
Journal of Computers Vol. 29 No. 4, 2018, pp. 217-229

doi:10.3966/199115992018082904017

217

Task Scheduling Model and Multi-objective Optimization

Genetic Algorithm Considering Quality of Service

Shanshan Hao, Yuping Wang*, Hejun Xuan

School of Computer Science and Technology, Xidian University, Xi’an, 710071, Shaanxi, China

sshanhao@163.com, ywang@xidian.edu.cn, xuanhejun0896@126.com

Received 11 April 2017; Revised 13 August 2017; Accepted 6 October 2017

Abstract. Divisible task scheduling is a famous NP-hard problem. Most existing works aim at

minimizing the completion time, i.e., minimizing the makespan as their single target. However,

in practice, there are usually more than one objectives needed to be optimized. In this paper, we

introduce the quality of service, and use it as another optimization objective except for

optimizing the makespan. As a result, we set up a new optimization model: multi-objective

optimization model, which is more practical and more reasonable. To resolve this multi-

objective optimization model efficiently, a novel genetic algorithm based on MOEA/D is

proposed, in which two new crossover operators and a specific-designed mutation operator are

put forward. To demonstrate the effectiveness and efficiency of the proposed model and

algorithm, a series of experiments are conducted, and the experimental results indicate the

effectiveness and efficiency of the proposed model and algorithms.

Keywords: bi-objectives, divisible task scheduling, genetic algorithm, quality of service

1 Introduction

With the advent of the era of big data, how to effectively use the parallel and distributed system for large

data processing has gradually become a hot issue of scientific research. Among them, the task scheduling

in distributed system [1-2] is a typical method to realize the efficient processing of large data. Divisible

load is a relatively special task, it can be divided into any size of subtasks, and the subtasks are

independent respectively. In different network topologies, the model and algorithm based on the theory

of divisible task scheduling have been studied extensively, including bus topology [7-8, 21], tree

topology [4, 22], b-Ary Tree topology [23], and so on. How to establish a reasonable and efficient task

scheduling model for large data processing system and design an efficient task allocation scheme is a

difficult problem in the research field of task scheduling. An increasing number of literatures have

studied the optimal solution of the scheduling scheme under various network topologies. In paper [3-5],

the optimal solution of task completion time is given for linear network, tree type network and star

network topology respectively. Without taking into account the computational start-up overhead of the

processor and the start-up of the network communication, the study of the literature [6] proves that the

optimal scheduling sequence is only related to the communication rate between the processors. The paper

[7-8] have proved that to have the shortest completion time in the bus network with constant startup

overhead, the load should be scheduled by the sequence of the calculation rate of decline. For an arbitrary

computing start-up overhead and network communication startup overhead in distributed heterogeneous

environment, the study of the literature [9] shows that if the workload is large enough in decreasing order

according to the nodes of the communication rate, the schedule makes the task of the shortest completion

time. In order to achieve the shortest time, a high efficient genetic algorithm is designed in the case of

considering the release time of the processor, which is based on the [10]. In the paper [11, 15, 24], the

research on the multi-source grid environment, the cloud computing platform, the wireless sensor

* Corresponding Author

Task Scheduling Model and Multi-objective Optimization Genetic Algorithm Considering Quality of Service

218

network and the real-time environment, the task scheduling model and the effective distribution scheme

are studied.

Almost all of the existing research is to find an optimal scheduling scheme, which will be allocated to

the processor in accordance with a certain strategy to achieve the shortest time of dealing with the task.

But with the improvement of the processor performance, the pursuit of the user’s goal is not only to

minimize task completion time, but to improve the quality of service during an acceptable period.

In [17], to minimize makespan and cost, a multi-objective work-flow grid scheduling algorithm using

ε-fuzzy dominance sort based on discrete particle swarm optimization is proposed. For the sake of

minimizing the completion time and utilizing the resources effectively, the objectives are formulated

independently, and a novel Evolutionary Multi-Objective (EMO) algorithm by using the pareto dominate

is proposed. To minimize makespan and failure probability, [19] developed a matching and scheduling

algorithm. There are literature focus on the multi-objective load scheduling [19-20], however, neither of

them focuses on the divisible load.

