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Abstract. Underpinning a significant amount of the mass quantities of data, virtualization 

technology is a key element of utility cloud and an area in which monitoring is a special 

challenge. The monitoring of large, complex systems requires high accuracy, low latency, and 

near-real-time fault detection and anomaly analysis along with optimization enactment and 

actions for corrections. For this paper, we investigated a fine-grained fault-tolerance mechanism 

with newly proposed algorithms for the analysis of large datasets that are based on the Hadoop 

MapReduce platform, and we implement a Naïve Bayes Classifier (NBC) algorithm with 

Hadoop MapReduce to achieve high-performance and efficient classification for the analysis 

procedure that occurs in virtualization and utility cloud. Evaluation results show that the 

accuracy of our proposed method using Hadoop MapReduce approaches 89.80% as the size of 

the data sets increases. We demonstrate that our model is scalable to large data sets of virtual 

machine (VM) component utilization metrics with increased accuracy, low latency, and machine 

learning ability. 
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1 Introduction 

The most important feature of the utility cloud is manage of utility computing not as a product but rather 

as a service which that shared software, information and resources are afforded to computers, tablets, 

phones, etc. It is a utility delivered via a network such as the Internet. Because of the utility cloud, big 

data and the prevalence of computing have become increasingly important as a result data have become 

more valuable than ever before [1]. It is crucial to the upkeep of such massive-scale systems is 

monitoring for the detection of faults, errors, and anomalies for optimization enactment and so that 

corrective measures can be taken. The monitoring of large-scale systems is a considerable challenge, and 

it must include low-latency movement of huge quantities of data and real-time analysis [2]. Additionally, 

monitoring is an indispensable aspect of any fault diagnosis system. The data received from monitoring 

are very valuable, providing opportunities for the detection of faults, misconfigurations, and other 

noteworthy events [2-3].  

However, the scale needed for the largest data set monitoring frameworks [5] (e.g., near-real-time 

monitoring and analysis of large data set collections) can be hundreds of nodes. Therefore, at this scale 

two major problems are detection and diagnosis of faults which must be rapid. Accelerated fault 

detection and diagnosis are even more important and are required in cloud computing services [6]: 

whereas a 20-second delay to recover from a fault or anomaly is a nuisance in a service provider, it can 

mean losing the chance to make a key decision in service recovery. More precisely, machine learning 

technologies such as Bayesian networks (BNs) [7] are used extensively for the classification and analysis 

                                                           
* Corresponding Author 



Improving Fault Diagnosis Performance Using Hadoop MapReduce for Efficient Classification and Analysis of Large Data Sets 

186 

of data sets because of their “learning” capabilities from the combination of data sets based on training 

and testing in order to make relatively highly accurate real-time decisions [8-9]. New applications and 

technologies have emerged in big data analysis (such as Hadoop MapReduce [10-11], Nagios [12], 

OpenStack [13], Aneka [14], and Weka software [15]). Weka is a machine learning workbench that 

supports many activities of machine learning practitioners. Recently, there has been much research in this 

area. Saswade et al. [16] developed an application to monitor health and performance of their critical 

applications deployed on Amazon Web Services (AWS). Ward and Barker [1] are proposed Varanus, a 

cloud-aware monitoring tool that provides robust fault-tolerant monitoring at scale. Aceto et al. [17] 

provided a survey of cloud monitoring; in this survey, they identified open issues, main challenges, and 

future directions in the field of cloud monitoring. Kumaret al. [18] developed a MapReduce framework 

for automatic pattern recognition based on fault diagnosis by solving a data imbalance problem in a 

cloud-based manufacturing (CBM) system. Smith et al. [19] proposed an availability model that 

combines a high-level fault tree model with a number of lower level Markov models of a blade server 

system (IBM BladeCenter). However, a comprehensive analysis indicates that these researchers who 

work in different research areas did not take into account other effects such as efficiency, accuracy, and 

risks in the monitoring and classification of large-scale data sets to accelerate diagnosis of faults and 

anomalies in cloud services.  

