
Journal of Computers Vol. 29 No. 4, 2018, pp. 185-202

doi:10.3966/199115992018082904015

185

Improving Fault Diagnosis Performance Using Hadoop

MapReduce for Efficient Classification and

Analysis of Large Data Sets

Ameen Alkasem*, Hongwei Liu, Muhammad Shafiq

School of Computer Science and Technology, Harbin Institute of Technology,

92 West Dazhi Road, Nan Gang District, Harbin 150001, China

77ameen@ftcl.hit.edu.cn, {liuhw,muhammadshafiq}@hit.edu.cn

Received 7 April 2017; Revised 27 July 2017; Accepted 9 August 2017

Abstract. Underpinning a significant amount of the mass quantities of data, virtualization

technology is a key element of utility cloud and an area in which monitoring is a special

challenge. The monitoring of large, complex systems requires high accuracy, low latency, and

near-real-time fault detection and anomaly analysis along with optimization enactment and

actions for corrections. For this paper, we investigated a fine-grained fault-tolerance mechanism

with newly proposed algorithms for the analysis of large datasets that are based on the Hadoop

MapReduce platform, and we implement a Naïve Bayes Classifier (NBC) algorithm with

Hadoop MapReduce to achieve high-performance and efficient classification for the analysis

procedure that occurs in virtualization and utility cloud. Evaluation results show that the

accuracy of our proposed method using Hadoop MapReduce approaches 89.80% as the size of

the data sets increases. We demonstrate that our model is scalable to large data sets of virtual

machine (VM) component utilization metrics with increased accuracy, low latency, and machine

learning ability.

Keywords: fault diagnosis, Hadoop MapReduce, naïve bayes classifier, utility cloud, virtualization

1 Introduction

The most important feature of the utility cloud is manage of utility computing not as a product but rather

as a service which that shared software, information and resources are afforded to computers, tablets,

phones, etc. It is a utility delivered via a network such as the Internet. Because of the utility cloud, big

data and the prevalence of computing have become increasingly important as a result data have become

more valuable than ever before [1]. It is crucial to the upkeep of such massive-scale systems is

monitoring for the detection of faults, errors, and anomalies for optimization enactment and so that

corrective measures can be taken. The monitoring of large-scale systems is a considerable challenge, and

it must include low-latency movement of huge quantities of data and real-time analysis [2]. Additionally,

monitoring is an indispensable aspect of any fault diagnosis system. The data received from monitoring

are very valuable, providing opportunities for the detection of faults, misconfigurations, and other

noteworthy events [2-3].

However, the scale needed for the largest data set monitoring frameworks [5] (e.g., near-real-time

monitoring and analysis of large data set collections) can be hundreds of nodes. Therefore, at this scale

two major problems are detection and diagnosis of faults which must be rapid. Accelerated fault

detection and diagnosis are even more important and are required in cloud computing services [6]:

whereas a 20-second delay to recover from a fault or anomaly is a nuisance in a service provider, it can

mean losing the chance to make a key decision in service recovery. More precisely, machine learning

technologies such as Bayesian networks (BNs) [7] are used extensively for the classification and analysis

* Corresponding Author

Improving Fault Diagnosis Performance Using Hadoop MapReduce for Efficient Classification and Analysis of Large Data Sets

186

of data sets because of their “learning” capabilities from the combination of data sets based on training

and testing in order to make relatively highly accurate real-time decisions [8-9]. New applications and

technologies have emerged in big data analysis (such as Hadoop MapReduce [10-11], Nagios [12],

OpenStack [13], Aneka [14], and Weka software [15]). Weka is a machine learning workbench that

supports many activities of machine learning practitioners. Recently, there has been much research in this

area. Saswade et al. [16] developed an application to monitor health and performance of their critical

applications deployed on Amazon Web Services (AWS). Ward and Barker [1] are proposed Varanus, a

cloud-aware monitoring tool that provides robust fault-tolerant monitoring at scale. Aceto et al. [17]

provided a survey of cloud monitoring; in this survey, they identified open issues, main challenges, and

future directions in the field of cloud monitoring. Kumaret al. [18] developed a MapReduce framework

for automatic pattern recognition based on fault diagnosis by solving a data imbalance problem in a

cloud-based manufacturing (CBM) system. Smith et al. [19] proposed an availability model that

combines a high-level fault tree model with a number of lower level Markov models of a blade server

system (IBM BladeCenter). However, a comprehensive analysis indicates that these researchers who

work in different research areas did not take into account other effects such as efficiency, accuracy, and

risks in the monitoring and classification of large-scale data sets to accelerate diagnosis of faults and

anomalies in cloud services.

The contribution of this paper is a proposed method based on the Hadoop MapReduce platform and

the accelerated fault diagnosis innovation (AFDI) model proposed and developed in our work [20] to

evaluate the scalability of large-scale data set monitoring, classification, and analysis. The method

proposed uses a technique that combines two hybrid models, a Naïve Bayes Classifier (NBC) [21] and

Apache Mahout [22], to accomplish a fine-grained fault-tolerance workflow based on Hadoop

MapReduce and generates the highest efficacy and cost-saving fault diagnosis through three simple steps:

(I) Monitoring, (II) Data pre-processing, and (III) Diagnosis and analysis, as depicted in Fig. 1. The case

study used in this work is the failure of a host server to start up. Results show that running the new model

across Hadoop can save a considerable amount of time compared with running the model without a

Hadoop cluster without sacrificing the classification accuracy and can optimize performance analytically.

