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Abstract. 3D skeleton is compact for human action recognition. Existing approaches focus 
mainly on performing action recognition with only joint coordinates. However, they are difficult 
recognizing some similar or complex actions based on skeleton data only. Furthermore, they 
could have poor performance when the estimated skeletal joints are not reliable or when the 
actions share a large overlap in the sequences. Noticing that the existing 3D skeleton data is 
usually obtained from depth map and a neural network can simulate arbitrary relationships, we 
propose an efficient approach for action recognition by combining 2D depth information with 
3D skeleton information using a new deep architecture called Deep Multimodal Auto-Encoder 
(DMAE) in this paper. First, the framework of DMAE employs two Auto-Encoders to extract 
hidden representations for the 2D depth maps and the 3D skeletons. Second, DMAE uses a two-
layer neural network to map the hidden representations of the 2D depth maps to those of the 3D 
skeletons. Third, based on a Back-propagation Neural Network (BP-NN), it can jointly explore 
the hidden 2D/3D representations and the appropriate relationships between them. We finally 
use Temporal Pyramid Matching (TPM) on the learned features to generate temporal 
representations and perform classifications using a linear SVM. Additionally, we demonstrate 
the effectiveness and efficiency of DMAE by extensive experimentation using two popular 
action datasets.  

Keywords:  2D depth map, 3D skeleton, action recognition, Auto-Encoder, back-propagation 
neural network 

1 Introduction 

The preparation of manuscripts which are to be reproduced by photo-offset requires special care. Papers 
submitted in a technically unsuitable form will be returned for retyping, or canceled if the volume cannot 
otherwise be finished on time. 

Action recognition aims to recognise human actions from videos in a given scenario automatically. It 
has been an active research field for decades and is one of the fundamental technologies for many 
applications such as surveillance, video games, and robotics [1-2]. Traditional studies about action 
recognition focus mainly on recognising actions from monocular RGB videos that are recorded by 2D 
cameras [3]. Unfortunately, the monocular RGB data are highly sensitive to various factors such as 
illumination changes, variations in view-point, occlusions, and background clutter [4-5]. Moreover, 
monocular video sensors can not fully capture human motion in 3D space. However, human actions are 
usually represented and recognized in 3D space. Therefore, despite significant research efforts over the 
past few decades, inferring high-level knowledge from a color video, especially in a complex and 
unconstrained scene, remains a challenging problem. 
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The human body is regarded as an articulated system of rigid segments (body parts) that are connected 
by joints, and a human action is composed of the motions of these segments, which are represented by 
the movements of the human skeleton joints in 3D space. In 1975, Johansson’s experiments showed that 
humans can reognise activities by seeing only light spots that were attached to the person’s major joints 
[6]. Thus, if human skeletons can be reliably extracted, then we can improve the effectiveness of action 
recognition by classifying the temporal evolution of human skeletons [7]. With the development of depth 
sensors such as the Kinect [8], some studies that have focused on extracting the 3D skeleton joints from 
the depth maps produced by depth sensors have been performed [8-9]. As a result, renewed interest in 
skeleton-based human action recognition is taking place. 

Human skeleton-based action recognition usually focuses on extracting the characteristics of body 
postures and their dynamics over time to represent a human action. We can broadly categorise the 
existing skeleton-based action recognition approaches into three main groups: 
Joint-based representations [10-13]. These approaches try to model motion of either individual joints or 
combinations of joints using various features like joint position [10-11], joint orientations with respect to 
a fixed coordinate axis [12], pairwise relative joint positions [13], etc. 
Body part-based representations [4, 14-16]. These approaches consider the human skeleton as a 
connected set of rigid segments and attempt to represent a skeleton by means of the geometric relations 
among the different body parts. In [4], Vemulapalli represented human skeletons as points in the Lie 
group and explicitly modeled the 3D geometric relationships between various body parts using rotations 
and translations. Human body was divided into five different parts in [14], and human actions were 
represented using the motion parameters of individual body parts. Human skeleton was represented using 
3D joint angles in [15], and the temporal evolutions of these angles were compared using DTW. In [16], 
skeletal sequences were represented using pairwise affinities between joint angles trajectories and then 
classified using a linear SVM. 
Dynamics-based representations [17-19]. These methods focus mainly on model-ling the dynamics of 
either subsets or all of the joints in the skeleton. This approach can be accomplished by considering linear 
dynamical systems (LDS) [15, 20] or hidden Markov models (HMM) [19] or recurrent neural networks 
(RNNs) [20] or mixed approaches [21]. 

