 

[21-22]. 

The main contributions of this study are as follows. Firstly, we present a novel linear proportion 

entropy function which can overcome the shortcomings of the Shannon’s entropy function to generate 

more feasible diversified portfolios in fuzzy environment. Secondly, in order to obtain the diversity and 

convergence of solutions, we integrate several efficient schemes to form an efficient algorithm to solve 

the proposed model, and the numerical examples show that our proposed algorithm is able to obtain 

better diversity and more evenly distributed Pareto front than the classic MOEA/D and NSGA-II 

algorithms. Thirdly, our approach can find the Pareto front of efficient solutions that provide different 

Pareto-optimal investment strategies as diversified as possible for investors at a time, rather than one 

strategy for investors at a time. Finally, we proposed the possibilistic mean-variance-linear-proportion-

entropy (MV-LPE) portfolio model that is more effective than the possibilistic mean-variance (P-MV) 

model and possibilistic mean-variavnce-Shannon’s entropy (MV-SE) model.  

The rest of this paper is organized as follows. Section 2 introduces basic definitions and preliminary 

results related to fuzzy variables. In Section 3, three weighted possibilistic multi-objective portfolio 

models with transaction cost and liquidity are presented. Section 4 presents a detailed description of our 
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designed multi-objective evolution algorithm. Section 5 shows the comparisons of our algorithm with 

MOEA/D and NSGA-II, and gives the comparative result analysis of the three weighted possibilistic 

multi-objective portfolio models. The last Section gives some concluding remarks.  

2 Preliminaries 

We first introduce some basic definitions and results which will be needed in the following sections. 

2.1 Fuzzy Numbers and Notations 

In this section, the basic concepts and notations are given as follows [23-24]: 

Definition 1. A fuzzy number A�  is described as any fuzzy subset of the real line � , whose membership 

function [ ]: 0,1
A

µ →
�

�  satisfies the following conditions: 

(i) A�  is normal, i.e., there exists an x∈�  such that ( ) 1
A
xµ =

�

, 

(ii) ( )
A
xµ

�

 is upper semi-continuous, i.e., ( ) { }(1 ) min ( ), ( )
A A A

x y x yμ λ λ μ μ+ − ≤
� � �

, for all [ ]0,1λ∈ , 

(iii) ( )
A
xµ

�

 is upper semi-continuous, i.e., { }( )
A

x xμ ε∈ ≤
�

�  is a closed set, for all [ ]0,1ε ∈ , 

(iv) The closure of the set { }( ) 0
A

x xμ∈ >
�

�  is a compact set. 

Definition 2. A γ - level set of A�  is defined by an ordinary set { }( )
A

A x x
γ

μ γ= ∈ ≥
�

� �  for [ ]0,1γ ∈ , if  

0γ >  and { }cl ( ) 0
A

A x x
γ

µ= ∈ ≥
�

� � (the closure of the support of A� ) if 0γ = . As well known, if A�  is a  

fuzzy number, then { } [ ]( ) ( ), ( )
A

A x x a a
γ

μ γ γ γ= ∈ > =
�

� �  is a compact subset of �  for all [ ]0,1γ ∈ . 

Definition 3. A fuzzy number A�  is called a trapezoidal fuzzy number with core [ ],c d , left width 0δ >  

and right width 0θ > , if its membership function has the following form: 

 

1 ,    if   

1,                if   
( )

1 ,   if   

0,               if   otherwise

A

c x
c x c

c x d
x

x d
d x d

δ
δ

μ

θ
θ

−⎧
− − ≤ ≤⎪

⎪
≤ ≤⎪

= ⎨
−⎪ − ≤ ≤ +

⎪
⎪
⎩

�

 (1) 

and it can be denoted by ( ), , ,A c d δ θ=
� . 

2.2 Weighted Possibilistic Moments (WPS) 

In this paper, we regard a new weighted possibilistic mean value and variance [25] of fuzzy variables as 

the return level and risk level, respectively. It is just because the weighted possibilistic mean (WPM) and 

weighted possibilistic variance (WPV) of the fuzzy numbers have all the properties of the possibilistic 

mean value and variance stated in reference [23], and WPV has all necessities and important properties 

for defining the possibilistic variance of a fuzzy number. In addition, WPM is the nearest weighted point 

to the fuzzy number via minimizing a new weighted distance quantity, moreover, WPV of a fuzzy 

number is consistent with the physical interpretation of the variance and well-known definition of 

variance in probability theory so that it can simply introduce the possibilistic moments about the mean of 

fuzzy numbers without problem [25]. Furthermore, Pasha et al. [25] pointed out that the definition of 

weighted possibilistic moments on fuzzy numbers is more suitable for all fuzzy numbers than the 

definitions of possibilistic moments introduced in reference [23-24].This indicates that WPM and WPV 

are suitable and applicable to measure the risk and return, and play an important role in fuzzy data 

analysis. For this reason, we quantify the risk and the return by using WPV and WPM respectively. 

The definitions of the weighted possibilistic moments of fuzzy numbers are given in [25] as follows. 
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Definition 4. Let A�  be a fuzzy number with [ ]( ), ( )A a a
γ

γ γ=
� , [ ]0,1γ ∈ . Then WPM (or the first order 

f-WPM) and WPV of fuzzy number A�  are defined as follow, respectively. 