The results are promising as the accuracy of the proposed method is an improvement approaching

89.80% as the size of the datasets increases.

Fig. 1. Overview of a fine-grained fault-tolerance workflow based on Hadoop MapReduce

This paper is organized as follows. In Section 2, we describe the tools used in an empirical evaluation

of our methodology. Section 3 focuses on materials and methods. In Section 4, we explain the

experimental setup and results and provide a discussion. Finally, our conclusions and ideas for future

work are given in Section 5.

Journal of Computers Vol. 29, No. 4, 2018

187

2 Tools Used in Empirical Evaluation of Methodology

2.1 Hadoop MapReduce

Virtualization has emerged as a key enabling technology for cloud infrastructures. It enables multiple

virtual machines (VMs) to be consolidated on a single physical machine (PM) [23]. Unfortunately, the

running performance of VMs on cloud infrastructure platforms is unpredictable. This is because of

complications in fault diagnosis and repair actions due to the increased complexity and scalability of

monitoring data from multiple VMs consolidated on a subset of host server machines [24]. Hadoop

MapReduce is a parallel programming model for large-scale data processing that can be utilized to

process massive amounts of data stored in Java’s Hadoop Distributed File System (HDFS) [3]. Hadoop is

the open-source implementation of MapReduce. This paradigm is tightly coupled with the large data sets

phenomenon. Fig. 2 illustrates the generic Hadoop MapReduce framework.

Fig. 2. Hadoop MapReduce framework

The Hadoop MapReduce framework consists of two components [25-26]. The first one is MapReduce

and second one is HDFS. It adopts a master–slave architecture whereby a single master node runs the

software daemons NameNode and JobTracker and multiple slave nodes run DataNode and TaskTracker.

In a typical MapReduce job, the framework divides the input data into multiple splits, which are

processed in parallel by map tasks. The output of each map task is stored on the corresponding

TaskTracker’s local disk. This is followed by a shuffle step, in which the intermediate map output is

copied across the network a sort step and finally the reduce step. Different modules of the Apache

Foundation also support Hadoop. These include Hive for data warehousing, ZooKeeper for high-

performance coordination, and Mahout for scalable machine learning and data mining [27]. The online

cluster by Google processes over 30 PB of data sets each day by running an average of over 100,000

Hadoop MapReduce jobs [28]. Therefore, we selected Hadoop MapReduce to speed up the parameter

learning step in NBC when the size of the input data sets increases significantly.

2.2 Apache Mahout Machine Learning

The Apache Mahout project implements certain machine learning algorithms in the area of classification,

clustering, and filtering, which implemented on top of Hadoop [22]. Mahout is written in Java and

provides scalable machine learning algorithms. It is the default choice for machine learning problems in

which the data sets are too large for a single machine. Not all information fusion algorithms scale well in

handling large data sets. Therefore, a program might run out of memory when data are continuously

loaded into the memory by an algorithm. Because of this problem, it is important to research ways in

which a machine learning algorithm can convert data into the Hadoop MapReduce program and ways to

Improving Fault Diagnosis Performance Using Hadoop MapReduce for Efficient Classification and Analysis of Large Data Sets

188

create scalability in large data sets by optimization of the algorithm. Thus, this paper proposes a model

that utilizes an adapted version of Hadoop MapReduce whereby the generation of a new algorithm using

machine learning methods is enabled for resolving the problem of large data sets [29-30].

2.3 NBC Availability Model

The Naïve Bayes Classifier (NBC) is a simple and effective supervised machine learning algorithm that

can be applied in the Hadoop MapReduce paradigm [31].The NBC model is a specific Bayesian network

that is widely used for classification. Classification is one of the most important problems in machine

learning and big data. Suppose there are n possible classes (predictions) X = {x1, x2, …, xn} for a domain

of components A = {a1, a2, …, an}.Let Y = {y1, y2, …, yn} be the set of unique characteristics in which

each must appear a minimum of one time in one of the components in A. This is illustrated in Fig. 3. The

likelihood of a component’s being in a certain class is capable of being computed by the Bayes theorem

[32-33], as defined in equation (1).

1

(|) ()
(|) , 1, 2, ,

(|) ()

i i

i n

i i

i

P A X P X
P X A i n

P A X P X

=

= =

∑
… (1)

where

(|)
i

P X A is the posterior probability of the class (target) given the predictor (attribute),

()
i

P X is the prior probability of the class,

(|)
i

P A X is the likelihood probability, and

1

(|) ()
n

i i

i

P A X P X

=

∑ is the prior probability of the predictor (evidence).

Fig. 3. Naïve Bayes model

For classification, an NBC is commonly employed because of its capability of learning from training

datasets to making decisions with a new testing dataset so that it can predict salient features and deliver

relatively highly accurate real-time analysis [34]. We have proposed an algorithm, shown in Fig. 4, for

training and classification with the NBC model.

