
Journal of Computers Vol. 29 No. 4, 2018, pp. 82-95
doi:10.3966/199115992018082904007

82

Autoencoder-based Feature Learning from a 2D Depth Map and

3D Skeleton for Action Recognition

Zhi-Ze Wu1,2*, Shou-Hong Wan2, Li Yan2, Li-Hua Yue2

1 Department of Computer Science and Technology, Hefei University, Hefei, 230601, P.R. China

wuzhize@mail.ustc.edu.cn

2 School of computer Science and Technology, University of Science and Technology of China,

Hefei, 233027, P.R. China

Received 15 February 2017; Revised 5 June 2017; Accepted 3 July 2017

Abstract. 3D skeleton is compact for human action recognition. Existing approaches focus
mainly on performing action recognition with only joint coordinates. However, they are difficult
recognizing some similar or complex actions based on skeleton data only. Furthermore, they
could have poor performance when the estimated skeletal joints are not reliable or when the
actions share a large overlap in the sequences. Noticing that the existing 3D skeleton data is
usually obtained from depth map and a neural network can simulate arbitrary relationships, we
propose an efficient approach for action recognition by combining 2D depth information with
3D skeleton information using a new deep architecture called Deep Multimodal Auto-Encoder
(DMAE) in this paper. First, the framework of DMAE employs two Auto-Encoders to extract
hidden representations for the 2D depth maps and the 3D skeletons. Second, DMAE uses a two-
layer neural network to map the hidden representations of the 2D depth maps to those of the 3D
skeletons. Third, based on a Back-propagation Neural Network (BP-NN), it can jointly explore
the hidden 2D/3D representations and the appropriate relationships between them. We finally
use Temporal Pyramid Matching (TPM) on the learned features to generate temporal
representations and perform classifications using a linear SVM. Additionally, we demonstrate
the effectiveness and efficiency of DMAE by extensive experimentation using two popular
action datasets.

Keywords: 2D depth map, 3D skeleton, action recognition, Auto-Encoder, back-propagation
neural network

1 Introduction

The preparation of manuscripts which are to be reproduced by photo-offset requires special care. Papers
submitted in a technically unsuitable form will be returned for retyping, or canceled if the volume cannot
otherwise be finished on time.

Action recognition aims to recognise human actions from videos in a given scenario automatically. It
has been an active research field for decades and is one of the fundamental technologies for many
applications such as surveillance, video games, and robotics [1-2]. Traditional studies about action
recognition focus mainly on recognising actions from monocular RGB videos that are recorded by 2D
cameras [3]. Unfortunately, the monocular RGB data are highly sensitive to various factors such as
illumination changes, variations in view-point, occlusions, and background clutter [4-5]. Moreover,
monocular video sensors can not fully capture human motion in 3D space. However, human actions are
usually represented and recognized in 3D space. Therefore, despite significant research efforts over the
past few decades, inferring high-level knowledge from a color video, especially in a complex and
unconstrained scene, remains a challenging problem.

* Corresponding Author

Journal of Computers Vol. 29, No. 4, 2018

83

The human body is regarded as an articulated system of rigid segments (body parts) that are connected
by joints, and a human action is composed of the motions of these segments, which are represented by
the movements of the human skeleton joints in 3D space. In 1975, Johansson’s experiments showed that
humans can reognise activities by seeing only light spots that were attached to the person’s major joints
[6]. Thus, if human skeletons can be reliably extracted, then we can improve the effectiveness of action
recognition by classifying the temporal evolution of human skeletons [7]. With the development of depth
sensors such as the Kinect [8], some studies that have focused on extracting the 3D skeleton joints from
the depth maps produced by depth sensors have been performed [8-9]. As a result, renewed interest in
skeleton-based human action recognition is taking place.

Human skeleton-based action recognition usually focuses on extracting the characteristics of body
postures and their dynamics over time to represent a human action. We can broadly categorise the
existing skeleton-based action recognition approaches into three main groups:
Joint-based representations [10-13]. These approaches try to model motion of either individual joints or
combinations of joints using various features like joint position [10-11], joint orientations with respect to
a fixed coordinate axis [12], pairwise relative joint positions [13], etc.
Body part-based representations [4, 14-16]. These approaches consider the human skeleton as a
connected set of rigid segments and attempt to represent a skeleton by means of the geometric relations
among the different body parts. In [4], Vemulapalli represented human skeletons as points in the Lie
group and explicitly modeled the 3D geometric relationships between various body parts using rotations
and translations. Human body was divided into five different parts in [14], and human actions were
represented using the motion parameters of individual body parts. Human skeleton was represented using
3D joint angles in [15], and the temporal evolutions of these angles were compared using DTW. In [16],
skeletal sequences were represented using pairwise affinities between joint angles trajectories and then
classified using a linear SVM.
Dynamics-based representations [17-19]. These methods focus mainly on model-ling the dynamics of
either subsets or all of the joints in the skeleton. This approach can be accomplished by considering linear
dynamical systems (LDS) [15, 20] or hidden Markov models (HMM) [19] or recurrent neural networks
(RNNs) [20] or mixed approaches [21].