The contribution of this paper is a proposed method based on the Hadoop MapReduce platform and 

the accelerated fault diagnosis innovation (AFDI) model proposed and developed in our work [20] to 

evaluate the scalability of large-scale data set monitoring, classification, and analysis. The method 

proposed uses a technique that combines two hybrid models, a Naïve Bayes Classifier (NBC) [21] and 

Apache Mahout [22], to accomplish a fine-grained fault-tolerance workflow based on Hadoop 

MapReduce and generates the highest efficacy and cost-saving fault diagnosis through three simple steps: 

(I) Monitoring, (II) Data pre-processing, and (III) Diagnosis and analysis, as depicted in Fig. 1. The case 

study used in this work is the failure of a host server to start up. Results show that running the new model 

across Hadoop can save a considerable amount of time compared with running the model without a 

Hadoop cluster without sacrificing the classification accuracy and can optimize performance analytically. 

The results are promising as the accuracy of the proposed method is an improvement approaching 

89.80% as the size of the datasets increases. 

 

Fig. 1. Overview of a fine-grained fault-tolerance workflow based on Hadoop MapReduce 

This paper is organized as follows. In Section 2, we describe the tools used in an empirical evaluation 

of our methodology. Section 3 focuses on materials and methods. In Section 4, we explain the 

experimental setup and results and provide a discussion. Finally, our conclusions and ideas for future 

work are given in Section 5. 
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2 Tools Used in Empirical Evaluation of Methodology 

2.1 Hadoop MapReduce 

Virtualization has emerged as a key enabling technology for cloud infrastructures. It enables multiple 

virtual machines (VMs) to be consolidated on a single physical machine (PM) [23]. Unfortunately, the 

running performance of VMs on cloud infrastructure platforms is unpredictable. This is because of 

complications in fault diagnosis and repair actions due to the increased complexity and scalability of 

monitoring data from multiple VMs consolidated on a subset of host server machines [24]. Hadoop 

MapReduce is a parallel programming model for large-scale data processing that can be utilized to 

process massive amounts of data stored in Java’s Hadoop Distributed File System (HDFS) [3]. Hadoop is 

the open-source implementation of MapReduce. This paradigm is tightly coupled with the large data sets 

phenomenon. Fig. 2 illustrates the generic Hadoop MapReduce framework. 

 

Fig. 2. Hadoop MapReduce framework 

The Hadoop MapReduce framework consists of two components [25-26]. The first one is MapReduce 

and second one is HDFS. It adopts a master–slave architecture whereby a single master node runs the 

software daemons NameNode and JobTracker and multiple slave nodes run DataNode and TaskTracker. 

In a typical MapReduce job, the framework divides the input data into multiple splits, which are 

processed in parallel by map tasks. The output of each map task is stored on the corresponding 

TaskTracker’s local disk. This is followed by a shuffle step, in which the intermediate map output is 

copied across the network a sort step and finally the reduce step. Different modules of the Apache 

Foundation also support Hadoop. These include Hive for data warehousing, ZooKeeper for high-

performance coordination, and Mahout for scalable machine learning and data mining [27]. The online 

cluster by Google processes over 30 PB of data sets each day by running an average of over 100,000 

Hadoop MapReduce jobs [28]. Therefore, we selected Hadoop MapReduce to speed up the parameter 

learning step in NBC when the size of the input data sets increases significantly. 

2.2 Apache Mahout Machine Learning 

The Apache Mahout project implements certain machine learning algorithms in the area of classification, 

clustering, and filtering, which implemented on top of Hadoop [22]. Mahout is written in Java and 

provides scalable machine learning algorithms. It is the default choice for machine learning problems in 

which the data sets are too large for a single machine. Not all information fusion algorithms scale well in 

handling large data sets. Therefore, a program might run out of memory when data are continuously 

loaded into the memory by an algorithm. Because of this problem, it is important to research ways in 

which a machine learning algorithm can convert data into the Hadoop MapReduce program and ways to 
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create scalability in large data sets by optimization of the algorithm. Thus, this paper proposes a model 

that utilizes an adapted version of Hadoop MapReduce whereby the generation of a new algorithm using 

machine learning methods is enabled for resolving the problem of large data sets [29-30].  