Input: Attribute values
1

(, ,)
i

y y y= … ,Classes
1

(, ,)
i

x x x= … , n=i

Output: Class with highest value of estimated probability ()P X

1. For all
i
y and for all classes

j
x do

2. Calculate the conditional probability (|)
j i

P y x as the

 relative frequency of
i
y among those training datasets

 that belong to
j

x

3. End for

4. For all classes
j

x do

5. Estimate ()
j

P x as the relative frequency of this

Journal of Computers Vol. 29, No. 4, 2018

189

 class in the training datasets,

6. Calculate the conditional probability (|)
i

P y x using

 the naïve assumption of mutually independent

 attributes:

1

(|) (|)
n

i i j

i

P y x P y x
=

=∏
(2)

7. End for

8. Choose the class with the highest value of estimate:

1

() (|)
n

j i j

i

P x P y x
=

×∏ (3)

9. End.

Fig. 4. Algorithm for training and classification with NBC model

The posterior probability can be calculated by first constructing a frequency table for each attribute

against the target, then transforming the frequency tables to likelihood tables, and finally using the Naïve

Bayesian model to calculate the posterior probability for each class. The class with the highest posterior

probability is the outcome of the prediction [35] an example is given in Table 1. This frequency will be

the evaluation calculated by the proposed new model based on Hadoop MapReduce.

Table 1. Example of a frequency and likelihood table

Fault State Frequency

 Table Yes No

Normal 400 100

Minor 500 12 CPU

Serious 0 0

Fault State
Likelihood Table

Yes No
P(x) = P(prediction)

N
o

rm
a
l

400/1200 100/800 500/2000

M
in

o
r

500/1200 12/800 512/2000 CPU

S
e
ri

o
u

s

0/1200 0/800 0/2000

P(c) = P(Yes/No) 900/1200 112/800

2.4 AFDI Model Description

The AFDI model is a new hybrid model using the advantages of the Multi-Decision Diagram (MDD) and

NBC models and a virtual sensor cloud, which provides a new approach and framework for fault

management in cloud services. Addressing the full life cycle of problem determination based on the

severity levels and anomalies for VM/physical server metrics. The AFDI model is aimed at reducing the

time and the cost of a fault diagnosis through accelerated fault diagnosis [20]. AFDI monitors a wide

range of metrics across the VM and the physical server as shown in Fig. 5. In most prior work, the

metrics were monitored based on the severity levels of consequences according to the symptoms [36].

Improving Fault Diagnosis Performance Using Hadoop MapReduce for Efficient Classification and Analysis of Large Data Sets

190

Fig. 5. AFDI monitors a wide range of metrics across the VM and the Physical server

3 Materials and Methods

3.1 Algorithms for Improving Performance

We are proposing a new model based on AFDI to evaluate whether NBC and Hadoop MapReduce can be

scaled up to classify large data sets while achieving high performance for classification and analysis of

metrics of large datasets. This section explains the new algorithms and the workflow of our proposed

method. Illustrated in Fig. 6, the procedure includes four new modules to Hadoop along with the

techniques for method evaluation (Apache Mahout):

Fig. 6. Proposed framework for a fine-grained approach with Hadoop MapReduce

Monitoring engine. This module monitors each VM and host server to collect the metrics of interest

(numerical predictors or attributes).

Pre-processing. All new testing data from the metrics collection monitor are normalized and binned into

Journal of Computers Vol. 29, No. 4, 2018

191

intervals, and the raw time-series data are used to generate monitoring events (m-events); more detail is

given in Section 3.2.

Diagnosis engine. The model’s proposed methodology analyzes the time series entropy to locate patterns

that signify faults or anomalies in the system being monitored.

Decision process model. A look-back window of size 3 creates a dataset table according to the following

decision values:

�If (0 ≤ decision value < 2), then fault category is normal, and node fault state is normal;

�If (2 ≤ decision value ≤ 3), then fault category is minor, and node fault state is normal;

�If (decision value > 3), then fault category is serious, and node fault state is abnormal.

More details are given in Section 3.2.

In the work presented, the focus has been to enhance the AFDI model for differing sizes of data sets

and to assess the Hadoop MapReduce program for its capability of learning from past data with the

purpose of achieving high-performance fault diagnosis for the newly proposed model. As shown in Fig. 6,

raw data are taken from the testing metric data collected by large monitoring engines (Xen-Hypervisor

[37-38]) as shown in Table 2 and from a historical training dataset as shown in Table 3.

Table 2. Sample dataset of testing metrics

Time- monitoring CPU_ Utilization Network- overhead Memory- usage VM/Host state Fault state

12:02:00 AM 30.00 30.00 30.93 ? ?

12:07:00 AM 30.00 35.00 78.12 ? ?

12:12:00 AM 90.00 70.00 92.43 ? ?

12:17:00 AM 31.84 38.21 42.19 ? ?

12:22:00 AM 27.28 32.74 36.15 ? ?

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Table 3. Sample historical training dataset

Time_monitoring CPU_ Utilization Network_overhead Memory_usage VM/Host_state Fault state

12:57:00 AM 57.22 68.66 99.05 Serious Yes

1:02:00 AM 23.34 28.01 35.02 Normal No

1:07:00 AM 58.96 70.75 20.12 Minor No

1:12:00 AM 69.76 83.71 10.04 Serious Yes

1:17:00 AM 31.51 37.84 41.74 Normal No

3.2 Pre-processing of Raw Metrics

The metrics within each look-back window are first pre-processed and transformed into a form that can

be readily used by the proposed approach. With each monitoring engine sample, multiple types of metric

can be collected simultaneously; e.g., in our experiment, as shown in Table 2, we collected CPU

utilization, memory usage, and network overhead in each monitoring sample. Once the collection of

sample data is complete, the data are preprocessed and transformed into a series of bin numbers for every

metric type, using equations (4), (5), (6) to perform the data binning, with a time instance serve (t1, t2,…,

ti) and m-events (M1, M2,…, Mi) where i is number of instances the results as shown in Table 4 and Table

5.