The aforementioned approaches focus mainly on performing action recognition with only joint
coordinates. However, they could have poor performance when the estimated skeletal joints are not
reliable or when the actions share a large overlap in the sequences. In this paper, we propose an efficient
approach for learning skeletal features by jointly combining the 2D depth and 3D skeleton information
using a new deep architecture called Deep Multimodal Auto-Encoder (DMAE).

We consider next the studies on unsupervised feature learning [22-23, 34-35], which is a set of
algorithms that attempt to learn a hierarchy of features by building high-level features from low-level
ones. Some of the models, such as Convolutional Neural Networks (CNN) [25], Deep Belief Nets (DBN)
[26] and Auto-Encoders [27] have been shown to yield excellent results on several tasks, e.g., object
recognition, natural language processing, and audio classification. One reason for the success of deep
learning methods is that they usually learn to capture the posterior distribution of the underlying
explanatory factors for the data [28]. Inspired by the learning capability and capacity of the deep learning
model, we hypothesised that deep architectures would be perfectly suited to seeking the proper
representations for 2D depth maps and 3D skeletons and modelling their relationships.

Taking full advantage of the Convolution Auto-Encoder (CAE) and the Denoising Auto-Encoder
(DAE) in learning 2D spatial structure features and resisting 3D noise data, we employ them as the basic
units in the DMAE. For the DAE unit, we propose to add an action category and temporal constraints
into the model that integrates the temporal information and to add intra-and inter-class information into
the learned features, which are more discriminative and able to capture the small but significant
differences between actions. By using a two-layer neural network, the DMAE can map the hidden
representation of 2D depth maps to those of 3D skeletons. Additionally, it can jointly explore the hidden
2D/3D representations and the appropriate relationship between them based on the Back-propagation
Neural Network (BP-NN). In this way, rather than elaborately design the joint-based or part-based local
features, we can learn discriminative features that are robust to noisy skeletal data for recognising human
actions.

Irrespective of the skeleton representation that is used, we apply Temporal Pyramid Matching (TPM)
[6] for temporal modelling. In addition, we use a linear SVM [36] to classify each sequence into an

Autoencoder-based Feature Learning from a 2D Depth Map and 3D Skeleton for Action Recognition

84

action category. Experiments show that our proposal achieves superior results using two benchmark
datasets.
Contributions. (1) We propose a novel skeleton representation learning framework called DMAE with a
2D depth map. The DMAE explicitly models the relationships between the 3D skeleton and the 2D depth
map using a BP-NN. (2) To capture the subtle but significant differences between actions, we integrate
the action category and temporal information into the learning architecture. (3) We experimentally show
that the proposed approach outperforms various state-of-the-art skeleton-based human action recognition
approaches by evaluating it using two different datasets: MSR-Action3D [30] and Florence3D-Action
dataset [33]. In addition, our experiments show that our proposal can reconstruct and denoise corrupted
data.
Organisation. We describe the framework of deep multimodal Auto-Encoder and the training process in
Section 2, and we present the temporal modelling and classification approach in Section 3. Experimental
results and discussions are presented in Section 4. Finally, we conclude the paper in Section 5.

2 Deep Multimodal Auto-Encoder

Auto-Encoders (AE) are popular feature learning models that are conceptually simple, easy to train and
allow for efficient inference and training. Therefore, we make use of them to explore the representations
from 2D depth maps and using them to jointly extract the hidden representations from 3D skeletal data. It
can efficiently describe depth maps and skeletons through hidden layers. Hidden layers of maps and
skeletons are successively connected by the BP-NN. In this way, a multi-layered deep neural network is
constructed. Given a set of samples 1 2[, , ,] ,d

nX x x x= ∈� � the basic AE aims to minimise the
reconstruction error of all of the samples:

 () (), r ,AE i
i

L L xθ =∑ (2.1)

where ix and r are the initial input and the reconstruction output, respectively, and the loss function L
is usually a square loss function. The hidden layer implies an encoding process and a decoding process:

 1

2

() ()

() ().
i i

i i

f x s Wx b

g h s W h b
θ

θ

= +⎧
⎨ ′= +⎩

 (2.2)

Encoder. The deterministic mapping fθ that transforms an input d -dimensional vector. x . into a

hidden layer d ′ -dimensional feature vector. h . Its typical form is an affine mapping followed by a non-
linear function.
Decoder. The resulting hidden representation h is then mapped back to a reconstructed d -dimensional
vector r in an input space, ()r g hθ= . This mapping gθ is called the decoder. Its typical form is again

an affine mapping that is optionally followed by a squashing non-linearity.
The parameter set of this model is { }1 2, , ,W W b bθ ′= , where. .W and W ′ . are the encoder and decoder

weight matrices, 1b and 2b are the offset vectors of d ′ and d dimensionality, respectively. Additionally,

().s is the activation function, which is a sigmoid function in this paper.