2.3 NBC Availability Model 

The Naïve Bayes Classifier (NBC) is a simple and effective supervised machine learning algorithm that 

can be applied in the Hadoop MapReduce paradigm [31].The NBC model is a specific Bayesian network 

that is widely used for classification. Classification is one of the most important problems in machine 

learning and big data. Suppose there are n possible classes (predictions) X = {x1, x2, …, xn} for a domain 

of components A = {a1, a2, …, an}.Let Y = {y1, y2, …, yn} be the set of unique characteristics in which 

each must appear a minimum of one time in one of the components in A. This is illustrated in Fig. 3. The 

likelihood of a component’s being in a certain class is capable of being computed by the Bayes theorem 

[32-33], as defined in equation (1). 
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Fig. 3. Naïve Bayes model 

For classification, an NBC is commonly employed because of its capability of learning from training 

datasets to making decisions with a new testing dataset so that it can predict salient features and deliver 

relatively highly accurate real-time analysis [34]. We have proposed an algorithm, shown in Fig. 4, for 

training and classification with the NBC model. 
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                  class in the training datasets, 
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7.            End for  

8.                Choose the class with the highest value of estimate:  
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9. End.  

Fig. 4. Algorithm for training and classification with NBC model 

The posterior probability can be calculated by first constructing a frequency table for each attribute 

against the target, then transforming the frequency tables to likelihood tables, and finally using the Naïve 

Bayesian model to calculate the posterior probability for each class. The class with the highest posterior 

probability is the outcome of the prediction [35] an example is given in Table 1. This frequency will be 

the evaluation calculated by the proposed new model based on Hadoop MapReduce. 

Table 1. Example of a frequency and likelihood table  
 

Fault State Frequency 

 Table  Yes No 

Normal 400 100 

Minor 500 12 CPU  

Serious 0 0 

 

Fault State 
Likelihood Table 

Yes No
P(x) = P(prediction) 

N
o

rm
a
l 

400/1200 100/800 500/2000 

M
in

o
r 

500/1200 12/800 512/2000 CPU 

S
e
ri

o
u

s
 

0/1200 0/800 0/2000 

P(c) = P(Yes/No) 900/1200 112/800  

2.4 AFDI Model Description 

The AFDI model is a new hybrid model using the advantages of the Multi-Decision Diagram (MDD) and 

NBC models and a virtual sensor cloud, which provides a new approach and framework for fault 

management in cloud services. Addressing the full life cycle of problem determination based on the 

severity levels and anomalies for VM/physical server metrics. The AFDI model is aimed at reducing the 

time and the cost of a fault diagnosis through accelerated fault diagnosis [20]. AFDI monitors a wide 

range of metrics across the VM and the physical server as shown in Fig. 5. In most prior work, the 

metrics were monitored based on the severity levels of consequences according to the symptoms [36]. 
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Fig. 5. AFDI monitors a wide range of metrics across the VM and the Physical server 

3 Materials and Methods 

3.1 Algorithms for Improving Performance 

We are proposing a new model based on AFDI to evaluate whether NBC and Hadoop MapReduce can be 

scaled up to classify large data sets while achieving high performance for classification and analysis of 

metrics of large datasets. This section explains the new algorithms and the workflow of our proposed 

method. Illustrated in Fig. 6, the procedure includes four new modules to Hadoop along with the 

techniques for method evaluation (Apache Mahout): 

 

Fig. 6. Proposed framework for a fine-grained approach with Hadoop MapReduce 

Monitoring engine. This module monitors each VM and host server to collect the metrics of interest 

(numerical predictors or attributes).  

Pre-processing. All new testing data from the metrics collection monitor are normalized and binned into 
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intervals, and the raw time-series data are used to generate monitoring events (m-events); more detail is 

given in Section 3.2. 