1

1
n

i

i

x

n

µ

=

= ∑ (4)

0.5

2

1

1
()

1

n

i

i

x

n

σ μ

=

⎡ ⎤
= −⎢ ⎥−⎣ ⎦

∑ (5)

2

2

1
()

2 2
1

()
2

x

f x e

μ

σ

σ π

− −

= (6)

Improving Fault Diagnosis Performance Using Hadoop MapReduce for Efficient Classification and Analysis of Large Data Sets

192

In the above equations, μ is the population mean, σ is the population standard deviation, x is from the

domain of measurement values (−∞ < x < ∞), and n is the number of components or services. A normal

probability distribution is defined by the two parameters µ and σ. Besides µ and σ, the normal probability

density function (PDF) f(x) depends on the constants e (approximately 2.718) and π (approximately

3.142) [39]; because these attributes are numerical data, the numerical variables in Table 3 need to be

transformed into their categorical counterparts (binning) before their frequency tables are constructed by

equations (7) and (8) (e.g., look-back window size = 3, range = [0, 2], and number of bins = 6), as shown

in Table 4 and Table 5. The values for binning-value and decision-value are determined by the following

formulas:

 IF (2) then 5, else TRUNC(/ 0.4)x binning value binning value x> − = − = (7)

 MAX()decision value binning value− = − (8)

where x is the normalization value for the attribute and 0.4 is a statistic suggested by the probability

values. Then can begin the classification and analysis into a dataset probability (predictor) by use of the

cumulative distribution function (CDF) [39] as shown in Table 6. For a continuous random variable, the

CDF equation is

 ()
x a

P X x
b a

−
≤ =

−

 (9)

where a is the lower limit and b is the upper limit 5, a ≤ x ≤ b.

Table 4. Sample of data normalization used for binning

 Time-instance CPU Network Memory

t1 0.60 0.67 0.46

t2 0.60 0.78 1.16

Window size (3)

t3 1.80 1.56 1.38

t4 1.05 1.15 0.97

t5 0.90 0.99 0.83

t6 1.06 0.86 1.20

 � � � �

Table 5. Sample of dataset binning with decision values

 M-events CPU Network Memory Decision value
M1 1 1 1 1

M2 1 1 2 2

Window size (3)
 M3 4 3 3 4

M4 2 2 2 2

M5 2 2 2 2

M6 2 2 3 3

 � � � � �

Table 6. Sample of the classifier probability (predictor) dataset

Process Instances CPU Network Memory VM/Host state Fault state

Process.inst1 0.20 0.20 0.20 Normal ?

Process.inst2 0.20 0.20 0.40 Minor ?

Process.inst3 0.80 0.60 0.60 Serious ?

Process.inst4 0.40 0.40 0.40 Minor ?

Process.inst5 0.40 0.40 0.40 Minor ?

Process.inst6 0.40 0.40 0.60 Minor ?

� � � � � �

Journal of Computers Vol. 29, No. 4, 2018

193

3.3 Diagnosis and Classifier Engine

3.3.1 Diagnosis Approach

The proposed diagnosis approach is a general concept that represents a combination of analytical tools

cooperating to form the analysis and diagnosis model shown in Fig. 4. Our raw data were taken from

large engines monitoring a host server and collected by research communities. A monitoring engine

collected and processed measurement data such as basic resource metrics for each VM and host server, as

listed in Table 7.

Table 7. System and application metrics monitored in new model

System metric Description Measurement level

CPU utilization % CPU time in user-space/kernel-space VM, Host

Memory utilization % of memory used VM, Host

Network bandwidth % of network bandwidth VM, Host

I/O storage % of disk throughput Host

The diagnosis engine contains the hybrid intelligent models MDD and NBC. The MDD is used to

quickly obtain the overall fault severity level and if necessary generate an alarm in a virtual sensor cloud.

The MDD processes and analyzes m-events and executes its diagnosis by pre-processing and the use of

I/O pairs to calculate the parameters estimated by NBC in Hadoop MapReduce for large data sets. The

NBC measures are given as a 2 by2 contingency table [40-41], shown in Table 8.

Table 8. Contingency table of measures for analysis

Observation
Class

Yes No
Fault True positive (TP) False positive (FP)

P
re

d
ic

ti
o
n

Not fault False negative (FN) True negative (TN)

We utilized three statistical measures, recall, precision, and accuracy, to evaluate the effectiveness of

fault diagnosis using NBC in Hadoop MapReduce for large-data-set problems. More details and results

are given in Section 4. The data parser first pre-processes the metrics for all components recorded in a

common XML file [42]. After pre-processing, each file contains two parts: the attributes of the

components and the data, as shown in Fig. 7 (a) to Fig. 7(c). Each observation of metrics for components

is recorded as a single line of data, where the first three columns represent the metrics of attribute

components and the last two columns represent the component state class(normal, minor and serious) and

the system fault state class(yes and no) as labeled. Each column is separated by a comma. This is useful

because by default Hadoop MapReduce splits the input files byline and passes each line to a mapper

function to generate informational data used for the frequency table, as shown in Fig. 7(d). All pre-

processed component metrics are stored in the master node as a repository while waiting for further

sampling. Therefore, the proposed approach maintains a buffer size of 3 (a look-back window) of the last

n samples’ observed metrics. The metrics observed in the look-back window each time instance serve as

inputs to be pre-processed. There are multiple reasons that use of a look-back window can further

increase detection performance:

‧ At exascale, it is impractical to maintain all historical data.