It is worthwhile to mention that the input vector. ix . and the reconstruction vector r have the same

dimension d , and the hidden layer ih has the dimension d ′ ; thus, the size of W is the same as the size
of the transpose of W ′ , which is *d d′ .

Merely using the model mentioned above, we can handle only a single sample and cannot model the
relationships between a pair of samples. In skeleton-based action recognition, we are interested in
combining the 2D depth and 3D skeleton information and jointly discovering suitable 2D/3D
representations and encoding their relationship. We argue that a better representation should depend on
not only the input skeleton but also the internal relationship between the 2D/3D pairs. With this
consideration in mind, we have developed the DMAE.

Journal of Computers Vol. 29, No. 4, 2018

85

2.1 Architecture of the DMAE

The Deep Multimodal Auto-Encoder (DMAE) has a three-stage architecture, as shown in Fig. 1. The first
and third stages employ two auto-encoders, which are called the 2D Auto-Encoder and the 3D Auto-
Encoder, for learning the hidden representations of the 2D depths and the 3D skeletons, respectively. The
second stage is the representation mapping, which incorporates a two-layer neural network to transform
the 2D representation into the 3D representation.

Step 1: 2d depth map encoding Step 1: 3D skeleton decoding

Step 3: Representation mapping

Hidden representation

of 2D depth maps

Hidden representation

of 3D skeletons

mapping

Fig. 1. Flowchart of the DMAE

2D Auto-Encoder. Fully connected AEs and Denoising Auto-Encoders (DAEs) both ignore the 2D
image structure. This limitation not only is a problem when addressing realistically sized inputs but also
introduces redundancy in the parameters, forcing each feature to be global (i.e., to span the entire visual
field). To take account for the 2D spatial structure of the depth maps, we use the Convolution Auto-
Encoder (CAE) [29], which also scales well to high-dimensional inputs, to learn non-trivial 2D
representations.

The CAE architecture is intuitively similar to the aforementioned AE, except that the weights are
shared. For a mono-channel input x , the latent representation of the k-th feature map is

 ()2 2 2 2D D D D
k k kh s x W b= ∗ + , (2.3)

where the bias is broadcasted to the whole map, and ∗ denotes the 2D convolution. A single bias per
latent map is used, because we want each filter to specialise on the features of the whole input (one bias
per pixel would introduce too many degrees of freedom). The reconstruction is obtained using:

 2 2 2 2D D D D
k k

k H

r s h W b
∈

⎛ ⎞= ∗ +⎜ ⎟
⎝ ⎠
∑ � , (2.4)

where again there is one bias b per input channel. H is the group of latent feature maps; W� identifies
the flip operation over both dimensions of weights. The cost function to minimise is the mean squared
error (MSE), which is similar to equation (2.1).

To create sparsity over the hidden representation, a max-pooling layer is introduced in the CAE. Thus,
by erasing all of the non-maximal values in the non overlapping sub-regions, we can force the feature
detectors to become more broadly applicable, avoiding trivial solutions such as having only one weight
“on” (identity function). Specifically, the encoder of the CAE consists of a convolution layer and a max
pooling layer, as shown in Fig. 2. During the reconstruction phase, such a sparse latent code decreases
the average number of filters that contribute to the decoding of each pixel, forcing the filters to be more
general. Consequently, with a max-pooling layer there is no obvious need for L1 and/or L2 regularisation
over the hidden units and/or weights.

Autoencoder-based Feature Learning from a 2D Depth Map and 3D Skeleton for Action Recognition

86

Fig. 2. Convolution and max pooling layer of the CAE

3D Auto-Encoder. We use the Denoising Auto-Encoder (DAE) [24] to learn the 3D skeleton
representations. Based on the DAE, we propose to add category information and temporal constraints to
make the model capable of emphasising the imparities in different actions, and we term this modified
model the Denoising Auto-Encoder with Constraints of Category and Temporal (DAE_CCT).

Fig. 3 shows the architecture of the DAE_CCT. The input x is first corrupted into x� using the

stochastic mapping ()x q x x� �∼ This approach is similar to randomly selecting some of the nodes of the

input and blinding them; in other words, every node in the input layer has a possibility q to be switched
to zero. The stochastic corrupted data are regarded as the input of the next layer; see Fig. 3. An extra
target ct is added to the network, where ct is a vector with length 1l + Here, we assume l action

categories. The first element of vector ct is the current frame’s relative temporal location in an action
sequence, which is the proportion of the current frame number and the length of the corresponding
sequence. The remainder of ct has only one positive element, whose index indicates the action category
of the video where the current frame belongs. As a consequence, a constraint vector ctr must be

reconstructed by the hidden layer h using a new mapping function .cgθ Similarly, xr is the reconstruction

vector of x by the mapping function xgθ . The new training objective of DAE_CCT is

 () () ()()() ()()()() () () ()
_ , , ,i i i i

DAE CCT x cq x x
i

L L x g f x L c g f xθ θ θ θθ λ⎡ ⎤= Ε +⎢ ⎥⎣ ⎦∑
�

. (2.5)

()q x x�

hfθ
cgθ xgθ

xx� ct ctr xr

(), ctL ct r

()x, xL r

Fig. 3. Architecture of the DAE_CCT. The green solid circle in ct indicates the temporal information,
and the remainder is a standard unit vector, which indicates the category of the video where the current
frame belongs

Journal of Computers Vol. 29, No. 4, 2018

87

where () []q x x
Ε ⋅

�

 is the expectation over the corrupted examples x� drawn from the corruption process

() ,q x x� and λ is a hyper-parameter that controls the strength of the action category and the temporal

regularisation. It can be optimised by stochastic gradient descent, similar to the process of optimising the
traditional AEs.