The aforementioned approaches focus mainly on performing action recognition with only joint 
coordinates. However, they could have poor performance when the estimated skeletal joints are not 
reliable or when the actions share a large overlap in the sequences. In this paper, we propose an efficient 
approach for learning skeletal features by jointly combining the 2D depth and 3D skeleton information 
using a new deep architecture called Deep Multimodal Auto-Encoder (DMAE). 

We consider next the studies on unsupervised feature learning [22-23, 34-35], which is a set of 
algorithms that attempt to learn a hierarchy of features by building high-level features from low-level 
ones. Some of the models, such as Convolutional Neural Networks (CNN) [25], Deep Belief Nets (DBN) 
[26] and Auto-Encoders [27] have been shown to yield excellent results on several tasks, e.g., object 
recognition, natural language processing, and audio classification. One reason for the success of deep 
learning methods is that they usually learn to capture the posterior distribution of the underlying 
explanatory factors for the data [28]. Inspired by the learning capability and capacity of the deep learning 
model, we hypothesised that deep architectures would be perfectly suited to seeking the proper 
representations for 2D depth maps and 3D skeletons and modelling their relationships. 

Taking full advantage of the Convolution Auto-Encoder (CAE) and the Denoising Auto-Encoder 
(DAE) in learning 2D spatial structure features and resisting 3D noise data, we employ them as the basic 
units in the DMAE. For the DAE unit, we propose to add an action category and temporal constraints 
into the model that integrates the temporal information and to add intra-and inter-class information into 
the learned features, which are more discriminative and able to capture the small but significant 
differences between actions. By using a two-layer neural network, the DMAE can map the hidden 
representation of 2D depth maps to those of 3D skeletons. Additionally, it can jointly explore the hidden 
2D/3D representations and the appropriate relationship between them based on the Back-propagation 
Neural Network (BP-NN). In this way, rather than elaborately design the joint-based or part-based local 
features, we can learn discriminative features that are robust to noisy skeletal data for recognising human 
actions. 

Irrespective of the skeleton representation that is used, we apply Temporal Pyramid Matching (TPM) 
[6] for temporal modelling. In addition, we use a linear SVM [36] to classify each sequence into an 
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action category. Experiments show that our proposal achieves superior results using two benchmark 
datasets. 
Contributions. (1) We propose a novel skeleton representation learning framework called DMAE with a 
2D depth map. The DMAE explicitly models the relationships between the 3D skeleton and the 2D depth 
map using a BP-NN. (2) To capture the subtle but significant differences between actions, we integrate 
the action category and temporal information into the learning architecture. (3) We experimentally show 
that the proposed approach outperforms various state-of-the-art skeleton-based human action recognition 
approaches by evaluating it using two different datasets: MSR-Action3D [30] and Florence3D-Action 
dataset [33]. In addition, our experiments show that our proposal can reconstruct and denoise corrupted 
data. 
Organisation. We describe the framework of deep multimodal Auto-Encoder and the training process in 
Section 2, and we present the temporal modelling and classification approach in Section 3. Experimental 
results and discussions are presented in Section 4. Finally, we conclude the paper in Section 5. 