‧ Shifts in work patterns may render old history data useless or even misleading.

‧ The look-back window can be implemented in high-speed RAM.

Improving Fault Diagnosis Performance Using Hadoop MapReduce for Efficient Classification and Analysis of Large Data Sets

194

(a) Testing data set (unknown) (b) Training data set (known)

(c) Testing data set after classification and

training (known)

(d) Informational data used for the frequency

table

Fig. 7. Dataset modeling (XML format)

3.3.2 Classifier Approach

The classification of component states and system states is the key step in the workflow. Fig. 6 shows the

job sequence of this step. When the training data and testing data are ready in HDFS, AFDI starts the

training job to build a model. The algorithm combines the test data with the model and generates an

intermediate table. Finally, the algorithm classifies the job and simultaneously computes the probability

of each component’s being in each of the three classes and then makes a decision about the final system

state. Statistics regarding the contingency table and intermediate values are recorded. In our experiments,

we used two data sets: (1) a new testing dataset (unknown) and (2) a training dataset (known) as shown

in Table 2 and Table 3, which convert these data to XML format to input to the algorithms of the

proposed method. The formation of XML files, shown in Fig. 7(a) to Fig. 7(b) and Fig. 7(d), is our

simple dataset framework for a state-based probability model that predicts component utilization. In Fig.

7, the measurement level varies from 0 to 100%. The component utilization uses CPU ∈ {0-25%, 26%-

75%, 76%-100%} as thresholds. We observed the percentage component utilization at discrete times

1
, ,

n
t t… .

The new dataset holds the model classifier results given by combining the testing and training datasets,

as shown in Fig. 7(c). We first define our task to classify the three state components using an NBC model.

The system cannot work if one component is faulty. We use 0, 1 and 2 to represent the system and

component states, where 0 denotes good status (normal working conditions), 1 denotes a minor fault and

2 denotes a serious fault. For example, CPU, memory and network represent the three basic components

and host-server-state represents the system state as shown in Fig. 8. Hence, we have only three classes

(normal, minor and serious) for the component state measurements and only two classes (yes and no) for

Journal of Computers Vol. 29, No. 4, 2018

195

the system fault state. To simplify the problem, we choose the same number of normal, minor, and

serious measures for the components. The classification problem is then converted to a counting problem

on the training and testing datasets.

Fig. 8. Model predicting component utilization for host server

We divided the problem solving into two algorithms:

(1) An algorithm for the training and filtering, shown in Fig. 9. In this algorithm, all training instances

are fed into the job to produce a model for all instant attributes, and the data set is filtered with their

frequencies of normal, minor, and serious component states.

Input: value�Training datasets. //XML format
Output: Result. // reduce result save in HDFS
1- Begin
2- Map(Object key, Text value, Context context)

3- component_name �””;

4- Row[]� value.toString().split(",");
5- if(row.length>= 5)

6- state_component�row[3];
7- for col=0 to col<=3 do // filtering datasets

8- component_name � "State_component"
9- elseif (row[col]>=0&&row[col] <=25) state_component="Normal";
10- elseif (row[col]>=26&&row[col] <=74) state_component="Minor";
11- elseif (row[col]>=75&&row[col] <=100) state_component="Serious";
12- if (col==0) component_name="CPU";
13- elseif (col==1) component_name="Memory";
14- elseif (col==2) component_name=" Network”
15- word.set(component_name+"-"+state_component+"-"+row[4]);
16- context.write(word, one);
17- End for
18- End if
19- End Map
20- Reduce(Text key, Iterable<IntWritable>values, Context context)

21- Sum�0;
22- for (Int Writableval:values) do
23- sum += val.get();
24- End for
25- result.set(sum);
26- context.write(key, result);
27- End reduce

28- Result�result;
29- End

Fig. 9. Algorithm for training and filtering data sets

(2) Combining the test and training data set algorithm, as shown in Fig. 10. In this algorithm, the

training and the test data set measures are combined to give an intermediate table with all information

necessary for the final classification. This algorithm classifies all instances to only two final fault state

classes (yes, no) and writes the final resulting classification to Hadoop (HDFS).