Diagnosis engine. The model’s proposed methodology analyzes the time series entropy to locate patterns 

that signify faults or anomalies in the system being monitored.  

Decision process model. A look-back window of size 3 creates a dataset table according to the following 

decision values:  

�If (0 ≤ decision value < 2), then fault category is normal, and node fault state is normal; 

�If (2 ≤ decision value ≤ 3), then fault category is minor, and node fault state is normal; 

�If (decision value > 3), then fault category is serious, and node fault state is abnormal. 

More details are given in Section 3.2. 

In the work presented, the focus has been to enhance the AFDI model for differing sizes of data sets 

and to assess the Hadoop MapReduce program for its capability of learning from past data with the 

purpose of achieving high-performance fault diagnosis for the newly proposed model. As shown in Fig. 6, 

raw data are taken from the testing metric data collected by large monitoring engines (Xen-Hypervisor 

[37-38]) as shown in Table 2 and from a historical training dataset as shown in Table 3. 

Table 2. Sample dataset of testing metrics 

Time- monitoring CPU_ Utilization Network- overhead Memory- usage VM/Host state Fault state 

12:02:00 AM 30.00 30.00 30.93 ? ? 

12:07:00 AM 30.00 35.00 78.12 ? ? 

12:12:00 AM 90.00 70.00 92.43 ? ? 

12:17:00 AM 31.84 38.21 42.19 ? ? 

12:22:00 AM 27.28 32.74 36.15 ? ? 

⋮  ⋮  ⋮  ⋮  ⋮  ⋮  

Table 3. Sample historical training dataset 

Time_monitoring CPU_ Utilization Network_overhead Memory_usage VM/Host_state Fault state 

12:57:00 AM 57.22 68.66 99.05 Serious Yes 

1:02:00 AM 23.34 28.01 35.02 Normal No 

1:07:00 AM 58.96 70.75 20.12 Minor No 

1:12:00 AM 69.76 83.71 10.04 Serious Yes 

1:17:00 AM 31.51 37.84 41.74 Normal No 

      

3.2 Pre-processing of Raw Metrics 

The metrics within each look-back window are first pre-processed and transformed into a form that can 

be readily used by the proposed approach. With each monitoring engine sample, multiple types of metric 

can be collected simultaneously; e.g., in our experiment, as shown in Table 2, we collected CPU 

utilization, memory usage, and network overhead in each monitoring sample. Once the collection of 

sample data is complete, the data are preprocessed and transformed into a series of bin numbers for every 

metric type, using equations (4), (5), (6) to perform the data binning, with a time instance serve (t1, t2,…, 

ti) and m-events (M1, M2,…, Mi) where i is number of instances the results as shown in Table 4 and Table 

5.  
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In the above equations, μ is the population mean, σ is the population standard deviation, x is from the 

domain of measurement values (−∞ < x < ∞), and n is the number of components or services. A normal 

probability distribution is defined by the two parameters µ and σ. Besides µ and σ, the normal probability 

density function (PDF) f(x) depends on the constants e (approximately 2.718) and π (approximately 

3.142) [39]; because these attributes are numerical data, the numerical variables in Table 3 need to be 

transformed into their categorical counterparts (binning) before their frequency tables are constructed by 

equations (7) and (8) (e.g., look-back window size = 3, range = [0, 2], and number of bins = 6), as shown 

in Table 4 and Table 5. The values for binning-value and decision-value are determined by the following 

formulas: 

 IF ( 2) then 5, else TRUNC( / 0.4)x binning value binning value x> − = − =  (7) 

 MAX( )decision value binning value− = −  (8) 

where x is the normalization value for the attribute and 0.4 is a statistic suggested by the probability 

values. Then can begin the classification and analysis into a dataset probability (predictor) by use of the 

cumulative distribution function (CDF) [39] as shown in Table 6. For a continuous random variable, the 

CDF equation is 

 ( )
x a

P X x
b a

−
≤ =

−

 (9) 

where a is the lower limit and b is the upper limit 5, a ≤ x ≤ b. 