2 Deep Multimodal Auto-Encoder 

Auto-Encoders (AE) are popular feature learning models that are conceptually simple, easy to train and 
allow for efficient inference and training. Therefore, we make use of them to explore the representations 
from 2D depth maps and using them to jointly extract the hidden representations from 3D skeletal data. It 
can efficiently describe depth maps and skeletons through hidden layers. Hidden layers of maps and 
skeletons are successively connected by the BP-NN. In this way, a multi-layered deep neural network is 
constructed. Given a set of samples 1 2[ , , , ] ,d

nX x x x= ∈� �  the basic AE aims to minimise the 
reconstruction error of all of the samples: 

 ( ) ( ), r ,AE i
i

L L xθ =∑   (2.1) 

where ix  and r  are the initial input and the reconstruction output, respectively, and the loss function L  
is usually a square loss function. The hidden layer implies an encoding process and a decoding process: 

 1

2

( ) ( )

( ) ( ).
i i

i i

f x s Wx b

g h s W h b
θ

θ

= +⎧
⎨ ′= +⎩

  (2.2) 

Encoder. The deterministic mapping fθ  that transforms an input d -dimensional vector. x . into a 

hidden layer d ′ -dimensional feature vector. h . Its typical form is an affine mapping followed by a non-
linear function.  
Decoder. The resulting hidden representation h  is then mapped back to a reconstructed d -dimensional 
vector r  in an input space, ( )r g hθ= . This mapping gθ  is called the decoder. Its typical form is again 

an affine mapping that is optionally followed by a squashing non-linearity. 
The parameter set of this model is { }1 2, , ,W W b bθ ′= , where. .W  and W ′ . are the encoder and decoder 

weight matrices, 1b  and 2b  are the offset vectors of d ′  and d  dimensionality, respectively. Additionally, 

( ).s  is the activation function, which is a sigmoid function in this paper. 

It is worthwhile to mention that the input vector. ix . and the reconstruction vector r  have the same 

dimension d , and the hidden layer ih  has the dimension d ′ ; thus, the size of W  is the same as the size 
of the transpose of W ′ , which is *d d′ . 

Merely using the model mentioned above, we can handle only a single sample and cannot model the 
relationships between a pair of samples. In skeleton-based action recognition, we are interested in 
combining the 2D depth and 3D skeleton information and jointly discovering suitable 2D/3D 
representations and encoding their relationship. We argue that a better representation should depend on 
not only the input skeleton but also the internal relationship between the 2D/3D pairs. With this 
consideration in mind, we have developed the DMAE. 
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2.1 Architecture of the DMAE 

The Deep Multimodal Auto-Encoder (DMAE) has a three-stage architecture, as shown in Fig. 1. The first 
and third stages employ two auto-encoders, which are called the 2D Auto-Encoder and the 3D Auto-
Encoder, for learning the hidden representations of the 2D depths and the 3D skeletons, respectively. The 
second stage is the representation mapping, which incorporates a two-layer neural network to transform 
the 2D representation into the 3D representation. 

Step 1: 2d depth map encoding Step 1: 3D skeleton decoding

Step 3: Representation mapping

Hidden representation 

of 2D depth maps

Hidden representation 

of 3D skeletons

mapping

 

Fig. 1. Flowchart of the DMAE 

2D Auto-Encoder. Fully connected AEs and Denoising Auto-Encoders (DAEs) both ignore the 2D 
image structure. This limitation not only is a problem when addressing realistically sized inputs but also 
introduces redundancy in the parameters, forcing each feature to be global (i.e., to span the entire visual 
field). To take account for the 2D spatial structure of the depth maps, we use the Convolution Auto-
Encoder (CAE) [29], which also scales well to high-dimensional inputs, to learn non-trivial 2D 
representations. 

The CAE architecture is intuitively similar to the aforementioned AE, except that the weights are 
shared. For a mono-channel input x , the latent representation of the k-th feature map is 

 ( )2 2 2 2D D D D
k k kh s x W b= ∗ + ,  (2.3) 

where the bias is broadcasted to the whole map, and ∗  denotes the 2D convolution. A single bias per 
latent map is used, because we want each filter to specialise on the features of the whole input (one bias 
per pixel would introduce too many degrees of freedom). The reconstruction is obtained using: 

 2 2 2 2D D D D
k k

k H

r s h W b
∈

⎛ ⎞= ∗ +⎜ ⎟
⎝ ⎠
∑ � , (2.4) 

where again there is one bias b  per input channel. H  is the group of latent feature maps; W�  identifies 
the flip operation over both dimensions of weights. The cost function to minimise is the mean squared 
error (MSE), which is similar to equation (2.1). 