Improving Fault Diagnosis Performance Using Hadoop MapReduce for Efficient Classification and Analysis of Large Data Sets

196

Input: Training and testing datasets //XML format
Output: A new-dataset-result.XML, F.Measure, Precision and Recall.
1- Begin
2- Classify(Dataset-train, Dataset-test) //Datasets with XML format

3- BufferedReader breader�null;

4- Breader� new BufferedReader(new FileReader(Dataset-train));

5- Instances train�new Instances(breader);
6- train.setClassIndex(train.numAttributes()-1);

7- Breader�new BufferedReader(newFileReader(Dataset-test));

8- Instances test�new Instances (breader);
9- test.setClassIndex(train.numAttributes()-1);
10- breader.close();

11- J48 tree�new J48();
12- tree.buildClassifier(train); //build classifier

13- Instances labeled� new Instances(test);//label instances
14- for i=0 to i<test.numInstances()do

15- clsLabel�tree.classifyInstance(test.instance(i));
16- labeled.instance(i).setClassValue(clsLabel);
17- End for

18- BufferedWriter writer�new BufferedWriter(new
 FileWri ter(“Anew-dataset-result.XML”));
19- writer.write(labeled.toString());
20- writer.close();
21- Call-Produce StartNBC(“A new-dataset-result.XML”);
22- End //classify
23- StartNBC (Dataset)

24- BufferedReader breader �null;

25- breader �new BufferedReader(new FileReader(Dataset));

26- Instances train�new Instances (breader);
27- train.setClassIndex(train.numAttributes()-1);
28- breader.close();

29- NaiveBayesnB�new NaiveBayes();
30- nB.buildClassifier(train);

31- Evaluation eval�new Evaluation(train);
32- eval.crossValidateModel(nB, train, 20, new

Random(1));

33- The F.Measure� eval.fMeasure(1);

34- The Precision� eval.precision(1);

35- The Recall� eval.recall(1)
36- End

Fig. 10. Algorithm for combining the test and training data sets

After these two algorithms are finished, the results collector retrieves the model classification results

intermediate values table and test data statistics from HDFS’s Hadoop storage [43]. By the end of the

classification analysis algorithms. All instances have been classified into a yes/no final fault state with

normal, minor, and serious state classes as shown in Table 9 and Fig. 11.

Table 9. Sample of the dataset classifier probability results

Process. Instance CPU Network Memory VMs/Host state Fault state

Process.inst1 0.25 0.25 0.25 Normal No

Process.inst2 0.25 0.25 0.50 Normal No

Process.inst3 1.00 0.75 0.75 Serious Yes

Process.inst4 0.50 0.50 0.50 Minor No

Process.inst5 0.50 0.50 0.50 Minor No

Process.inst6 0.50 0.50 0.50 Minor No

� � � � � �

Journal of Computers Vol. 29, No. 4, 2018

197

(a) Testing data set (known) after diagnosis and analysis (b) Hadoop’s HDFS result

(c) Pie chart showing the relative frequencies of the HDFS final dataset results

Fig. 11. Implementation of approach with new algorithms

4 Experiment Setup

The experiment setup used two VMs (VM1 and VM2) on a Xen-Hypervisor platform hosted on one Dell

blade server with dual-core 3.9 GHz CPUs and 4 GB RAM, as shown in Fig. 12.

Fig. 12. Architecture of the experiment system setup

Improving Fault Diagnosis Performance Using Hadoop MapReduce for Efficient Classification and Analysis of Large Data Sets

198

We implemented our approach at both the VM level and the host server level. The host server is

considered the direct parent of the VMs. Thus, the local time series is calculated first for the VMs

followed by their aggregation for the host server’s global time series. The first implementation uses Xen-

Hypervisor and the Ganglia metrics method to record and identify global resource provisioning

anomalies. Forty anomaly samples were injected into the testbed leading to global resource consumption

by the anomalies/faults, which do not exclude the CPU utilization of the running host server. The VM

metrics and the host metrics were collected using the Xen-Hypervisor and analyzed in a fault detector

and classifier. To test the scalability and performance of the new model, the dataset size was varied from

1,000,000 to more than 32,000,000 instances of recorded metrics in each class.

4.1 Results

The resulting statistics include the classification accuracy by algorithm as shown in Fig. 13 and Fig. 14

demonstrating high accuracy for the classification of component states (normal, minor, and serious). The

accuracy and throughput of the system without evaluation by Hadoop MapReduce code are shown in Fig.

15.

Fig. 13. Statistical analysis of the component state classification

Fig. 14. Result statistics include the classification accuracy by algorithms

Journal of Computers Vol. 29, No. 4, 2018

199

Fig. 15. Throughput of system with respect to dataset size without Hadoop MapReduce

4.2 Discussion

In a previous study, we executed our AFDI model and achieved an average accuracy of 92.1% with small

data sets. That model was able to classify different subsets of the host server monitoring dataset with

comparable accuracy. We used the four statistical measures given by equations (10), (11), (12), and (13)

to evaluate the effectiveness of anomaly/fault detection [44].

TP
Recall

TP FN
=

+

 (10)

TP
Precision

TP FP
=

+

 (11)

TP TN
Accuracy

Precision Recall

+
=

+

 (12)

()
() 1

()

Number of false alarms
False alarm rate FAR Precision

Total number of alarms
= = −

 (13)

where

TP (true positives) is the number of positive instances correctly predicted,

FN (false negatives) is the number of positive instances wrongly predicted as negative,

FP (false positives) is the number of negative instances wrongly predicted as positive, and

TN (true negatives) is the number of negative instances correctly predicted.

Our experimental results reveal several interesting findings for the evaluation of NBC in the new

model with machine learning (Apache Mahout), a performance summary and results of different

implementations as shown in Fig. 16. We achieved a high accuracy of up to 89.80% and 5-20% false

alarm rate. The use of Hadoop MapReduce can be optimized to speed up the parameter learning stage in

NBC for a wide range of input dataset sizes.