Table 4. Sample of data normalization used for binning  

 Time-instance  CPU Network Memory 

t1 0.60 0.67 0.46 

t2 0.60 0.78 1.16 

 

Window size (3) 

t3 1.80 1.56 1.38 

t4 1.05 1.15 0.97 

t5 0.90 0.99 0.83 

 

t6 1.06 0.86 1.20 

 �  �  �  �  

Table 5. Sample of dataset binning with decision values  

 M-events CPU Network Memory Decision value 
M1 1 1 1 1 

M2 1 1 2 2 
 

Window size (3) 
 M3 4 3 3 4 

M4 2 2 2 2 

M5 2 2 2 2 

 

M6 2 2 3 3 

 �  �  �  �  �  

Table 6. Sample of the classifier probability (predictor) dataset 

Process Instances CPU Network Memory VM/Host state Fault state 

Process.inst1 0.20 0.20 0.20 Normal ? 

Process.inst2 0.20 0.20 0.40 Minor ? 

Process.inst3 0.80 0.60 0.60 Serious ? 

Process.inst4 0.40 0.40 0.40 Minor ? 

Process.inst5 0.40 0.40 0.40 Minor ? 

Process.inst6 0.40 0.40 0.60 Minor ? 

�  �  �  �  �  �  
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3.3 Diagnosis and Classifier Engine 

3.3.1 Diagnosis Approach 

The proposed diagnosis approach is a general concept that represents a combination of analytical tools 

cooperating to form the analysis and diagnosis model shown in Fig. 4. Our raw data were taken from 

large engines monitoring a host server and collected by research communities. A monitoring engine 

collected and processed measurement data such as basic resource metrics for each VM and host server, as 

listed in Table 7. 

Table 7. System and application metrics monitored in new model 

System metric Description Measurement level 

CPU utilization % CPU time in user-space/kernel-space VM, Host 

Memory utilization % of memory used VM, Host 

Network bandwidth % of network bandwidth VM, Host 

I/O storage % of disk throughput Host 

 

The diagnosis engine contains the hybrid intelligent models MDD and NBC. The MDD is used to 

quickly obtain the overall fault severity level and if necessary generate an alarm in a virtual sensor cloud. 

The MDD processes and analyzes m-events and executes its diagnosis by pre-processing and the use of 

I/O pairs to calculate the parameters estimated by NBC in Hadoop MapReduce for large data sets. The 

NBC measures are given as a 2 by2 contingency table [40-41], shown in Table 8. 

Table 8. Contingency table of measures for analysis 

Observation 
Class 

Yes No 
Fault True positive (TP) False positive (FP) 

P
re

d
ic

ti
o
n
 

Not fault False negative (FN) True negative (TN) 

 

We utilized three statistical measures, recall, precision, and accuracy, to evaluate the effectiveness of 

fault diagnosis using NBC in Hadoop MapReduce for large-data-set problems. More details and results 

are given in Section 4. The data parser first pre-processes the metrics for all components recorded in a 

common XML file [42]. After pre-processing, each file contains two parts: the attributes of the 

components and the data, as shown in Fig. 7 (a) to Fig. 7(c). Each observation of metrics for components 

is recorded as a single line of data, where the first three columns represent the metrics of attribute 

components and the last two columns represent the component state class(normal, minor and serious) and 

the system fault state class(yes and no) as labeled. Each column is separated by a comma. This is useful 

because by default Hadoop MapReduce splits the input files byline and passes each line to a mapper 

function to generate informational data used for the frequency table, as shown in Fig. 7(d). All pre-

processed component metrics are stored in the master node as a repository while waiting for further 

sampling. Therefore, the proposed approach maintains a buffer size of 3 (a look-back window) of the last 

n samples’ observed metrics. The metrics observed in the look-back window each time instance serve as 

inputs to be pre-processed. There are multiple reasons that use of a look-back window can further 

increase detection performance: 

‧ At exascale, it is impractical to maintain all historical data. 