To create sparsity over the hidden representation, a max-pooling layer is introduced in the CAE. Thus, 
by erasing all of the non-maximal values in the non overlapping sub-regions, we can force the feature 
detectors to become more broadly applicable, avoiding trivial solutions such as having only one weight 
“on” (identity function). Specifically, the encoder of the CAE consists of a convolution layer and a max 
pooling layer, as shown in Fig. 2. During the reconstruction phase, such a sparse latent code decreases 
the average number of filters that contribute to the decoding of each pixel, forcing the filters to be more 
general. Consequently, with a max-pooling layer there is no obvious need for L1 and/or L2 regularisation 
over the hidden units and/or weights. 
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Fig. 2. Convolution and max pooling layer of the CAE 

3D Auto-Encoder. We use the Denoising Auto-Encoder (DAE) [24] to learn the 3D skeleton 
representations. Based on the DAE, we propose to add category information and temporal constraints to 
make the model capable of emphasising the imparities in different actions, and we term this modified 
model the Denoising Auto-Encoder with Constraints of Category and Temporal (DAE_CCT). 

Fig. 3 shows the architecture of the DAE_CCT. The input x is first corrupted into x�  using the 

stochastic mapping ( )x q x x� �∼  This approach is similar to randomly selecting some of the nodes of the 

input and blinding them; in other words, every node in the input layer has a possibility q  to be switched 
to zero. The stochastic corrupted data are regarded as the input of the next layer; see Fig. 3. An extra 
target ct  is added to the network, where ct  is a vector with length 1l +  Here, we assume l  action 

categories. The first element of vector ct  is the current frame’s relative temporal location in an action 
sequence, which is the proportion of the current frame number and the length of the corresponding 
sequence. The remainder of ct  has only one positive element, whose index indicates the action category 
of the video where the current frame belongs. As a consequence, a constraint vector ctr  must be 

reconstructed by the hidden layer h  using a new mapping function .cgθ  Similarly, xr  is the reconstruction 

vector of x  by the mapping function xgθ . The new training objective of DAE_CCT is 

 ( ) ( ) ( )( )( ) ( )( )( )( ) ( ) ( ) ( )
_ , , ,i i i i

DAE CCT x cq x x
i

L L x g f x L c g f xθ θ θ θθ λ⎡ ⎤= Ε +⎢ ⎥⎣ ⎦∑
�

.  (2.5) 

( )q x x�

hfθ
cgθ xgθ

xx� ct ctr xr

( ), ctL ct r

( )x, xL r

 

Fig. 3. Architecture of the DAE_CCT. The green solid circle in ct  indicates the temporal information, 
and the remainder is a standard unit vector, which indicates the category of the video where the current 
frame belongs 
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where ( ) [ ]q x x
Ε ⋅

�

 is the expectation over the corrupted examples x�  drawn from the corruption process 

( ) ,q x x�  and λ  is a hyper-parameter that controls the strength of the action category and the temporal 

regularisation. It can be optimised by stochastic gradient descent, similar to the process of optimising the 
traditional AEs.  

Note that we use a regularisation term rather than directly learn the action category labels as targets. 
This choice is made because the input is the skeleton joint vector for each frame, which means that the 
category labels are for the whole sequence. Apparently, there are some similar postures among the 
actions. For example, the “stand” and “put the hands down” human-postures appear at the beginning of 
most actions. Training the same human-posture for different category labels will lead to trivial results. 
The regularisation term establishes a trade-off between reconstructing the input data and preserving the 
action category information as well as the temporal information. 
Representation mapping. By stacking several layers of 2D Auto-Encoders and 3D Auto-Encoders, we 
can build deep Auto-Encoders that have great expressive power and finally generate the hidden 
representations 2D

ih and 3D
ih . After obtaining the 2D/3D hidden representations, the Neural Network 

realises mappings from the 2D hidden representation to the 3D hidden representation. We denote the 

parameters in this stage as ( ), ,N NW b ,where NW  is the weight matrix, and Nb  is the bias term. The 

mapping function becomes 

 ( )3 2 .D N d N
i ih s W h b= +   (2.6) 

The construction of the DMAE indicates that the model is simple and flexible. Auto-Encoders ensure 
that the hidden representations describe 2D/3D data well and the neural network can learn complex 
relationships between the 2D/3D representations; notably, the mapping function and the hidden 
representations are jointly optimised and are thus correlated. 