In summary, most of the existing divisible task scheduling models take the minimum makespan as

their optimization objective, and few works focus on the system consumption and fault tolerant. However,

divisible task scheduling mainly works in distributed network system, today’s network service providers

(NSP) are offering different levels of service for business according to different requests, so the concept

of quality of service is necessary to be introduced to make the problem more practical. As a result, we set

up a multi-objective optimization model which is totally different from the existing one-objective models.

Because multi-objective objective model is totally different from one-objective models, it is impossible

to make the fair comparison between these two kinds of models.

In general, the mainly contributions of this paper are as follows:

(1) Different from the previous works, not only makespan but also quality of service is introduced in

the divisible task scheduling problem.

(2) To cope with the divisible task scheduling problem in more practical way, we establish a bi-

objective optimization model not only by minimizing the makespan, but also by maximizing the quality

of service.

(3) A well-designed genetic algorithm based on MOEA/D, which includes two populations, two new

crossover operators and a specific-designed mutation operator, is designed to solve the optimization

model.

The rest of the paper is organized as follows: Section 2 introduces related concepts about multi-

objective optimization. Section 3 describes the problem and establishes a bi-objective optimization model

with the makespan to be minimized and the quality of service to be maximized. The presented genetic

operators are described in Section 4. The main framework of genetic algorithm and MOEA/D algorithm

are given in Section 5. To evaluate the proposed algorithm, simulation experiments are conducted in

Section 6, and the experimental results are analyzed. Conclusions with a summary are drawn in Section 7.

2 Related Concepts of Multi-objective Optimization

Multi-objective optimization problem (MOP) has been widely used in engineer application and scientific

research, and it can be described as follows:

() () () ()()
1 2

. .

min , , ,
T

m
s t

y F x f x f x f x

x

= =

∈Ω

⎧⎪
⎨
⎪⎩

�

, (1)

Where Ω is the feasible region of the multi-objective optimization problem. ()()1, 2,
i

f x i m= � are the

objective functions. For most cases, the objectives are conflicting to each other in a multi-objective

problem. That is to say, no solution in feasible region can minimize all the objective functions

simultaneously. So, multi-objective optimization algorithms are used to find a set of Pareto optimal

solutions in the feasible region for a multi-objective optimization problem.

Definition 1 (Pareto domination). Considering the minimization problem of each objective, for the

, ,
A B f B
x x x x∈ is dominated by the solution

A
x (denoted as

A B
x x�) if and only if formula (2) is

satisfied.

Journal of Computers Vol. 29, No. 4, 2018

219

() () () ()1, 2, , 1, 2, , ,
i A i B j A j B

i m f x f x j m f x f x∀ = ≤ ∧ ∃ = <� �

(2)

Where fx is the feasible region for the multi-objective optimization problem.

Definition 2 (Pareto optimal solution). The solution x∗ is a Pareto optimal solution if and only if

formula (3) is satisfied.

 :
f

x x x x
∗

¬∃ ∈ � . (3)

Definition 3 (Pareto optimal solution set). Pareto optimal solution set which includes all the Pareto

optimal solution is a set. It can be defined as follows:

 { }:
f

P x x x x x
∗ ∗ ∗

¬∃ ∈� � . (4)

Definition 4 (Pareto front). Pareto front is a surface which consists of all the objective function vectors

that obtained by all the solutions in Pareto optimal solution set. It can be defined as follows:

 () () () ()(){ }* *

1 2
, , ,

T

m
PF F x f x f x f x x P

∗ ∗ ∗ ∗ ∗

= ∈� � . (5)

3 Task Scheduling Optimization Model Considering Quality of Service and Makespan

3.1 System Model

In this paper, the platform used is a heterogeneous distributed system. All the slave processors and the

master processor are connected in a star topology. The system is consist of a head node (master

processor), denoted as
0
P , and the slave processors are denote by

1 2
{ , , , }

N
P P P… , where N is the

number of slave processors.
0
P

connects with slave processors by communication links

1 2
{ , , , }

N
l l l… ,

where
i
l is the communication link between processor

0
P and

i
P . Each processor (1,2, ,)

i
P i N= … is

associated with a speed index
i

ω , which is the time taken to process a unit workload on processor
i
P .