Note that we use a regularisation term rather than directly learn the action category labels as targets.
This choice is made because the input is the skeleton joint vector for each frame, which means that the
category labels are for the whole sequence. Apparently, there are some similar postures among the
actions. For example, the “stand” and “put the hands down” human-postures appear at the beginning of
most actions. Training the same human-posture for different category labels will lead to trivial results.
The regularisation term establishes a trade-off between reconstructing the input data and preserving the
action category information as well as the temporal information.
Representation mapping. By stacking several layers of 2D Auto-Encoders and 3D Auto-Encoders, we
can build deep Auto-Encoders that have great expressive power and finally generate the hidden
representations 2D

ih and 3D
ih . After obtaining the 2D/3D hidden representations, the Neural Network

realises mappings from the 2D hidden representation to the 3D hidden representation. We denote the

parameters in this stage as (), ,N NW b ,where NW is the weight matrix, and Nb is the bias term. The

mapping function becomes

 ()3 2 .D N d N
i ih s W h b= + (2.6)

The construction of the DMAE indicates that the model is simple and flexible. Auto-Encoders ensure
that the hidden representations describe 2D/3D data well and the neural network can learn complex
relationships between the 2D/3D representations; notably, the mapping function and the hidden
representations are jointly optimised and are thus correlated.

2.2 Training Procedure of the DMAE

The DMAE must explore the 2D/3D hidden representations and simultaneously connect them using a
well-trained mapping function based on a BP-NN. BP-NN is trained with automatic optimisation. For
this purpose, we design a two-part training procedure: the first part is the initialisation (Stages 1, 2, and 3
in Fig. 4), and the second part is the fine-tuning, which is implemented in Stage 4.

Fig. 4. The process of learning a non-linear mapping

Initialisation. To train the DMAE, the hidden representations of the 2D/3D inputs are first generated.
According to the 2D Auto-Encoder introduced in Section 2.1, given the 2D depth maps, and based on
Equations (2.4) and (2.5), the 2D hidden representation can be obtained by minimizing the following:

Autoencoder-based Feature Learning from a 2D Depth Map and 3D Skeleton for Action Recognition

88

22 2 2 ,

n
D D D

i i
i

L X R= −∑ (2.7)

which is the reconstruction error of the 2D Auto-Encoder. Similarly, for the 3D counter-part, the
corresponding hidden representation is induced by minimising:

 3
_

D
DAE CCTL L= . (2.8)

In the training of the DMAE, neural networks (NNs) are applied to learn the mapping. Based on the
obtained hidden representations 2D

ih and 3 ,D
ih the optimisa-tion of the neural network in Stage 3 learns

the mapping function by minimising:

 ()
2

2 3 .
n

N D N D
i i

i

s W h b h+ −∑ (2.9)

To minimise the average squared error in (2.9), back propagation (BP) is introduced to adjust the
weights and thresholds of the network. By integrating (2.7), (2.8), and (2.9), we can obtain the whole
objective function:

 ()
2

2 3
2 3 .

n
N D N D

D D i i
i

L L s W h b h+ + + −∑ (2.10)

It should be stressed that during the initialisation, the parameters ()2 2,D DW b and ()3 3,D DW b are used

only to encode and decode the input 2D and 3D features, while (),N NW b only encodes the mapping

from 2Dh to 3 .Dh To achieve a complete training procedure for the DMAE, we discuss how to connect
these parameters.
Parameter tuning. The above initialisation process does not guarantee that the parameters obtained are
optimal for skeleton based action recognition, because individually training each set of parameters could
lead to a high reconstruction error when they are combined. Therefore, all of the parameters must be
refined via a connected optimizstion.

Given the initialised parameters ()2 3 2 3
1 1 1 1, , , , ,D D N D D NW W W b b b , because the output of the DMAE is ,iR

the fine-tuning objective function is similar to that in (2.11) and (2.1):

 2
.

n

DMAE i i
i

L X R= −∑ (2.11)

The involved values iR , 2D
ih and 3D

ih follow (2.6), (2.7), and (2.8) respectively. As with most deep
learning methods, we adopt BP to optimise (2.11). The DMAE training steps are summarised in
Algorithm 1. Back-propagation is applied to deep neural network sequentially. The order of optimisation
is 2D maps to a 2D hidden representations, the mapping from 3D skeletons to 3D hidden representations
and the mapping from 2D hidden representations to 3D hidden representations. The error of one layer is
back propagated only to its previous layer.