2.2 Training Procedure of the DMAE 

The DMAE must explore the 2D/3D hidden representations and simultaneously connect them using a 
well-trained mapping function based on a BP-NN. BP-NN is trained with automatic optimisation. For 
this purpose, we design a two-part training procedure: the first part is the initialisation (Stages 1, 2, and 3 
in Fig. 4), and the second part is the fine-tuning, which is implemented in Stage 4. 

 

Fig. 4. The process of learning a non-linear mapping 

Initialisation. To train the DMAE, the hidden representations of the 2D/3D inputs are first generated. 
According to the 2D Auto-Encoder introduced in Section 2.1, given the 2D depth maps, and based on 
Equations (2.4) and (2.5), the 2D hidden representation can be obtained by minimizing the following: 



Autoencoder-based Feature Learning from a 2D Depth Map and 3D Skeleton for Action Recognition 

88 

 
22 2 2 ,

n
D D D

i i
i

L X R= −∑   (2.7) 

which is the reconstruction error of the 2D Auto-Encoder. Similarly, for the 3D counter-part, the 
corresponding hidden representation is induced by minimising:  

 3
_

D
DAE CCTL L= .  (2.8) 

In the training of the DMAE, neural networks (NNs) are applied to learn the mapping. Based on the 
obtained hidden representations 2D

ih  and 3 ,D
ih  the optimisa-tion of the neural network in Stage 3 learns 

the mapping function by minimising: 

 ( )
2

2 3 .
n

N D N D
i i

i

s W h b h+ −∑  (2.9) 

To minimise the average squared error in (2.9), back propagation (BP) is introduced to adjust the 
weights and thresholds of the network. By integrating (2.7), (2.8), and (2.9), we can obtain the whole 
objective function: 

 ( )
2

2 3
2 3 .

n
N D N D

D D i i
i

L L s W h b h+ + + −∑   (2.10) 

It should be stressed that during the initialisation, the parameters ( )2 2,D DW b  and ( )3 3,D DW b  are used 

only to encode and decode the input 2D and 3D features, while ( ),N NW b  only encodes the mapping 

from 2Dh  to 3 .Dh  To achieve a complete training procedure for the DMAE, we discuss how to connect 
these parameters. 
Parameter tuning. The above initialisation process does not guarantee that the parameters obtained are 
optimal for skeleton based action recognition, because individually training each set of parameters could 
lead to a high reconstruction error when they are combined. Therefore, all of the parameters must be 
refined via a connected optimizstion.  

Given the initialised parameters ( )2 3 2 3
1 1 1 1, , , , ,D D N D D NW W W b b b , because the output of the DMAE is ,iR  

the fine-tuning objective function is similar to that in (2.11) and (2.1): 

 2
.

n

DMAE i i
i

L X R= −∑   (2.11) 

The involved values iR , 2D
ih and 3D

ih follow (2.6), (2.7), and (2.8) respectively. As with most deep 
learning methods, we adopt BP to optimise (2.11). The DMAE training steps are summarised in 
Algorithm 1. Back-propagation is applied to deep neural network sequentially. The order of optimisation 
is 2D maps to a 2D hidden representations, the mapping from 3D skeletons to 3D hidden representations 
and the mapping from 2D hidden representations to 3D hidden representations. The error of one layer is 
back propagated only to its previous layer. 