‧ Shifts in work patterns may render old history data useless or even misleading. 

‧ The look-back window can be implemented in high-speed RAM. 
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(a) Testing data set (unknown) (b) Training data set (known) 

 

 

 

(c) Testing data set after classification and 

training (known) 

(d) Informational data used for the frequency 

table 

Fig. 7. Dataset modeling (XML format) 

3.3.2 Classifier Approach 

The classification of component states and system states is the key step in the workflow. Fig. 6 shows the 

job sequence of this step. When the training data and testing data are ready in HDFS, AFDI starts the 

training job to build a model. The algorithm combines the test data with the model and generates an 

intermediate table. Finally, the algorithm classifies the job and simultaneously computes the probability 

of each component’s being in each of the three classes and then makes a decision about the final system 

state. Statistics regarding the contingency table and intermediate values are recorded. In our experiments, 

we used two data sets: (1) a new testing dataset (unknown) and (2) a training dataset (known) as shown 

in Table 2 and Table 3, which convert these data to XML format to input to the algorithms of the 

proposed method. The formation of XML files, shown in Fig. 7(a) to Fig. 7(b) and Fig. 7(d), is our 

simple dataset framework for a state-based probability model that predicts component utilization. In Fig. 

7, the measurement level varies from 0 to 100%. The component utilization uses CPU ∈  {0-25%, 26%-

75%, 76%-100%} as thresholds. We observed the percentage component utilization at discrete times 

1
, ,

n
t t… . 

The new dataset holds the model classifier results given by combining the testing and training datasets, 

as shown in Fig. 7(c). We first define our task to classify the three state components using an NBC model. 

The system cannot work if one component is faulty. We use 0, 1 and 2 to represent the system and 

component states, where 0 denotes good status (normal working conditions), 1 denotes a minor fault and 

2 denotes a serious fault. For example, CPU, memory and network represent the three basic components 

and host-server-state represents the system state as shown in Fig. 8. Hence, we have only three classes 

(normal, minor and serious) for the component state measurements and only two classes (yes and no) for 
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the system fault state. To simplify the problem, we choose the same number of normal, minor, and 

serious measures for the components. The classification problem is then converted to a counting problem 

on the training and testing datasets. 

 

Fig. 8. Model predicting component utilization for host server 

We divided the problem solving into two algorithms: 

(1) An algorithm for the training and filtering, shown in Fig. 9. In this algorithm, all training instances 

are fed into the job to produce a model for all instant attributes, and the data set is filtered with their 

frequencies of normal, minor, and serious component states. 
 

Input: value�Training datasets. //XML format  
Output: Result. // reduce result save in HDFS 
1- Begin 
2- Map(Object key, Text value, Context context) 

3-   component_name �””; 

4-     Row[]� value.toString().split(","); 
5-       if(row.length>= 5) 

6-        state_component�row[3];  
7-         for col=0 to col<=3 do  // filtering datasets 

8-           component_name � "State_component" 
9-            elseif (row[col]>=0&&row[col] <=25) state_component="Normal"; 
10-              elseif (row[col]>=26&&row[col] <=74) state_component="Minor"; 
11-              elseif (row[col]>=75&&row[col] <=100) state_component="Serious"; 
12-               if (col==0) component_name="CPU";  
13-               elseif (col==1) component_name="Memory"; 
14-               elseif (col==2) component_name=" Network” 
15-                word.set(component_name+"-"+state_component+"-"+row[4]); 
16-                context.write(word, one); 
17-           End for 
18-      End if 
19-   End Map 
20- Reduce(Text key, Iterable<IntWritable>values, Context context)  

21-       Sum�0; 
22-            for (Int Writableval:values) do 
23-               sum += val.get(); 
24-            End for 
25-            result.set(sum); 
26-              context.write(key, result); 
27- End reduce 