Algorithm 1. Details of the DMAE Training Procedure With BP-NN
Input: 2D depth map set X ; 3D skeleton set Y .
Output: Hidden representation 3DH .
Stage 1
Compute hidden representation of X with the 2D Auto-Encoder defined in (2.8);
Stage 2

Compute hidden representation 3DH of Y with the 3D Auto-Encoder defined in (2.9);
Stage 3

Compute BP-NN mapping A with 2DH and 3DH ;
Stage 4

Journal of Computers Vol. 29, No. 4, 2018

89

repeat

 Compute backward result 3DR with A and 3DH ;

 Compute DMAEL in (2.11);

 Update the network weights (),N NW b ;

until DMAEL in (2.11) converges

3 Temporal Modelling and Classification

As the focus of this paper is the skeleton representation learning, we explicitly model temporal dynamics
of the extracted representations with a temporal pyramid matching (TPM) [6]. Motivated by Spatial
Pyramid Matching (SPM) [21], the TPM uses a max pooling function to generate the multiscale structure.
We recursively partition the video sequence into increasingly finer segments along the temporal direction
and use the max pooling to generate histograms from each sub-region. Typically, 3 levels with each
containing 1, 2, and 4 segments are used. The final feature is the concatenation of histograms from all of
the segments. We illustrate this process in Fig. 5.

Fig. 5. Temporal pyramid matching

Specifically, we assume that we obtain a feature matrix D*TU ∈� for a video by the DMAE, where T
is the frame amount, and D is the dimension for each feature vector. We use ijz to denote the j-th feature
vector of the i-th layer in the pyramid. For the top layer, there is only one vector 11 11 11 11

1 2, , , Dz z z z⎡ ⎤= ⎣ ⎦� ,

which can be computed using

 11 (U)z F= . (3.1)

F is the max pooling function, as follows:

 { }11
1 2max , , ,i i i iTz U U U= � , 1,2,i D∀ = � . (3.2)

When getting the first layer of the pyramid, we partition U into 1U and 2 ,U where 1U =

[]1 2 / 2, , Tu u u� , and []2 / 2 1 / 2 2, ,T T TU u u u+ += � . Thus, we can obtain the feature vectors for the second

layer with the max pooling function. With that analogy, we can obtain the third layer and the n-th layer,
and finally, obtain the representation 11 21 22, , , , nmz z z z z⎡ ⎤= ⎣ ⎦� by connecting the vectors from all of the

layers, where 12nm −= , for each video.
After obtaining the final representations, we use a multi-class linear SVM to speed up the training and

Autoencoder-based Feature Learning from a 2D Depth Map and 3D Skeleton for Action Recognition

90

testing. The experimental results will be discussed in the next section.

4 Experiments

In this section, we evaluate our proposal and compare it with several recent studies on two benchmark
datasets, namely, MSR-Action3D [30] and Florence3D-Action [33]. We also reveal the denoising
capability of our method for reconstructing noisy 3D joint sequences.
MSR-Action3D. This dataset captured by a Microsoft Kinect-like depth sensor, which is widely used in
action recognition. This dataset consists of 20 actions performed by 10 different subjects. Each subject
performed every action in an unconstrained way two or three times. Altogether, there are 557 valid action
sequences with 22077 frames. All of the sequences are captured in 15 FPS, and each frame in a sequence
contains 20 skeleton joints. The low accuracy of the skeleton joint coordinates and the presence of many
highly similar actions make this dataset very challenging.
Florence3D-Action. This dataset was collected at the University of Florence using a Kinect camera. It
includes 9 actions: “wave”, “drink from a bottle”, “answer phone”, “clap”, “tight lace”, “sit down”,
“stand up”, “read watch”, and “bow”. Each action was performed by 10 subjects two or three times,
which resulted in a total of 215 action sequences. In each frame of the sequence, the 3D locations of the
15 joints are provided with the dataset. Although, these 9 actions are simple, the presence of actions such
as “drink from a bottle” and “answer phone” are quite similar to one another. Hence, this dataset is
challenging because of the high intra-class variations.
Basic preprocessing. For the skeletal data, we normalised all of the skeleton joints of the above two
evaluation datasets to a unified coordinate system. The origin of the coordinate system is the hip centre.
To make the skeletons scale-invariant, we selected one referenced skeleton in the dataset and normalised
all other skeletons without changing their joint angles, as Vemulapalli did in [4]. Furthermore, we rotated
the both ends of the hip to parallel a global x-axis, which makes skeletons view-invariant. For the depth
data, we first calculate the mean value μ and the standard deviation σ for each depth map. We then
updated each non-zero value d using the following:

 ()()max min , 2 , 2d d μ σ μ σ= + − . (4.1)

By this approach, we can eliminate abnormal depth values, and obtain the maximum maxd and the

minimum mind . According to the characteristics of the sigmoid, we further scaled all of the non-zero
depth values into 0.3 and 0.9, with the following:

 max min

max min

0.6* 0.3* 0.9*d d d
d

d d

+ −=
−

. (4.2)

Based on this preprocessing, we can make the depth differences between the different body parts be
more obvious, and we can remove some of the noise points.