 
Algorithm 1. Details of the DMAE Training Procedure With BP-NN 
Input: 2D depth map set X ; 3D skeleton set Y . 
Output: Hidden representation 3DH . 
Stage 1 
Compute hidden representation of X with the 2D Auto-Encoder defined in (2.8); 
Stage 2 

Compute hidden representation 3DH of Y with the 3D Auto-Encoder defined in (2.9); 
Stage 3 

Compute BP-NN mapping A  with 2DH and 3DH ; 
Stage 4 
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repeat 

      Compute backward result 3DR  with A  and 3DH ; 

      Compute DMAEL  in (2.11); 

      Update the network weights ( ),N NW b ; 

until DMAEL  in (2.11) converges 

3 Temporal Modelling and Classification 

As the focus of this paper is the skeleton representation learning, we explicitly model temporal dynamics 
of the extracted representations with a temporal pyramid matching (TPM) [6]. Motivated by Spatial 
Pyramid Matching (SPM) [21], the TPM uses a max pooling function to generate the multiscale structure. 
We recursively partition the video sequence into increasingly finer segments along the temporal direction 
and use the max pooling to generate histograms from each sub-region. Typically, 3 levels with each 
containing 1, 2, and 4 segments are used. The final feature is the concatenation of histograms from all of 
the segments. We illustrate this process in Fig. 5. 

 

Fig. 5. Temporal pyramid matching 

Specifically, we assume that we obtain a feature matrix D*TU ∈�  for a video by the DMAE, where T  
is the frame amount, and D  is the dimension for each feature vector. We use ijz  to denote the j-th feature 
vector of the i-th layer in the pyramid. For the top layer, there is only one vector 11 11 11 11

1 2, , , Dz z z z⎡ ⎤= ⎣ ⎦� , 

which can be computed using 

 11 (U)z F= .  (3.1) 

F  is the max pooling function, as follows: 

 { }11
1 2max , , ,i i i iTz U U U= � , 1,2,i D∀ = � .  (3.2) 

When getting the first layer of the pyramid, we partition U  into 1U  and 2 ,U  where 1U =  

[ ]1 2 / 2, , Tu u u� , and [ ]2 / 2 1 / 2 2, ,T T TU u u u+ += � . Thus, we can obtain the feature vectors for the second 

layer with the max pooling function. With that analogy, we can obtain the third layer and the n-th layer, 
and finally, obtain the representation 11 21 22, , , , nmz z z z z⎡ ⎤= ⎣ ⎦�  by connecting the vectors from all of the 

layers, where 12nm −= , for each video. 
After obtaining the final representations, we use a multi-class linear SVM to speed up the training and 
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testing. The experimental results will be discussed in the next section. 

4 Experiments 

In this section, we evaluate our proposal and compare it with several recent studies on two benchmark 
datasets, namely, MSR-Action3D [30] and Florence3D-Action [33]. We also reveal the denoising 
capability of our method for reconstructing noisy 3D joint sequences. 
MSR-Action3D. This dataset captured by a Microsoft Kinect-like depth sensor, which is widely used in 
action recognition. This dataset consists of 20 actions performed by 10 different subjects. Each subject 
performed every action in an unconstrained way two or three times. Altogether, there are 557 valid action 
sequences with 22077 frames. All of the sequences are captured in 15 FPS, and each frame in a sequence 
contains 20 skeleton joints. The low accuracy of the skeleton joint coordinates and the presence of many 
highly similar actions make this dataset very challenging. 
Florence3D-Action. This dataset was collected at the University of Florence using a Kinect camera. It 
includes 9 actions: “wave”, “drink from a bottle”, “answer phone”, “clap”, “tight lace”, “sit down”, 
“stand up”, “read watch”, and “bow”. Each action was performed by 10 subjects two or three times, 
which resulted in a total of 215 action sequences. In each frame of the sequence, the 3D locations of the 
15 joints are provided with the dataset. Although, these 9 actions are simple, the presence of actions such 
as “drink from a bottle” and “answer phone” are quite similar to one another. Hence, this dataset is 
challenging because of the high intra-class variations. 
Basic preprocessing. For the skeletal data, we normalised all of the skeleton joints of the above two 
evaluation datasets to a unified coordinate system. The origin of the coordinate system is the hip centre. 
To make the skeletons scale-invariant, we selected one referenced skeleton in the dataset and normalised 
all other skeletons without changing their joint angles, as Vemulapalli did in [4]. Furthermore, we rotated 
the both ends of the hip to parallel a global x-axis, which makes skeletons view-invariant. For the depth 
data, we first calculate the mean value μ  and the standard deviation σ  for each depth map. We then 
updated each non-zero value d  using the following: 