(i) 
1

0

( ) ( )
( ) ( )

2
f

a a
M A f d

γ γ
γ γ

+
= ∫� , 

(ii) ( ) ( )2 21

0

1
( ) ( ) ( ) ( ) ( ) ( )

2
f f fVar A f a M A a M A dγ γ γ γ

⎡ ⎤= − + −
⎢ ⎥⎣ ⎦∫� � � . 

where, ( ) ( 1) nf nγ γ= +  is a weighted function such that 
1

0

( ) 1f dγ γ =∫ . 

Definition 5. Let A� and B�  be two fuzzy numbers with possibilistic mean ( )M A� and ( )M B� , respectively.  

Then the weighted possibilistic covariance between A� and B�  is defined as 

 ( ) ( )( ) ( )( )1

0

1
, ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2
f f f f fCov A B f a M A b M B a M A b M B dγ γ γ γ γ γ⎡ ⎤= − − + − −

⎣ ⎦∫� � �� � �

,  

where, ( ) ( 1) nf nγ γ= +  is a weighted function such that 
1

0

( ) 1f dγ γ =∫ . 

Theorem 1. [25] Let A� and B�  be two fuzzy numbers, and let λ and µ  be nonnegative numbers. Then 

the following conclusions can be obtained: 

(i) ( ) ( ) ( )f f fM A B M A M Bλ μ λ μ± = ±� �� � , 

(ii) ( ) ( )2 2( ) ( ) 2 ,f f f fVar A B Var A Var B Cov A Bλ μ λ μ λμ± = + ±� � �� � � . 

From Theorem 1 above, we can easily deduce the following theorem. 

Theorem 2. Let 
1
A� , 

2
A� ,…, 

n
A� be n  fuzzy numbers, and let 

1
λ , 

2
λ ,…, 

n
λ be n  nonnegative real number. 

Then 

(i) ( )
1 1

n n

f i i i f i

i i

M A M Aλ λ

= =

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∑ ∑� � , 

(ii) ( ) ( )2

1 1 1 1

2 ,
n n n n

f i i i f i i j f i j

i i i j

Var A Var A Cov A Aλ λ λ λ

= = = =

⎛ ⎞
= ±⎜ ⎟

⎝ ⎠
∑ ∑ ∑∑� � � � . 

2.3 Multi-objective Optimization Problems (MOPs) 

In this paper, the proposed portfolio selection problems will be modeled as multi-objective optimization 

problems (MOPs).Typically, a multi-objective optimization problem can be formulated as follows [26]: 

 

[ ]1 2
min    ( ) ( ), ( ), , ( )

   .   ( ) 0,   1,2, ,

         ( ) 0,   1, ,

k

j

j

y F x f x f x f x

s t g x j q

h x j q m

⎧ = =
⎪

≥ =⎨
⎪

= = +⎩

�

�

�

 (2) 

The feasible region Ω  is defined as follows: 

 { }( ) 0, 1,2, , ; ( ) 0,   1, , n

j j
x g x j q h x j q m S RΩ = ≥ = = = + ⊆ ⊆� � . (3) 

Definition7 (Pareto-Dominance). A solution ( )1 2
, , ,

n
x x x x
∗ ∗ ∗ ∗

= �  is said to dominate (Pareto-optimal) 

another solution ( )1 2
, , ,

n
x x x x= � (denoted by x x

∗

� ), if the following conditions are satisfied: 

(i) { } *1,2, , : ( ) ( )
j j

j k f x f x∀ ∈ ≤� , 

(ii) { } *1,2, , : ( ) ( )
j j

j k f x f x∃ ∈ <� . 

Definition 8 (Pareto-Optimal). A solution x∗ ∈Ω  is said to be non-dominated (Pareto-optimal) iff x¬∃  

such that x x
∗

� . 

Definition 9 (Pareto-Optimal Set). The set of all Pareto optimal solutions is defined as:  
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 { }:PS x x x x
∗ ∗

= ¬∃ ∈Ω � . (4) 

Definition 10 (Pareto-Optimal Front). The set of all Pareto solutions in objective space is defined as 

Pareto front and denoted as follow: 

 [ ]{ }1 2
( ), ( ), , ( )

k
PF f x f x f x x PS= ∈� . (5) 

3 Weighted Possibilistic Multi-objective Portfolio Selection Models 

In this section, we first introduce the problem description and notations used. Second, we propose a novel 

proportion entropy for diversifying the allocation on various assets. Then, based on the new weighted 

possibilistic moments of fuzzy variable, we set up the fuzzy mean-variance-entropy multi-objective 

portfolio models. 

3.1 Problem Description and Notations 

Let us consider a multi-objective fuzzy portfolio selection problem with n  risk assets. The return rates 

and turnover rates of the risk assets are denoted as trapezoidal fuzzy numbers. For the notation 

convenience, we introduce the following notations. 

i
x : Proportion of the total investment devoted to the risk asset i , 1,2, ,i n= � , 

i
k : Rate of transaction cost on the risk asset i , 1,2, ,i n= � , 

i
r� : Fuzzy rate of return on the risk asset i , 1,2, ,i n= � , 

i
l� : Fuzzy turnover rate of the risk asset i , 1,2, ,i n= � . 