Fig. 16. Throughput of system with performance summary and results of different implementations

Improving Fault Diagnosis Performance Using Hadoop MapReduce for Efficient Classification and Analysis of Large Data Sets

200

The number of instances the system can process and analyze in one second increased from 0.54 GB to

3 GB. A performance summary of various results is presented in Table 10.

Table 10. Summary comparison of performance results

Model Accuracy (%) Time(seconds) ×103 Dataset size(GB)
AFDI 84.86 2.46 3

Weka software 85.88 1.80 3

Proposed method 89.80 0.47 3

Finally, our new approach methodology can scale up to more than 32 million instances of recorded

metrics in each class from a monitoring engine with high accuracy and time cost savings compared with

other models proposed.

5 Conclusion

In this paper, a new diagnosis approach that represents a combination of analytical tools to realize system

analysis and diagnosis has been proposed. We presented a fine-grained fault-tolerance mechanism for

algorithms for the analysis of large datasets based on the Hadoop MapReduce platform, and generates the

highest efficacy and cost-saving fault diagnosis through three simple steps: (I) monitoring, (II) data pre-

processing, and (III) diagnosis and analysis. The proposed model demonstrates that NBC is able to scale

up to the classification of metrics for large data sets collected from monitoring VM/host servers and

analyzed in near-real time with increased accuracy, low latency, and machine learning ability. The

additional modules inserted to evaluate the newly proposed algorithms showed good classification and an

accuracy of up to 89.80% with 5%-20% false alarm rate. We believe that our work is just the beginning

for the use of machine learning technologies in the classification and analysis of large data sets. Future

work will examine other intelligent algorithms with Apache Spark for a fast general engine for the

processing of large data sets and the automation of fault repair and recovery actions.

Acknowledgments

This work was supported by the Chinese High Tech R&D (863) Program Project “Cloud Computer Test

and Evaluation System Development (2013AA01A215).”

References

[1] J.S. Ward, A. Barker. Cloud cover: monitoring large-scale clouds with varanus, Journal of Cloud Computing 4(1)(2015) 1-

28.

[2] H. Chen, R.H. Chiang, V.C. Storey, Business intelligence and analytics: from big data to big impact, MIS Quarterly

36(4)(2012) 1165-88.

[3] J. Demšar, B. Zupan, G. Leban, T. Curk, Orange: from experimental machine learning to interactive data mining, in: Proc.

European Conference on Principles of Data Mining and Knowledge Discovery, 2004.

[4] R.J. Patton, P.M. Frank, R.N. Clark (Eds.), Issues of Fault Diagnosis for Dynamic Systems, Springer Science & Business

Media, New York, 2013.

[5] Q.V. Le. Building high-level features using large scale unsupervised learning, in: 2013 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), 2013.

[6] R. Jhawar, V. Piuri, M. Santambrogio, Fault tolerance management in cloud computing: a system-level perspective, IEEE

Systems Journal 7(2)(2013) 288-97.

[7] G.L. Rosen, E.R. Reichenberger, A.M. Rosenfeld, NBC: the naive bayes classification tool web server for taxonomic

Journal of Computers Vol. 29, No. 4, 2018

201

classification of meta genomic reads, Bioinformatics 27(1)(2011) 127-9.

[8] S. Landset, T.M. Khoshgoftaar, A.N. Richter, T. Hasanin, A survey of open source tools for machine learning with big data

in the Hadoop ecosystem, Journal of Big Data 2(1)(2015) 1-36

[9] I.H. Witten, E. Frank, M.A. Hall, C.J. Pal, Data Mining: Practical Machine Learning Tools and Techniques, second ed.,

Morgan Kaufmann, San Francisco, 2016.

[10] J. Dean, S. Ghemawat, MapReduce: a flexible data processing tool, Communications of the ACM 53(1)(2010) 72-7.

[11] A. Holmes, Hadoop in Practice, Manning Publications, Shelter Island, 2012.

[12] Nagios core version 3.x documentation. <http://nagios.sourceforge.net/docs/nagioscore-3-en.pdf/>, 2010 (accessed

02.02.10).

[13] Rackspace private cloud powered by OpenStack. <https://www.rackspace.com/cloud/private/openstack solutions/openstack

/>, 2017 (accessed 12.03.17)

[14] Aneka: enabling. NET-based enterprise grid and cloud computing. <http://www.manjrasoft.com/ products.html/>, 2017

(accessed 07.03.17).

[15] R.R. Bouckaert, E. Frank, M.A. Hall, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten WEKAâˆ’experiences with a

Java open-source project, Journal of Machine Learning Research 11(9)(2010) 2533-2541.

[16] N. Saswade, V. Bharadi, Y. Zanzane, Virtual machine monitoring in cloud computing, Procedia Computer Science

1(79)(2016) 135-142.

[17] G. Aceto, A. Botta, W. De Donato, A. Pescapè, Cloud monitoring: a survey, Computer Networks 57(9)(2013) 2093-2115.

[18] A. Kumar, R. Shankar, A. Choudhary, L.S. Thakur, A big data MapReduce framework for fault diagnosis in cloud-based

manufacturing, International Journal of Production Research 54(23)(2016) 7060-7073.