4.1 Evaluation Settings and Parameters

For the MSR-Action3D dataset, we follow the cross-subject test settings of [30]. In [33], the dataset was
divided into the subsets AS1, AS2, and AS3, each of which consists of 8 actions, as shown in Table 1,
and we performed recognition on each subset separately. For this dataset, the first 2D Auto-Encoder has
9 feature maps with a kernel size of 13*13, and the second has 16 feature maps with a kernel size of 6*6;
the scaling factors in both of the max pooling layers are 4. In addition, the first 3D Auto-Encoder
contains 200 nodes in the hidden layer, and the second contains 400 nodes.

For Florence3D-Action, we leave out each subject from the training set and repeat an experiment for
each of them (leave-one-subject-out) by following the experimental protocol proposed in [33]. The first
2D Auto-Encoder has 12 feature maps with a kernel size of 9*9, and the second has 10 feature maps with
a kernel size of 7*7; the scaling factors in both of the max pooling layers are 4. The first 3D Auto-
Encoder contains 160 nodes in the hidden layer, the second contains 320 nodes.

Journal of Computers Vol. 29, No. 4, 2018

91

Table 1. Action sets of the MSR-Action3D dataset

AS1 AS2 AS3
horizontal wave high wave high throw

hammer hand catch forward kick
forward punch f draw X side kick

high throw draw tick jogging
hand clap draw circle tennis swing

bend two hands wave tennis serve
tennis serve side boxing golf swing

pickup & throw forward kick Pickup & throw

In all of the experiments, we train a deep architecture stacked by 2D Auto-Encoders, 3D Auto-

Encoders, and a Neural Network for each dataset, using BP-NN. We penalise the average output ih of
the second 3D Auto-Encoder and push it to 0.1, to add some sparsity to the model and learn an over-
completed representation of the joint features. The parameter λ in the DAE_CCT is experimentally
assigned to 1.5. A four-level TPM, with each containing 1, 2, 4, 8 segments, is used to model the
temporal aspect. The multi-class linear support vector machine algorithm here we use is the more
commonly used LIBSVM [36], where the value of the penalty factor C is determined by the cross
validation method. All the results reported in this paper were averaged over ten different combinations of
training and test data. In addition, it should be noted that the results of all of the comparative methods on
the two datasets are from their corresponding papers.

4.2 Results

Comparison with the state-of-art. We compare the proposed method DMAE with various state-of-the-
art skeleton based human action recognition approaches. Table 2 shows the comparison results on MSR-
Action3D and Florence3D-Action. We can see that the DMAE gives excellent results on all of the
datasets. It performs comparably to the best result of 94.49% [5] with an accuracy of 94.14% on MSR-
Action3D using the protocol [30]. In [5], Du et al. present a hierarchical recurrent neural network, which
employs five bidirectional recurrent neural networks as its basic units for skeleton based action
recognition. This model is corresponding five human body parts, which has integrated the manual
intervention. However, DMAE focuses on the jointly learning based on the hidden representations of 2D
depth map and 3D skeleton data. It can get the non-linear mapping between these two kinds of data, also
the optimized representations for action recognition or other applications. On Florence3D-Aciton dataset,
DMAE is the best with an accuracy of 91.00%.

Table 2. Comparison with state-of-the-art methods

MSR-Action3D dataset (protocol [30])
Li et al., 2010 [30] 74.7
Mohamed et al.,2013 [12] 90.53
Chen et al.,2013 [8] 90.47
Gowayyed et al.,2013 [31] 91.26
Vemulapalli et al., 2014 [4] 92.46
Du et al., 2015 [5] 94.49
DMAE 94.14

Florence3D-Action dataset (protocol [33]
Seidenari et al., 2013 [33] 82.00
Devanne et al., 2015 [32] 87.04
DMAE 91.00

Fig. 5 shows the confusion matrices for MSR-Action3D AS1, MSR-Action3D AS2, and MSR-

Action3D AS3. Fig. 6 shows the confusion matrix for Florence3D-Action. Better performance on subsets
AS1 and AS2 indicates that the proposed representation is better than the others in differentiating similar
actions. Better performance on subset AS3 indicates that the proposed representation is better than the
others in modelling complex actions. We can see that the misclassifications occur mainly among several

Autoencoder-based Feature Learning from a 2D Depth Map and 3D Skeleton for Action Recognition

92

very similar actions. For example, in Fig. 5(b), the action “Draw X” is often misclassified to “Draw
Tick”, while the action “Draw Circle” is misclassified to “High Arm Wave”. In fact, these two pairs of
actions share a large overlap in their sequences.