In this paper, the transaction cost is assumed to be a V-shape function, which is the difference between 

a new portfolio ( )1 2
, , ,

n
x x x x= �  and a given portfolio ( )0 0 0 0

1 2
, , ,

n
x x x x= � . For a new investor, it can be 

argued that 0
0

i
x = , 1,2, ,i n= � . Thus the total transaction cost of the portfolio is 0

1

n

i i i

i

k x x

=

−∑ . 

For any risk asset, liquidity may be measured by using the turnover rate which is defined by the ratio 

of the average trading volume of the assets trade in the market and the trading volume of the tradable 

asset (i.e., shares held by the public) corresponding to the asset. It is well known that the future turnover 

rates of assets cannot be accurately predicted in the uncertain financial market. Therefore, the fuzzy set 

theory provides a new tool to deal with this imprecision. Without loss of generality, the turnover rate of 

the thi  asset is regarded as a trapezoidal fuzzy number ( ), , ,
i i i i i
l c d δ θ=

� , 1,2, ,i n= �  in this paper. Note 

that the turnover rate of the portfolio ( )1 2
, , ,

n
x x x x= � is 

1

( ) .
n

i i

i

l x l x

=

=∑� �  In the model, the portfolio 

liquidity is always greater or equal to a given tolerate level of fuzzy turnover rate 
0
l�  by the investor, that 

is, 
0

1

( ) .
n

i i

i

l x l x l

=

= ≥∑� � �  According to the method for ranking fuzzy number reported in reference [27], the 

fuzzy inequality 
0

1

n

i i

i

l x l

=

≥∑ � �  can be transformed into the crisp in-equality ( )0
1

n

i i

i

M l x M l

=

⎛ ⎞
≥⎜ ⎟

⎝ ⎠
∑ � � . 

3.2 Proportion Entropy for Decentralized Investment 

In order to satisfy the requisition of decentralized investment, a new linear proportion entropy will be 

proposed to enhances diversity of the portfolios. Before introducing the proportion entropy, let us first 

review the Shannon’s entropy, which is employed to reflect the diversification degree of the 

aforementioned portfolio selection problem in literatures [2-3]. And its mathematical expression can be 

expressed as follows: 



Journal of Computers Vol. 29, No. 4, 2018 

45 

 ( )
1

Sn ln

n

i i

i

x x x

=

= −∑  (6) 

where 0
i
x >  denotes as the investment proportion of asset i , 1,2, ,i n= � . As pointed out by Yu et al. 

[3], the Shannon’s entropy measure is non-linear in portfolio selection as its weights take natural 

logarithm, which leads to very small positive weights for some asset in the portfolio. However, in the 

practical investment management, such portfolios with small positive weights are not effective for the 

purpose of diversity and are not what the investors really want. So using the Shannon’s entropy to assess 

diversification may contradict with the investor’s notion of diversification. In order to overcome the 

shortcoming of the Shannon’s entropy mentioned above, we present a novel proportion entropy function 

which aims to minimize the sum of distance between weights of the invested asset. The following is the 

definition of our proportion entropy: 

 ( )
1

1

1

Pn

z
n

z

i i

i

x x x

−

+

=

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
∑  (7) 

where, z  is a constant and 1z ≥ . From the Eq. (7), as can be seen that the more equally the budget 

allocates on assets, the larger the proportion entropy is. It is worth noticing that the proportion entropy 

can be transferred into a linear type when 1z = . The following is the linear proportion entropy type as 

1z = . 

 ( )
1

1

1

Pn

n

i i

i

x x x

−

+

=

= − −∑  (8) 

The linearization of the proportion entropy can directly result in a diversified portfolio because of the 

linear feature of the proportion entropy [3]. By using our proposed linear proportion entropy in portfolio 

selection model, in essence, we can diversify the allocation on various assets, which meets the 

requirement of investors.  

3.3 Construction of Fuzzy Multi-objective Portfolio Selection Models 

For a rational investor, who wants to maximize return after paying transaction costs and minimize the 

risk of portfolio. Based on the above discussions, a fuzzy portfolio selection model with transaction costs 

and fuzzy liquidity constraints can be described as the following weighted possibilistic mean-variance (P-

MV) model: 

 

( )

0

1 1

1

0

1

1

max    

min    

  .     

          1,  0,  1,2, ,

n n

f i i i i i

i i

n

f i i

i

n

i i

i

n

i i

i

M r x k x x

V r x

s t M l x M l

x x i n

= =

=

=

=

⎧ ⎡ ⎤
− −⎪ ⎢ ⎥

⎣ ⎦⎪
⎪ ⎡ ⎤
⎪ ⎢ ⎥
⎪ ⎣ ⎦
⎨

⎛ ⎞⎪ ≥⎜ ⎟⎪
⎝ ⎠⎪

⎪
= ≥ =⎪

⎩

∑ ∑

∑

∑

∑

�

�

� �

�

 (9) 

where the first constraint means the liquidity is greater than or equal to a given value 
0
l�  by the investor, 

and the second constraint implies that all the capitals will be invested to n  assets and short-selling is not 

allowed.  