 ( )( )max min , 2 , 2d d μ σ μ σ= + − .  (4.1) 

By this approach, we can eliminate abnormal depth values, and obtain the maximum maxd  and the 

minimum mind . According to the characteristics of the sigmoid, we further scaled all of the non-zero 
depth values into 0.3 and 0.9, with the following: 

 max min

max min

0.6* 0.3* 0.9*d d d
d

d d

+ −=
−

.  (4.2) 

Based on this preprocessing, we can make the depth differences between the different body parts be 
more obvious, and we can remove some of the noise points. 

4.1 Evaluation Settings and Parameters 

For the MSR-Action3D dataset, we follow the cross-subject test settings of [30]. In [33], the dataset was 
divided into the subsets AS1, AS2, and AS3, each of which consists of 8 actions, as shown in Table 1, 
and we performed recognition on each subset separately. For this dataset, the first 2D Auto-Encoder has 
9 feature maps with a kernel size of 13*13, and the second has 16 feature maps with a kernel size of 6*6; 
the scaling factors in both of the max pooling layers are 4. In addition, the first 3D Auto-Encoder 
contains 200 nodes in the hidden layer, and the second contains 400 nodes.  

For Florence3D-Action, we leave out each subject from the training set and repeat an experiment for 
each of them (leave-one-subject-out) by following the experimental protocol proposed in [33]. The first 
2D Auto-Encoder has 12 feature maps with a kernel size of 9*9, and the second has 10 feature maps with 
a kernel size of 7*7; the scaling factors in both of the max pooling layers are 4. The first 3D Auto-
Encoder contains 160 nodes in the hidden layer, the second contains 320 nodes.  
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Table 1. Action sets of the MSR-Action3D dataset 

AS1 AS2 AS3 
horizontal wave high wave high throw 

hammer hand catch forward kick 
forward punch f draw X side kick 

high throw draw tick jogging 
hand clap draw circle tennis swing 

bend two hands wave tennis serve 
tennis serve side boxing golf swing 

pickup & throw forward kick Pickup & throw 
 
In all of the experiments, we train a deep architecture stacked by 2D Auto-Encoders, 3D Auto-

Encoders, and a Neural Network for each dataset, using BP-NN. We penalise the average output ih  of 
the second 3D Auto-Encoder and push it to 0.1, to add some sparsity to the model and learn an over-
completed representation of the joint features. The parameter λ  in the DAE_CCT is experimentally 
assigned to 1.5. A four-level TPM, with each containing 1, 2, 4, 8 segments, is used to model the 
temporal aspect. The multi-class linear support vector machine algorithm here we use is the more 
commonly used LIBSVM [36], where the value of the penalty factor C is determined by the cross 
validation method. All the results reported in this paper were averaged over ten different combinations of 
training and test data. In addition, it should be noted that the results of all of the comparative methods on 
the two datasets are from their corresponding papers. 

4.2 Results 

Comparison with the state-of-art. We compare the proposed method DMAE with various state-of-the-
art skeleton based human action recognition approaches. Table 2 shows the comparison results on MSR-
Action3D and Florence3D-Action. We can see that the DMAE gives excellent results on all of the 
datasets. It performs comparably to the best result of 94.49% [5] with an accuracy of 94.14% on MSR-
Action3D using the protocol [30]. In [5], Du et al. present a hierarchical recurrent neural network, which 
employs five bidirectional recurrent neural networks as its basic units for skeleton based action 
recognition. This model is corresponding five human body parts, which has integrated the manual 
intervention. However, DMAE focuses on the jointly learning based on the hidden representations of 2D 
depth map and 3D skeleton data. It can get the non-linear mapping between these two kinds of data, also 
the optimized representations for action recognition or other applications. On Florence3D-Aciton dataset, 
DMAE is the best with an accuracy of 91.00%. 