(a) AS1 - 93.83 (b) AS2 - 91.16 (c) AS3 - 97.43

Fig. 5. Confusion matrices of DMAE on the MSR-Action3D dataset

Fig. 6. Confusion matrices of DMAE on Florence3D-Action

Experiments on BP-NN based mapping. Fig. 7 shows an illustration of a comparison between DMAE
and DAE_CCT for each action in the Florence3D-Action dataset using the protocol of [33]. The
superiority of DMAE is apparent for most of the actions, especially the very similar ones, such as “drink”
and “answer phone”. The average recognition accuracy rate is significantly improved by 5.26% from
85.74% after jointly combining the 2D depth information using the BP-NN mapping. It verifies our
proposals that skeleton is not enough to recognise some similar or complex actions and the combination
with depth map using a neural network is an efficient way to mitigate such problem.

Fig. 7. Comparison of DMAE and DAE_CCT for each action in the Florence3D-Action dataset

Journal of Computers Vol. 29, No. 4, 2018

93

Capability to denoise the corrupted data. The proposed model also has the strong capability of
reconstructing realistic data from corrupted input. The top row of Fig. 8 is an action sequence “high arm
wave”, which was selected from the MSR-Action3D dataset. To better demonstrate our algorithm
efficiency, we added some Gaussian noise to the joint positions and left out the joints randomly. The
bottom row is the reconstructed action sequence, where we can observe that the missing joints are well
restored via our model and the motions are more natural and fluent than before.

Fig. 8. Examples that shows the capability of DMAE to denoise the corrupted data

5 Conclusions

In this paper, a new framework for skeleton-based action recognition is proposed. This framework jointly
combines the 2D depth and 3D skeleton information using a new deep architecture called Deep
Multimodal Auto-Encoder (DMAE). Taking full advantage of the Convolution Auto-Encoder (CAE) and
the Denoising Auto-Encoder (DAE) in learning 2D spatial structure features and resisting 3D noise data,
we employ them as the basic units in the DMAE. Moreover, the DMAE uses a two-layer neural network
to map the hidden representation of 2D depth maps to those of 3D skeletons. Additionally, it can jointly
explore the hidden 2D/3D representations and the appropriate relationships between them, which is
helpful in making up for deficiencies in the noisy skeletal data. With the skeleton representations being
learned, we use the Temporal Pyramid Matching (TPM) to model the temporal information and employ
the linear SVM for classification. Experiments using the MSR-Action3D dataset and the Florence3D-
Action show that our proposal achieves superior results in terms of its action recognition performance.

In future work, we will extend this framework to explore the nonlinear relationship between other
types of data, such as RGB, and further study the action recognition based on an effective end-to-end
solution for modelling the temporal dynamics from the perspective of the whole action sequences.

References

[1] J. Wang, Z. Liu, Y. Wu, J. Yuan, Mining actionlet ensemble for action recognition with depth cameras, in: Proc. the 25th

International Conference of Computer Vision and Pattern Recognition (CVPR), 2012.

[2] X. Yang, C. Zhang, Y. Tian, Recognizing actions using depth motion maps-based histograms of oriented gradients, in: Proc.

the 20th ACM international conference on Multimedia, 2012.

[3] K.J. Aggarwal, S.R. Michael, Human activity analysis: A review, ACM Computing Surveys 43(3)(2011) 16.

[4] R. Vemulapalli, A. Felipe, C. Rama, Human action recognition by representing 3d skeletons as points in a lie group, in: Proc.

the 27th International Conference on Computer Vision and Pattern Recognition,2014.

[5] Y. Du, W. Wang, L. Wang, Hierarchical recurrent neural network for skeleton based action recognition, in: Proc. the 26th

International Conference on Computer Vision and Pattern Recognition, 2015.

Autoencoder-based Feature Learning from a 2D Depth Map and 3D Skeleton for Action Recognition

94

[6] G. Johansson, Visual motion perception. Scientific American 232(6)(1975) 76-88.

[7] M. K. Knutzen, Kinematics of human motion, Wiley Online Library (1998) 808-809.

[8] S. Toby, K. Alex, F. Andrew, F. Mark, B. Andrew, C. Mat, M. Richard, Real-time human pose recognition in parts from

single depth images, Communications of the ACM 56(1)(2013) 116-124.

[9] J. Jonathan, J. Arjun, L. Yann, B. Christoph, Joint training of a convolutional network and a graphical model for human pose

estimation, in: Proc. the 27th International Conference on Advances in Neural Information Processing Systems, 2014.

[10] X.-D.Yang, Y.-L. Tian, Eigenjoints-based action recognition using naive-bayes-nearest-neighbor, in: Proc. 25th

International Conference on Computer Vision and Pattern Recognition, 2012.

[11] J. Wang, Z.-C. Liu, Y. Wu, J.-S. Yuan, Mining actionlet ensemble for action recognition with depth cameras, in: Proc. 25th

International Conference Computer on Vision and Pattern Recognition, 2012.

[12] E.M. Hussein, T. Marwan, A.-G. Mohammad, E.-S. Motaz, Human action recognition using a temporal hierarchy of

covariance descriptors on 3D joint locations, in: Proc. 23th International Joint Conference On Artificial Intelligence, 2013.

[13] A. Eweiwi, S.-C. Muhammed, B. Christian, G. Juergen, Efficient pose-based action recognition, in: Proc. the 12th Asian

Conference on Computer Vision, 2014.