To measure the diversification degree, we introduce our linear proportion entropy to the weighted 

possibilistic mean variance model and obtained the following three-objective weighted possibilistic 

mean-variance-linear-proportion-entropy (MV-LPE) model: 
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 ( )

( )

0

1 1

1

1

1

1

0

1

1

max    

min     

min     Pn

  .      

           1,  0,  1,2, ,

n n

f i i i i i

i i

n

f i i

i

n

i i

i

n

i i

i

n

i i

i

M r x k x x

V r x

x x x

s t M l x M l

x x i n

= =

=

−

+

=

=

=
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Corollary1. Let ( ), , ,
i i i i i
r a b α β=�  and ( ), , ,

i i i i i
l c d δ θ=

�  represent the fuzzy returns and the fuzzy 

turnover rates of the thi  asset for 1,2, ,i n= �  and ( )0 0 0 0 0
, , ,l c d δ θ=

�  be a given fuzzy turnover rate 

confidence level by the investor. Then the model (10) can be converted into the following deterministic 

MOPs (11). 
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Proof. Since ( ), , ,
i i i i i
r a b α β=� and ( ), , ,

i i i i i
l c d δ θ=

�  are trapezoidal fuzzy numbers for 1,2, , .i n= �  

According to the Extension Principle of fuzzy sets, 
1 1 1 1 1

, , ,

n n n n n

i i i i i i i i i i

i i i i i

r x x a x b x xα β
= = = = =

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑ ∑�  and 

1 1 1 1 1

, , ,

n n n n n

i i i i i i i i i i

i i i i i

l x x c x d x xδ θ

= = = = =

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑ ∑�  are also trapezoidal fuzzy numbers for 1,2, , .i n= �  Combining 

this with Theorem 1 and Theorem 2, we can get this conclusion. 

In order to highlight the advantage of our designed linear proportion entropy over the Shannon’s 

entropy as the diversification measure for multi-objective portfolio, the weighted possibilistic mean-

variavnce-Shannon’s entropy (MV-SE) model is given as follows: 
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4 A Multi-objective Evolutionary Algorithm for Portfolio Selection 

In this section, we will describe the designed algorithm. To maintain the diversity and good convergence 

of the obtained solutions, the proposed algorithm is specifically designed and is included the four parts, 

i.e. space and population decomposition, update strategy, crossover operations and selection strategy. 

Space and population decomposition and update strategy are used for keeping the diversity of the 

obtained solutions. The crossover operations are used to search the decision space. The selection strategy 

can make the obtained solutions converge to the PF . 

4.1 Space and Population Decomposition 

We use a set of direction vectors to decompose the objective space of these multi-objective portfolio 

models into a set of sub-objective space and use these direction vectors to classify the obtained solutions 

to make each sub-objective space own a solution [28]. For a given set of direction vectors 

( )1 2
, , ,

N
λ λ λ� , and the set of current obtained solutions is represented by the symbol POP , these 

solutions will be classified by the following formula [28]: 

 

( ) ( ){ }
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              ( ), ,  1,2, ,
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Ti
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F x Y
F x i n

F x Y

λ λ
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λ
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 (13) 

where ( )1 2
, , ,

m
Y Y Y Y= �  is a reference point and { }min ( )

i i
Y f x x= ∈Θ , ( )( ), i

F x λΔ  is the cosine of the 

angle between i
λ  and ( )F x Y− . These solutions are divided into M  classes by the formula (13) and the 

objective space Θ  is divided into M  sub-objective spaces 
1 2
, , ,

M
Θ Θ Θ� .  

 Where ( )1,2, ,
k
k MΘ = � is ( ) ( ){ }

1

( ) , ( ), ( ),max
k j

k

j N

F x x F x F xλ λ

≤ ≤

⎧ ⎫⎪ ⎪
Θ = ∈Θ Δ = Δ⎨ ⎬

⎪ ⎪⎩ ⎭
 (14) 

If a ( )1
i

P i M≤ ≤  is empty, a solution is randomly selected from POP  and put into i
P . We could 

make the following comments on the classification (decomposition) method [28]: 

(i) This method is equivalent in a way that PF of all these sub-objective spaces made up of PF  of the 

problems PMV, MV-SE and MV-LPE. 

(ii) Even if the PS  of these problems has a nonlinear geometric shape, the PS  of each sub-objective 
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space could be approaching linear, because it is just a small part of the PS  of (5). Thus, formulas (13) 

and (14) make the problems PMV, MV-SE and MV-LPE are simpler than before, at least in accordance 

to with PS  shapes.  

(iii) This classification (decomposition) method does not need any aggregation methods. A user only 

needs to select a set of direction vectors. To some extent, it requires little human labor. 

4.2 Update Strategy for Decomposition of POP  

The elitist strategy generally can increase the speed of the convergence and improve the solution quality. 

A new elitist strategy is designed in our algorithm. The detail is as follows. For each sub-region of POP , 

there are two cases:  

(1) If the sub-region is empty, the solution is selected and retained, whose objective vector has the 

smallest angle to the direction vector i
λ  corresponding to this sub-region. 