i
l

is associated with a speed or bandwidth index
i

g , and
i

g is the time taken to communicating a unit

workload over the link. The system model assumes a typical distributed environment in which the head

node does not participate in computation. The role of the master processor is to accept incoming loads,

execute the scheduling algorithm, divide the workload and distribute load chunks to the salve processor

nodes. Finally, we assume that each computing node has adequate data storage to store and compute any

amount of tasks. The master processor divides the incoming load into n ()n N≤ load fractions, denoted

as
1 2
, ,

n

α α α� , and distributes the fractions among the n-processors in a special sequence. Therefore, we

have

1

n

i total

i

Wα

==

=∑ , (6)

Where
total

W

is the entire workload. When the slave processors receive the load fractions, the slave

processors start computing their respective load fractions at once. For the sake of minimizing the

makespan and maximizing the quality of service, the problem is then to determine the optimal sizes of

these load fractions that are distributed to the slave processors. In addition, the special sequence of the

load fractions distributed to each slave processor should be determined too.

3.2 Proposed Model

In this section, a multi-objective optimization model will be given. The master processor divides the

incoming load into n ()n N≤ load fractions, denoted as
1 2
, ,

n

α α α� , and distributes the fractions among

the n-processors in a special sequence. When the slave processors receive the load fractions, the slave

Task Scheduling Model and Multi-objective Optimization Genetic Algorithm Considering Quality of Service

220

processors start computing their respective load fractions at once. The time diagram of divisible load

scheduling on heterogeneous distributed systems is shown in Fig. 1.

1
o

0
P

n
P

1i
P

+

i
P

1
P

� �

�

�

�
�

i
o

n
o

1i
o

+

i
s

1
s

1i
s
+

n
s

n n
g α

1 1
g α

i i
gα

1 1i i
g α

+ +

()
n n n
f q α

()
i i i
f q α

()1 1 1
f q α

()
1 1 1i i i

f q α
+ + +

t

Fig. 1. Task execution time

By [2], only when all processors complete the calculation at the same time, the completion time of the

task is the shortest. So we have
i j
T T= ()i j≠ , where

i
T is the completion time of the processor

()1,2, ,
i
P i n= � dealing with tasks. As

1i i
T T

+
= , we can get:

1 1 1 1 1

() ()
i i i i i i i i i i i
s f q g o s f qα α α

+ + + + +
+ = + + +

, (7)

where 1,2, , 1i n= −� , let

2

1 1

2
ni

kk

i

i

η
μ

=

=⎧⎪
= ⎨

≥⎪⎩∏
 ()

()
1 1 2

2 1

0 1

2

3

i

ii

k jk j k

i

w g w i

v i

γ

μ
= = +

⎧
=⎪

⎪
= − =⎨
⎪

≥⎪
⎩∑ ∏

, (8)

Where ()
1 1

,
i i i i

w g wµ
− −

= − ()() ()
1

 2,3, ,, .
i i i i i
v s o s w i n

−

= − + = � Then the amount of tasks
i

α

assigned to the processor

i
P and

i
α can be expressed as formula (9) and the completion time of the task

can be expressed in the Eq.(10).

1

, 2,3, ,
i i i

i nα ηα γ= + = � , (9)

 () ()() ()1 1 1 1 1 1 1 1 1 1 2 2
1

n n

total k kk k
T T o s f q o s f q Wα γ η

= =

= = + + = + + − +∑ ∑ . (10)

Among the ()n n m≤ processors that execute the tasks, if the processor ()1,2, ,
i
P i n= �

is executing

the task at the quality of service level of ()i lower i upperq q q q≤ ≤ , where
lower
q and

upper
q are the minimum

and maximum of the quality of service, respectively. the quality of service workload is the minimum of

all the quality of service level.

 { }
1

min
i

i n

Q q
≤ ≤

= . (11)

The main objective of this study is to maximize the quality of service while minimizing the completion

time of the task. From the formula (9) and the formula (10), we can know that the quality of service is

mainly determined by the quality of service level of the processor and the completion time of the task

depends on the order in which the task is assigned to the processor. Therefore, the optimization model of

maximizing the quality of service and minimizing the makespan in divisible task scheduling is

established as the formula (12).

Journal of Computers Vol. 29, No. 4, 2018

221

{ }{ }
{ }{ }

()

() () ()
()

()

()
()

1

1

1 1 1 1 1

1 1 1

1

1

1 1 2

1 1

max max min

min min max

. .