[14] C.-Y Wang, Y.-Z. Wang, L.-Y. Alan, An approach to pose-based action recognition, Proc. the 26th International

Conference on Computer Vision and Pattern Recognition, 2013.

[15] R. Chaudhry, O. Ferda, K. Gregorij, B. Ruzena, Bio-inspired dynamic 3D discriminative skeletal features for human action

recognition, in: Proc. the 26th International Conference on Computer Vision and Pattern Recognition, 2013.

[16] E. Ohn-Bar, M.-M. Trivedi, Joint angles similarities and HOG2 for action recognition, in: Proc. the 26th International

Conference on Computer Vision and Pattern Recognition, 2013.

[17] Y. Du, W. Wang, L. Wang, Hierarchical recurrent neural network for skeleton based action recognition, in: Proc. the 26th

International Conference on Computer Vision and Pattern Recognition, 2015.

[18] J.-J. Luo, W. Wang, H.-R. Qi, Group sparsity and geometry constrained dictionary learning for action recognition from

depth maps, in: Proc. 2013 IEEE International Conference on Computer Vision, 2013.

[19] D. Wu, S. Ling, Leveraging hierarchical parametric networks for skeletal joints based action segmentation and recognition,

in: Proc. the 27th International Conference on Computer Vision and Pattern Recognition, 2014.

[20] R. Slama, W. Hazem, D. Mohamed, Accurate 3D action recognition using learning on the Grassmann manifold, Pattern

Recognition 48(2)(2015) 556-567.

[21] L.-L. Presti, L.-C. Marco, S. Stan, C. Octavia, Gesture modeling by hanklet-based hidden markov model, in: Proc. the 12th

Asian Conference on Computer Vision, 2014.

[22] Y. Bengio, Learning deep architectures for AI, Foundations and trends® in Machine Learning 2(1)(2009) 1-127.

[23] J. Martens, S. Ilya, Learning recurrent neural networks with hessian-free optimization, in: Proc. the 28th International

Conference on Machine Learning, 2011.

[24] P. Vincent, L. Hugo, L. Isabelle, B. Yoshua, P.-A. Manzagol, Stacked denoising autoencoders: Learning useful

representations in a deep network with a local denoising criterion, Journal of Machine Learning Research 11(2010) 3371-

3408.

[25] L.-C., Yann, B. Leon, B. Yoshua, H. Patrick, Gradient-based learning applied to document recognition, Proceedings of the

IEEE 86(11)(1998) 2278-2324.

[26] G.E. Hinton, O. Simon, Y.-W. The, A fast learning algorithm for deep belief nets, Neural computation 18(7)(2006) 1527-

Journal of Computers Vol. 29, No. 4, 2018

95

1554.

[27] G.E. Hinton, R.R. Salakhutdinov. Reducing the dimensionality of data with neural networks, Science 313(5786)(2006)

504-507.

[28] Y. Bengio, C. Aaron, V. Pascal, Representation learning: a review and new perspectives, IEEE Transactions on Pattern

Analysis and Machine Intelligence 35(8)(2013) 1798-1828.

[29] J. Masci, M. Ueli, C. Dan, S. Jürgen, Stacked convolutional auto-encoders for hierarchical feature extraction, in: Proc. the

20th International Conference on Artificial Neural Networks, 2011.

[30] W.-Q. Li, Z.-Y. Zhang, Z.-C. Liu, Action recognition based on a bag of 3d points, in: Proc. the 23th International

Conference on Computer Vision and Pattern Recognition, 2010.

[31] M.A. Gowayyed, T. Marwan, E.H. Mohammed, E.-S. Motaz, Histogram of oriented displacements (HOD): describing

trajectories of human joints for action recognition, in: Proc. 23th International Joint Conference On Artificial Intelligence,

2013.

[32] M. Devanne, W. Hazem, B. Stefano, P. Pietro, D. Mohamed, D.B. Alberto, 3-D human action recognition by shape analysis

of motion trajectories on Riemannian manifold, IEEE Transactions on Cybernetics 45(7)(2015) 1340-1352.

[33] L. Seidenari, V. Vincenzo, B. Stefano, B. Alberto, P. Pietro, Recognizing actions from depth cameras as weakly aligned

multi-part bag-of-poses, in: Proc. the 26th International Conference on Computer Vision and Pattern Recognition, 2013.

[34] A. Budiman, M.I. Fanany, C. Basaruddin, Stacked denoising autoencoder for feature representation learning in pose-based

action recognition, in: Proc. the 3rd Global Conference on Consumer Electronics (GCCE), 2014.

[35] Y. Gao, R.-G. Ji, X.-B. Gao, P.-M. Jodoin. Signal processing and learning methods for 3D semantic analysis. Signal

Processing 112(C)(2015) 1-3.

[36] C.-C. Chang, C.-J. Lin, LIBSVM: a library for support vector machines, ACM Transactions on Intelligent Systems and

Technology 2(3)(2011) 27.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