(2) If the sub-region is not empty, there exist two situations. If this sub-region has only one solution, 

the solution is retained. If the number of the solutions in this sub-region is equal to or greater than two, 

the non-dominated solutions are the candidate ones to be chosen. Then the non-dominated solution is 

selected and retained, whose objective vector has the smallest angle to the direction vector i
λ  

corresponding to this sub-region. 

4.3 Crossover Operations and Selection Strategy 

In our algorithm, we use a differential evolution (DE) [29] operator and the quantization orthogonal 

crossover (QOX) as the crossover operations. The crowding distance [17] is used to calculate the fitness 

value of a solution in the selection operators to improve the convergence. 

4.4 Steps of the Proposed Algorithm 

Based on the above discussed, a new orthogonal evolutionary algorithm based on Decomposition is 

proposed. The steps of our algorithm are as follows: 

Step 1. (Initialization) Given M  direction vectors ( )1 2
, , ,

M
λ λ λ� , randomly generate an initial 

population ( )POP k  and its size is M , let 0k = . Set { }min ( ) ( )
i i
Y f x x POP k= ∈ , 1 i m≤ ≤ . 

Step 2. (Fitness) Solutions of ( )POP k  are firstly divided into M  classes by the formula (13) and the 

fitness value of each solution in ( )POP k  is calculated by using the crowding distance. Then some better 

solutions are selected from the population ( )POP k  and put into the population POP . In this paper, 

binary tournament selection is used. 

Step 3. (New solutions) Apply genetic operators and QOX to the parent population to generate offspring. 

The set of all these offspring is denoted as O .  

Step 4. (Update) Y  is firstly updated. For each 1,2, ,j m= � , if { }min ( )
j j

Y f x x O> ∈ , then set 

{ }min ( )
j j

Y f x x O= ∈ . The solutions of ( )POP k O∪  are firstly classed by the formula (13), then M  

best solutions are selected by the update strategy of Section 4.2 and put into ( 1)POP k + . Let 1k k= + . 

Step 5. (Termination) If stop condition is satisfied, stop; otherwise, go to Step 2. 

5 Numerical Examples and Analysis 

In this section, in order to demonstrate the effectiveness of the modeling idea and the proposed algorithm, 

we first compare our algorithm with two famous algorithms: NSGA-II [17] MOEA/D [18] through some 

numerical examples based on the data of the Shanghai Stock Exchange Market. Then, we use the 

proposed algorithm to solve these fuzzy multi-objective portfolio models to illustrate the idea of our 

model and the effectiveness of the designed algorithm. Finally, the comparison analysis for these 

portfolio models will be given by these numerical examples. 
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5.1 Data Processing 

We assume that an investor chooses 12 assets from Shanghai Stock Exchange for his or her investment. 

The exchange codes of the 12 assets are 601098, 601880, 600563, 600038, 601888, 601377, 600721, 

600681, 600571, 600419,600570, 600201. For convenience of description, we denote the 12 assets 

successively as Assets 1,2,3,4,5,6,7,8,9,10,11,12 in these examples. Here, we collect original data from 

the weekly closing pricing and turnover rate of these assets in three years from January 2012 to January 

2015 as the sample data. Using the simple estimation method in Vercher et al. [30], we deal with the 

historical data of 12 rates. Then, the parameters of the fuzzy return rate ( ), , ,
i i i i i
r a b α β=� and the turnover 

rates ( ), , ,
i i i i i
l c d δ θ=

�  of the thi  asset are shown respectively in Table 1 and Table 2. 

Table 1. Fuzzy returns of 12 assets 

Asset i 1 2 3 4 

Return rate (-0.0065,0.0188 0.0562 0.0681) (-0.0094,0.0077 0.0532 0.1034) (-0.0062,0.0219 0.0736 0.0694) (-0.0076,0.0154 0.0633 0.0797) 

Asset i 5 6 7 8 

Return rate (-0.0047,0.0144,0.0562,0.0660) (-0.0093,0.0189,0.0711,0.0954) (-0.0053,0.0180,0.0814,0.0795) (-0.0044,0.0228,0.0817,0.0764) 

Asset i 9 10 11 12 

Return rate (-0.0029,0.0271, 0.0830,0.0906) (-0.0124,0.0199, 0.0744,0.1258) (0.0063,0.0139, 0.0637,0.1076) (-0.0060,0.0193, 0.0511,0.0746) 

Table 2. Fuzzy turnover rates of 12 assets 

Asset i 1 2 3 4 

Return rate (0.0416,0.0662,0.0224,0.1315) (0.0434,0.0639,0.0352,0.2148) (0.0526,0.0657,0.0290,0.0599) (0.0508,0.0723,0.0338,0.0994) 

Asset i 5 6 7 8 

Return rate (0.0220,0.0278,0.0124,0.0571) (0.0449,0.0699,0.0239,0.1900) (0.0723,0.0990,0.0481,0.1264) (0.0708,0.0954,0.0426,0.1297) 

Asset i 9 10 11 12 

Return rate (0.0499,0.0820,0.0315,0.0965) (0.0705,0.0970,0.0515,0.2344) (0.0299,0.0503,0.0194,0.0875) (0.0290,0.0379,0.0164,0.0590) 

 

In our numerical examples, we assume that the transaction costs of assets are identical, i.e., 

0.003
i
k = for all 1,2, ,12i = � , and the fuzzy turnover rate confidence level given by the investor is 

( )0
0.0227,0.0322,0.0658,0.2324l =

� . 