Table 2. Comparison with state-of-the-art methods 

MSR-Action3D dataset (protocol [30]) 
Li et al., 2010 [30] 74.7 
Mohamed et al.,2013 [12] 90.53 
Chen et al.,2013 [8] 90.47 
Gowayyed et al.,2013 [31] 91.26 
Vemulapalli et al., 2014 [4] 92.46 
Du et al., 2015 [5] 94.49 
DMAE 94.14 

Florence3D-Action dataset (protocol [33] 
Seidenari et al., 2013 [33] 82.00 
Devanne et al., 2015 [32] 87.04 
DMAE 91.00 

 
Fig. 5 shows the confusion matrices for MSR-Action3D AS1, MSR-Action3D AS2, and MSR-

Action3D AS3. Fig. 6 shows the confusion matrix for Florence3D-Action. Better performance on subsets 
AS1 and AS2 indicates that the proposed representation is better than the others in differentiating similar 
actions. Better performance on subset AS3 indicates that the proposed representation is better than the 
others in modelling complex actions. We can see that the misclassifications occur mainly among several 
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very similar actions. For example, in Fig. 5(b), the action “Draw X” is often misclassified to “Draw 
Tick”, while the action “Draw Circle” is misclassified to “High Arm Wave”. In fact, these two pairs of 
actions share a large overlap in their sequences. 

   

(a) AS1 - 93.83 (b) AS2 - 91.16 (c) AS3 - 97.43 

Fig. 5. Confusion matrices of DMAE on the MSR-Action3D dataset 

 

Fig. 6. Confusion matrices of DMAE on Florence3D-Action 

Experiments on BP-NN based mapping. Fig. 7 shows an illustration of a comparison between DMAE 
and DAE_CCT for each action in the Florence3D-Action dataset using the protocol of [33]. The 
superiority of DMAE is apparent for most of the actions, especially the very similar ones, such as “drink” 
and “answer phone”. The average recognition accuracy rate is significantly improved by 5.26% from 
85.74% after jointly combining the 2D depth information using the BP-NN mapping. It verifies our 
proposals that skeleton is not enough to recognise some similar or complex actions and the combination 
with depth map using a neural network is an efficient way to mitigate such problem. 

 

Fig. 7. Comparison of DMAE and DAE_CCT for each action in the Florence3D-Action dataset 
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Capability to denoise the corrupted data. The proposed model also has the strong capability of 
reconstructing realistic data from corrupted input. The top row of Fig. 8 is an action sequence “high arm 
wave”, which was selected from the MSR-Action3D dataset. To better demonstrate our algorithm 
efficiency, we added some Gaussian noise to the joint positions and left out the joints randomly. The 
bottom row is the reconstructed action sequence, where we can observe that the missing joints are well 
restored via our model and the motions are more natural and fluent than before. 

 

Fig. 8. Examples that shows the capability of DMAE to denoise the corrupted data 

5 Conclusions 

In this paper, a new framework for skeleton-based action recognition is proposed. This framework jointly 
combines the 2D depth and 3D skeleton information using a new deep architecture called Deep 
Multimodal Auto-Encoder (DMAE). Taking full advantage of the Convolution Auto-Encoder (CAE) and 
the Denoising Auto-Encoder (DAE) in learning 2D spatial structure features and resisting 3D noise data, 
we employ them as the basic units in the DMAE. Moreover, the DMAE uses a two-layer neural network 
to map the hidden representation of 2D depth maps to those of 3D skeletons. Additionally, it can jointly 
explore the hidden 2D/3D representations and the appropriate relationships between them, which is 
helpful in making up for deficiencies in the noisy skeletal data. With the skeleton representations being 
learned, we use the Temporal Pyramid Matching (TPM) to model the temporal information and employ 
the linear SVM for classification. Experiments using the MSR-Action3D dataset and the Florence3D-
Action show that our proposal achieves superior results in terms of its action recognition performance. 

In future work, we will extend this framework to explore the nonlinear relationship between other 
types of data, such as RGB, and further study the action recognition based on an effective end-to-end 
solution for modelling the temporal dynamics from the perspective of the whole action sequences. 
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