[19] W.E. Smith, K.S. Trivedi, L.A. Tomek, J. Ackaret, Availability analysis of blade server systems, IBM Systems 47(4)(2008)

621-640.

[20] A. Alkasem, H. Liu, Z. Decheng, Y. Zhao, AFDI: A virtualization-based accelerated fault diagnosis innovation for high

availability computing, arXiv preprint arXiv 1507.08036, 2015.

[21] B.E. Guo, H.T. Liu, C. Geng, Study on hybrid-weight for feature attribute in naïve bayesian classifier, In: Proc. 2014 Fifth

International Conference on Intelligent Systems Design and Engineering Applications (ISDEA), 2014.

[22] A. Gupta., Learning Apache Mahout Classification, Packt Publishing, Birmingham, 2015.

[23] B.P. Sharma, P. Jayachandran, A. Verma, C.R. Das CloudPD: problem determination and diagnosis in shared dynamic

clouds, in: Proc. 43rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), 2013.

[24] L. Wang, G. Von Laszewski, A. Younge, X. He, M. Kunze, J. Tao, C. Fu, Cloud computing: a perspective study, New

Generation Computing 28(2)(2010) 137-46.

[25] J. Xie, S. Yin, X. Ruan, Z. Ding, Y. Tian, J. Majors, A. Manzanares, X. Qin, Improving mapreduce performance through

data placement in heterogeneous hadoop clusters, in: Proc. 2010 IEEE International Symposium on Parallel & Distributed

Processing, Workshops and Phd Forum (IPDPSW), 2010.

[26] A. Eldawy, M.F. Mokbel, Spatialhadoop: a mapreduce framework for spatial data, in: 2015 IEEE 31st International

Conference on Data Engineering (ICDE), 2015.

[27] S. Haloi, Apache ZooKeeper Essentials, Packt Publishing, Birmingham, 2015.

[28] S.B. Kim, K.S. Han, H.C. Rim, S.H. Myaeng, Some effective techniques for naive bayes text classification, Knowledge and

Data Engineering, IEEE Transactions 18(11)(2006) 1457-66.

Improving Fault Diagnosis Performance Using Hadoop MapReduce for Efficient Classification and Analysis of Large Data Sets

202

[29] C.W. Tsai, C.F. Lai, H.C. Chao, A.V. Vasilakos, Big data analytics: a survey, Journal of Big Data 2(1)(2015) 21.

[30] V.R. Eluri, M. Ramesh, A.S.M. Al-Jabri, M. Jane, A comparative study of various clustering techniques on big data sets

using apache mahout, in: Proc. 2016 3rd MEC International Conference on Big Data and Smart City (ICBDSC), 2016.

[31] A. Bechini, F. Marcelloni, A. Segatori, A MapReduce solution for associative classification of big data, Information

Sciences (332)(2016) 33-55.

[32] G.E. Box, G.M. Jenkins, G.C. Reinsel, G.M. Ljung, Time Series Analysis: Forecasting and Control, John Wiley & Sons,

New York, 2015.

[33] V. Krishnan, Probability and Random Processes, John Wiley & Sons, New York, 2015.

[34] X. Wang, X. Sun, An improved weighted naive bayesian classification algorithm based on multivariable linear regression

model, in: Proc. 2016 9th International Symposium on Computational Intelligence and Design (ISCID), 2016.

[35] L. Zhou, H. Fujita, Posterior probability based ensemble strategy using optimizing decision directed acyclic graph for

multi-class classification, Information Sciences (400)(2017) 142-156.

[36] A. Alkasem, H. Liu, D. Zuo, Utility cloud: a novel approach for diagnosis and self-healing based on the uncertainty in

snomalous metrics, in Proc. the 2017 International Conference on Management Engineering, Software Engineering and

Service Sciences (ICMSS '17), 2017.

[37] P.J. Chuang, C.Y. Chou, Efficient concurrent virtual machine scheduling for Xen hypervisors, in: Proc. Computer Science,

Technology and Application: Proceedings of the 2016 International Conference on Computer Science, Technology and

Application (CSTA2016), 2016.

[38] A. Babu, M.J. Hareesh, J.P. Martin, S. Cherian, Y. Sastri, System performance evaluation of para virtualization, container

virtualization, and full virtualization using xen, openvz, and xen server, in: Proc. 2014 Fourth International Conference on

Advances in Computing and Communications (ICACC), 2014.

[39] D. Seward, Applied Statistics in Business and Economics, McGraw-Hill Education, New York, 2009.

[40] L. Lebart, Correspondence analysis, in: Proc. Data Science, Classification, and Related Methods: Proceedings of the Fifth

Conference of the International Federation of Classification Societies (IFCS-96), 2013.

[41] M. Kateri, Contingency Table Analysis, Springer, New York, 2014.

[42] E. Gawrilow, S. Hampe, M. Joswig, The polymake XML file format, in: Proc. International Congress on Mathematical

Software, 2016.

[43] F.H. Tseng, L.D. Chou, H.P. Chiang, W.J. Yu, Implement efficient data integrity for cloud distributed file system using

merkle hash tree, Journal of Internet Technology (15)(2014) 307-316.

[44] C.A. Mertler, R.V. Reinhart, Advanced and Multivariate Statistical Methods: Practical Application and Interpretation,

Routledge, London, 2016.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