5.2 Parameter Settings 

Three compared algorithms, i.e., our algorithm, NSGA-II and MOEA/D, are implemented on a personal 

computer (Intel Xeon CPU 2.53GHz, 4.0G RAM). The individuals are all coded as the real vectors. 

Polynomial mutation [31] operators are applied directly to real parameter values in three compared 

algorithms. For crossover operators, simulated binary crossover (SBX [31]) is used in NSGAII, the DE 

and QOX are used in our algorithm, and the DE is also used in MOEA/D. The population size is 105 in 

three algorithms. Weight vectors are generated by using the method which is used in [18]. The direction 

vectors of our algorithm are the weight vectors. The number of weight vectors is equal to the population 

size. The number of the weight vectors in the neighborhood in MOEA/D is 20 for all numerical examples. 

The Tchebycheff approach [18] is used for MOEA/D as an aggregate function. Other control parameters 

in MOEA/D are the same as in [18]. Quantization levels 3Q = and there are 3F =  factors in the QOX 

operator. So, the each QOX operator can produce nine potential offspring. Each algorithm is run 20 times 

independently for each numerical example. All the three algorithms stop after 1000 generations. 

5.3 Comparisons of Our Algorithm with MOEA/D and NSGA-II 

In this subsection, the comparisons of our algorithm with MOEA/D and NSGA-II algorithms will be 

given through some numerical examples based on the data of the Shanghai Stock Exchange Market. 

Because the diversity and convergence of solutions are very important for evaluating the performance of 

the algorithms, in order to compare the performance of the different algorithms quantitatively, 

performance metrics are needed. In this paper, the following performance metrics are used to compare 
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the performance of the different algorithms quantitatively: set coverage (C-metric) [32] and hypervolume 

indicator (HV) [33]. C-metric is defined as the percentage of the solutions in B  that are dominated by at 

least one solution in A , i.e., ( )
{ }:  dominates 

C ,
u B v A v u

A B
B

∈ ∃ ∈

= , ( )C ,A B  is not necessarily equal 

to ( )1 C ,A B− . ( )C , 1A B =  means that all solutions in B  are dominated by some solutions in A , while 

( )C , 0A B =  implies that no solution in B  is dominated by a solution in A . The hypervolume indicator 

has been used widely in evolutionary multi-objective optimization to evaluate the performance of search 

algorithms. It computes the volume of the dominated portion of the objective space relative to a reference 

point. Higher values of this performance indicator imply more desirable solutions. The hypervolume 

indicator measures both the convergence to the true Pareto front and diversity of the obtained solutions. 

Furthermore, in order to show the usefulness of our proposed model more clearly, We consider the 

following three cases: (I) returns of all assets remain unchanged, (II) returns of all assets become more 

increasing up to 10 percent than the sample returns in Table 1, (III) returns of all assets become more 

decreasing up to 10 percent than the sample returns in Table 1.  

Table 3 presents the means of C-metric value obtained by our algorithm, MOEA/D, and NSGA-II with 

two models, respectively. It clearly shows that all of the solutions obtained by our algorithm dominate the 

solutions obtained by the NSGA-II and MOEA/D. 

Table 3. Average set coverage between our algorithm (A), MOEA/D (B) and NSGAII (E) 

C-metric C(A,B) C(B,A) C(A,E) C(E,A) 

Case (I)  

MV-LPE Model 

MV-SE Model 

 

0.0759 

0.8349 

 

0 

0 

 

0.1457 

0.8933 

 

0 

0 

Case (II)  

MV-LPE Model 

MV-SE Model 

 

0.8737 

0.3800 

 

0 

0 

 

0.9994 

0.4251 

 

0 

0 

Case (III)  

MV-LPE Model 

MV-SE Model 

 

0.8629 

0.8857 

 

0 

0 

 

0.9990 

0.9473 

 

0 

0 

 

Table 4 shows the mean and standard deviation of HV acquired by our algorithm, MOEA/D and NSG-

AII, respectively. Best solutions acquired are highlighted bold in this table. According to the mean value 

of HV, the values of HV acquired by our algorithm are much bigger than those acquired by other two 

algorithms, which means that the diversities of solutions obtained by our algorithm are better than those 

obtained by MOEA/D and NSGA-II. 