28- Result�result; 
29- End 

Fig. 9. Algorithm for training and filtering data sets 

(2) Combining the test and training data set algorithm, as shown in Fig. 10. In this algorithm, the 

training and the test data set measures are combined to give an intermediate table with all information 

necessary for the final classification. This algorithm classifies all instances to only two final fault state 

classes (yes, no) and writes the final resulting classification to Hadoop (HDFS). 
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Input:  Training and testing datasets //XML format 
Output: A new-dataset-result.XML, F.Measure, Precision and Recall.  
1- Begin 
2-   Classify(Dataset-train, Dataset-test) //Datasets with XML format 

3-      BufferedReader breader�null; 

4-        Breader� new BufferedReader(new FileReader(Dataset-train)); 

5-          Instances train�new Instances(breader); 
6-             train.setClassIndex(train.numAttributes()-1); 

7-                Breader�new BufferedReader(newFileReader(Dataset-test)); 

8-             Instances test�new Instances (breader); 
9-                     test.setClassIndex(train.numAttributes()-1); 
10-                  breader.close(); 

11-                   J48 tree�new J48(); 
12-                           tree.buildClassifier(train); //build classifier 

13-                   Instances labeled� new Instances(test);//label instances 
14-                   for i=0 to i<test.numInstances()do 

15-                      clsLabel�tree.classifyInstance(test.instance(i)); 
16-                      labeled.instance(i).setClassValue(clsLabel); 
17-                   End for 

18-                        BufferedWriter writer�new BufferedWriter(new  
                       FileWri ter(“Anew-dataset-result.XML”)); 
19-                        writer.write(labeled.toString()); 
20-                  writer.close(); 
21-                       Call-Produce StartNBC(“A new-dataset-result.XML”); 
22-     End //classify 
23-       StartNBC (Dataset) 

24-        BufferedReader breader �null; 

25-   breader �new BufferedReader(new FileReader(Dataset)); 

26-      Instances train�new Instances (breader); 
27-              train.setClassIndex(train.numAttributes()-1); 
28-           breader.close(); 

29-            NaiveBayesnB�new NaiveBayes(); 
30-                    nB.buildClassifier(train); 

31-                 Evaluation eval�new Evaluation(train); 
32-                        eval.crossValidateModel(nB, train, 20, new 

Random(1)); 

33-                          The F.Measure� eval.fMeasure(1); 

34-                            The Precision� eval.precision(1); 

35-                               The Recall� eval.recall(1) 
36- End 

Fig. 10. Algorithm for combining the test and training data sets 

After these two algorithms are finished, the results collector retrieves the model classification results 

intermediate values table and test data statistics from HDFS’s Hadoop storage [43]. By the end of the 

classification analysis algorithms. All instances have been classified into a yes/no final fault state with 

normal, minor, and serious state classes as shown in Table 9 and Fig. 11. 

Table 9. Sample of the dataset classifier probability results 

Process. Instance CPU Network Memory VMs/Host state Fault state 

Process.inst1 0.25 0.25 0.25 Normal No 

Process.inst2 0.25 0.25 0.50 Normal No 

Process.inst3 1.00 0.75 0.75 Serious Yes 

Process.inst4 0.50 0.50 0.50 Minor No 

Process.inst5 0.50 0.50 0.50 Minor No 

Process.inst6 0.50 0.50 0.50 Minor No 

�  �  �  �  �  �  
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(a) Testing data set (known) after diagnosis and analysis (b) Hadoop’s HDFS result 

 

(c) Pie chart showing the relative frequencies of the HDFS final dataset results 

Fig. 11. Implementation of approach with new algorithms 

4 Experiment Setup 

The experiment setup used two VMs (VM1 and VM2) on a Xen-Hypervisor platform hosted on one Dell 

blade server with dual-core 3.9 GHz CPUs and 4 GB RAM, as shown in Fig. 12. 