Table 4. HV obtained by our algorithm, MOEA/D and NSGAII 

HV 
MV-LPE Model 

Mean 
SD 

MV-SE Model 

Mean 
SD 

Case (I) 

Our Algorithm 

 

0.1559e-005 

 

0.1346e-007 

 

0.2710e-005 

 

0.4451e-006 

MOEA/D 0.1565e-005 0.5184e-007 0.1548e-005 0.4817e-008 

NSGA-II 0.1365e-005 0.4348e-007 0.1376e-005 0.4348e-007 

Case (II) 

Our Algorithm 

MOEA/D 

 

0.1786e-004 

0.1547e-005 

 

0.1455e-008 

0.1715e-007 

 

0.0689e -005 

0.0583e-005 

 

0.1121e-006 

0.0443e-007 

NSGA-II 0.1533e-005 0.3516e-006 0.0503e-005 0.0261e-005 

Case (III) 

Our Algorithm 

MOEA/D 

 

0.1763e-004 

0.1588e-005 

 

0.0925e-007 

0.5615e-007 

 

0.9712e-005 

0.7994e-005 

 

0.2196e-006 

0.9279e-007 

NSGA-II 0.1469e-005 0.4625e-006 0.7151e-005 0.0043e-006 

 

In order to visually compare the performance of the three algorithms, the obtained non-dominated 

solutions by them on MV-SE and MV-PLE models are shown in Fig. 1 and Fig. 2, respectively.  
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(a) NSGA-II (b) MOEA/D (c) Our algorithm 

Fig. 1. Comparisons of Pareto fronts obtained by three compared algorithms in MV-SE model 

   

(a) NSGA-II (b) MOEA/D (c) Our algorithm 

Fig. 2. Comparisons of Pareto fronts obtained by three compared algorithms in MV-LPE model 

Obviously, according to Fig. 1 and Fig. 2, we can find that both NSGA-II and MOEA/D cannot locate 

the uniformly distributed non-dominated solutions comparing with our algorithm. In contrast, our 

algorithm can obtain a diverse population of non-dominated solutions. These Figures indicate that, in 

both the aspects of uniformity and diversity of solutions, our algorithm gives better performance than 

NSGA-II and MOEA/D.  

5.4 Comparisons of Model MV-LPE, MV-SE and P-MV 

Fig. 3 and Fig. 4 show the box plots of average portfolio allocations that correspond to the portfolio 

models (MV-SE and MV-LPE) by using our designed algorithm, where 
i
x  is the percentage of the 

sharing fund corresponding to the thi  asset. In the Fig. 4, the symbol “Δ ” represents the mean of 
i
x . 

The box in the plot contains 50% of the data points from the th
25  to th

75  percentile, and the red line 

drawn across the box is the median of 
i
x . The whiskers are lines extending above and below each box.  

 

(a) MV-SE Model in Case (I) (b) MV-SE Model in Case (II) (c) MV-SE Model in Case (III) 

Fig. 3. Box plots of average portfolio allocations for the MV-SE model in three cases 
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It can be seen from Fig. 3 that although the MV-SE model can obtain diversified portfolios, it yields 

very small weights for the other assets in the portfolios. The vast majority of investment weights for the 

MV-SE model extremely concentrate on the 9th  asset, the portfolio weights of other assets are very 

small, even negligible, which is a contradiction to the notion of diversification. In essence, the MV-SE 

model generating the low diversity of the portfolios may result in loss while some of the invested assets 

will experience unexpected gains. This is because that the Shannon’s entropy measure is non-linear in 

portfolio selection. 

  

(a) MV-LPE Model in Case (I) (b) MV-LPE Model Case (II) (c) MV-LPE Model Case (II) 

Fig. 4. Box plots of portfolio weights for the MV-LPE model in three cases 

From the Fig. 4, we can see that the MV-LPE model can directly obtain more diversified portfolios 

because of the linear feature of our entropy. By comparing Fig. 3 with Fig. 4, it is clear to see that MV-

LPE model can provide well-diversified and uniformed Pareto optimal solutions than the MV-SE model 

in the decision space. This means that MV-LPE model can allocate more diversified portfolio weights to 

all the twelve assets than the MV-SE model. Furthermore, it demonstrates that the performance of our 

proposed proportion entropy is better than the Shannon’s entropy for measuring portfolio diversification.  

 

(a) P-MV Model in Case (I) (b) P-MV Model Case (II)  (c) P-MV Model Case (III) 

Fig. 5. Box plots of average portfolio allocations for the conventional P-MV model in three cases 

It can be seen from Fig. 5 that the portfolios extremely concentrate in the 9th  asset, the portfolio 

weights of other assets are almost zero. Comparing Fig. 5 with Fig. 3 and Fig. 4, we can find that the 

conventional P-MV model will lead to extremely low diversity portfolios. Although, the MV-SE model 

performs the under-diversification compared with the MV-LPE model, it provides better diversity than 

the conventional P-MV model. In addition, according to the Fig. 3 to Fig. 5, we can find that including 

entropy in the mean-variance model can enhance diversity of the portfolios. The results of these 

experiments are consistent with the theoretical foundation which we mentioned earlier.  

To compare the results of the portfolio models, we also present the Sharpe ratio of the models P-MV, 

MV-SE and MV-LPE. Table 5 shows the statistical results of Sharpe ratio for each model, including 

minimum, maximum, mean, and standard deviation. It can be seen that the statistical indicators of the 

Sharpe ratio of the MV-LPE model are higher than those of the P-MV and MV-SE model. This means 
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that the performance of the MV-LPE model is higher than that of the P-MV and MV-SE model. This 

might attribute to the addition of function objective and our proposed linear proportion entropy enhances 

the mean-variance efficiency. 

Table 5. Summary statistics of Sharpe ratio of portfolio model MV-SE and MV-LPE 

Sharpe ratio Min  Max  Mean  SD  

Case (I)  

P-MV Model 

MV-SE Model 

MV-LPE Model 

 

0.0305 

0.0454 

0.0829 

 

0.1602 

0.1610 

0.1616 

 

0.1076 

0.1229 

0.1376 

 

0.0318 

0.0294 

0.0189 

Case (II)  

P-MV Model 

MV-SE Model 

MV-LPE Model 

 

0.0312 

0.0703 

0.0869 

 

0.1765 

0.1824 

0.1836 

 

0.1099 

0.1429 

0.1579 

 

0.0264 

0.0290 

0.0207 

Case (III)  

P-MV Model 

MV-SE Model 

 

0.0273 

0.0387 

 

0.1389 

0.1396 

 

0.0876 

0.1139 

 

0.0317 

0.0286 

MV-LPE Model 0.0624 0.1507 0.1169 0.0176 

 

In the real investment circumstances, investors pay more attention to the profitability of executing 

these asset strategies. Furthermore, we discuss their economic benefits in portfolio management. Table 6 

shows the comparison of real total return for each model in three cases, including minimum, maximum, 

mean, and standard deviation. We can see that the statistical indicators of the total return of the MV-LPE 

model are larger than those of the corresponding P-MV’s and MV-SE’s, in addition to the standard 

deviation. The smaller standard deviation of the total return means that the MV-LPE model can provide 

more stable investment strategies with large total return. It means that the MV-LPE model is more 

efficient than the P-MV and MV-SE models, which is consistent with the conclusions of the Table 5.  

Table 6. Summary statistics of total return of the MV-LPE and MV-SE model 

Total return Min  Max  Mean  SD  

Case (I)  

P-MV Model 

MV-SE Model 

MV-LPE Model 

 

1.8442e-004 

2.2184e-004 

0.0031 

 

0.0076 

0.0078 

0.0078 

 

0.0041 

0.0046; 

0.0061 

 

0.0022 

0.0019 

0.0013 

Case (II)  

P-MV Model 

 

 

 

 

 

 

 

 

MV-SE Model 

MV-LPE Model 

2.6460e-004 

0.0036 

0.0088 

0.0089 

0.0055 

0.0070 

0.0021 

0.0014 

Case (III)  

P-MV Model 

 

2.9068e-004 

 

0.0066 

 

0.0040 

 

0.0017 

MV-SE Model 

MV-LPE Model 

1.9263e-004 

0.0026 

0.0068 

0.0082 

0.0044 

0.0052 

0.0019 

0.0012 

 

The results of numerical examples suggest that our proposed algorithm can significantly outperform 

MOEA/D and NSGA-II. In addition, we find that the MV-LPE model can provide well-diversified Pareto 

optimal solutions than the P-MV and MV-SE models in the decision space, and the MV-LPE model can 

make asset allocation more feasible than the P-MV and MV-SE models. Our results also show that the 

performance of our proposed proportion entropy is better than the Shannon’s entropy for measuring 

portfolio diversification. 

6 Conclusions 

One of the basic principles of financial investment is diversification where investors should allocate their 

capital among different assets. But, the distinguished drawbacks of the conventional mean-variance 

portfolio model are to generate extreme portfolio weights or low diversity in the portfolio. Although, 

many researchers proposed to use the Shannon’s entropy function to measure the diversification in their 
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portfolio selection models. However, the major issue of these portfolio models is that the Shannon’s 

entropy measure is non-linear in portfolio selection since its weights take natural logarithm, which can 

result in very small positive weights for some asset in the portfolios. 

To overcome these defects, in this paper, we propose a new proportion entropy function as an 

objective function to generate a well-diversified portfolio. Furthermore, in order to achieve the better 

portfolio selection and set up a reasonable portfolio selection model, by considering the five criteria: 

return, risk, transaction cost, liquidity and diversification degree of portfolio, we present a new fuzzy 

mean-variance-entropy multi-objective portfolio selection model to find tradeoffs between risk, return 

and the diversification degree of portfolio, which is able to address a more realistic portfolio selection 

problem. In addition, we design a multi-objective evolutionary algorithm based on objective space 

decomposition to solve our presented multi-objective portfolio selection model, which can maintain the 

diversity of obtained solutions. Finally, to demonstrate the efficiency and effectiveness of the proposed 

model and algorithm, we compare the performance of our designed algorithm with classic MOEA/D and 

NSGA-II algorithms through some numerical examples based on the data of the Shanghai Stock 

Exchange Market. Simulation results show that our designed algorithm is able to obtain better diversity 

and more evenly distributed Pareto fronts than the other two algorithms, and our proposed portfolio 

model can yield good performance of portfolio. 

For the future research, the multi-objective fuzzy portfolio selection problem and MOEAs will be 

applied to other asset allocation problems, mutual fund portfolio selection problems, combinational 

optimization models and multi-period problems. Asset returns can be considered as random fuzzy 

variables. Also the proposed model can be applied for other case studies. Moreover, the new proposed 

models of portfolio selection problems and their efficient solution methods will help us to solve more 

complicated problems in real situations under more imprecise and ambiguous conditions. 
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