 

Fig. 12. Architecture of the experiment system setup 
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We implemented our approach at both the VM level and the host server level. The host server is 

considered the direct parent of the VMs. Thus, the local time series is calculated first for the VMs 

followed by their aggregation for the host server’s global time series. The first implementation uses Xen-

Hypervisor and the Ganglia metrics method to record and identify global resource provisioning 

anomalies. Forty anomaly samples were injected into the testbed leading to global resource consumption 

by the anomalies/faults, which do not exclude the CPU utilization of the running host server. The VM 

metrics and the host metrics were collected using the Xen-Hypervisor and analyzed in a fault detector 

and classifier. To test the scalability and performance of the new model, the dataset size was varied from 

1,000,000 to more than 32,000,000 instances of recorded metrics in each class.  

4.1 Results 

The resulting statistics include the classification accuracy by algorithm as shown in Fig. 13 and Fig. 14 

demonstrating high accuracy for the classification of component states (normal, minor, and serious). The 

accuracy and throughput of the system without evaluation by Hadoop MapReduce code are shown in Fig. 

15. 

 

Fig. 13. Statistical analysis of the component state classification 

 

Fig. 14. Result statistics include the classification accuracy by algorithms 
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Fig. 15. Throughput of system with respect to dataset size without Hadoop MapReduce 

4.2 Discussion 

In a previous study, we executed our AFDI model and achieved an average accuracy of 92.1% with small 

data sets. That model was able to classify different subsets of the host server monitoring dataset with 

comparable accuracy. We used the four statistical measures given by equations (10), (11), (12), and (13) 

to evaluate the effectiveness of anomaly/fault detection [44]. 

 

TP
Recall

TP FN
=

+

 (10) 

 

TP
Precision

TP FP
=

+

 (11) 

 

TP TN
Accuracy

Precision Recall

+
=

+

 (12) 

 

( )
( ) 1

( )

Number of false alarms
False alarm rate FAR Precision

Total number of alarms
= = −

 (13) 

where 

TP (true positives) is the number of positive instances correctly predicted, 

FN (false negatives) is the number of positive instances wrongly predicted as negative, 

FP (false positives) is the number of negative instances wrongly predicted as positive, and 

TN (true negatives) is the number of negative instances correctly predicted. 

Our experimental results reveal several interesting findings for the evaluation of NBC in the new 

model with machine learning (Apache Mahout), a performance summary and results of different 

implementations as shown in Fig. 16. We achieved a high accuracy of up to 89.80% and 5-20% false 

alarm rate. The use of Hadoop MapReduce can be optimized to speed up the parameter learning stage in 

NBC for a wide range of input dataset sizes. 

 

Fig. 16. Throughput of system with performance summary and results of different implementations 
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The number of instances the system can process and analyze in one second increased from 0.54 GB to 

3 GB. A performance summary of various results is presented in Table 10. 

Table 10. Summary comparison of performance results 

Model Accuracy (%) Time(seconds) ×103 Dataset size(GB) 
AFDI 84.86 2.46 3 

Weka software 85.88 1.80 3 

Proposed method 89.80 0.47 3 

 

Finally, our new approach methodology can scale up to more than 32 million instances of recorded 

metrics in each class from a monitoring engine with high accuracy and time cost savings compared with 

other models proposed. 

5 Conclusion 

In this paper, a new diagnosis approach that represents a combination of analytical tools to realize system 

analysis and diagnosis has been proposed. We presented a fine-grained fault-tolerance mechanism for 

algorithms for the analysis of large datasets based on the Hadoop MapReduce platform, and generates the 

highest efficacy and cost-saving fault diagnosis through three simple steps: (I) monitoring, (II) data pre-

processing, and (III) diagnosis and analysis. The proposed model demonstrates that NBC is able to scale 

up to the classification of metrics for large data sets collected from monitoring VM/host servers and 

analyzed in near-real time with increased accuracy, low latency, and machine learning ability. The 

additional modules inserted to evaluate the newly proposed algorithms showed good classification and an 

accuracy of up to 89.80% with 5%-20% false alarm rate. We believe that our work is just the beginning 

for the use of machine learning technologies in the classification and analysis of large data sets. Future 

work will examine other intelligent algorithms with Apache Spark for a fast general engine for the 

processing of large data sets and the automation of fault repair and recovery actions. 
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