1 ()

2 1

3 , 2,3, , ; ;

1 1
(4)

2

0 1

(5) 2

3

6 0; 2,3, ,

i
i n

i
i n

n n

total k kk k

i i i

ni

kk

i

ii

k jk j k

i

Q q

T T

s t

T o s f q

W

i n n m

i

i

i

w g w i

v i

i

α

α γ η

α ηα γ

η
μ

γ

μ

α

≤ ≤

≤ ≤

= =

=

= = +

=

=

= + +

= − +

= + = ≤

=⎧⎪
= ⎨

≥⎪⎩

⎧
=⎪

⎪
= − =⎨
⎪

≥⎪
⎩

> =

∑ ∑

∏

∑ ∏

�

�

()

;

7 1,2, , ;lower i upper

n

q q q i n

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

≤ ≤ = ⋅⋅ ⋅⎪⎩ ，

 (12)

4 Multi-objective Optimization Genetic Algorithm

Genetic algorithm has been widely used in the practical application of engineering technology, especially

to solve the problem of NP combinatorial optimization, which shows its excellent performance [16].

Therefore, this paper designs a new multi-objective global optimization genetic algorithm to solve the

task scheduling model which can minimize the makespan and maximize the quality of service.

4.1 Encoding and Decoding

Encoding. The purpose of encoding is to map the solution from the problem domain to a chromosome

representation. A good encoding scheme is very significant for describing the problem and solving the

problem, which can limit the search space so that the solution converges quickly to the global optimum.

In this paper, both the transmission sequence and quality of service are needed to be encoded. The two

are using real coding method.

For task assignment order, the sequential encoding method is used. Let ()
1 2
, , ,

n
C c c c= �

represents a

possible allocation sequence as the relative order of the processor that currently haven’t been allocated. A

simple example will used to explain the method. Assuming that there are 4 processors, their codes are 1,

2, 3, 4 respectively. First, assuming that the processor numbered 3 is selected, and its relative position is

3, so it is encoded as 3. Then the remaining processors are [1, 2, 4], and then selecting the processor

numbered 2, its relative position is 2 now, and so it is encoded as 2. At this point, the processors [1, 4]

are left, and if the processor 4 is selected, its relative position is 2, and it is coded as 2. In the end, only

the processor numbered 1 is left, and it is encoded as 1. The final coding sequence is [3, 2, 2, 1].

For the corresponding quality of service of each processor, the scope of the service level in this paper

is from 1 to 9, so it generates a float number between 1 and 9 as the corresponding quality of service for

each processor.

Decoding. Still take the four processors as an example. First, producing an ordered sequence

[]1, 2, 3, 4L = , whose length is same as the number of processors. While decoding the ith code of

()
1 2
, , ,

n
C c c c= � , the first is to find the

i
c position in the sequence L of the elements. The decoding

process will be explained by a simple example. Let the encoding sequence assume to be []3, 2, 2, 1C = .

As
1

3c = which is in the third position in L , so the decoded value is 3, then deleting the number in the

Task Scheduling Model and Multi-objective Optimization Genetic Algorithm Considering Quality of Service

222

third positions, now []1, 2, 4L = . As
2

2c = , and the number []1, 2, 4L = of the second positions is 2, so

the decoded value is 2, deleting 2 in L , then the []1, 4L = . According to this method, when L is empty,

the decoding sequence []3, 2, 4, 1S = can be obtained.

As quality of service is directly encoded as a possible service level, the quality of service is not needed

to be decoded.

4.2 Crossover Operator

Crossover operator is an important operator in the genetic algorithm. Offspring in obtaining parental

good genes can produce better individuals. In this paper, two crossover operators have been designed to

improve the search ability of the algorithm by using the genetic algorithm to solve the model.

Crossover operator 1. First, the two parents that used to participate in the crossing process should be

chosen. After the step, a (0,1) sequence should be generated randomly which has the same length with

the encoded parents. Then the crossover operator works bit by bit.

If and only if the bit is 1, then the corresponding gene can participate in the crossover process. If cross

operation can be performed, the bits in parental individual one and parental individual two can be

respectively seen as the axis of coordinates x and coordinates y , which together determine the position

of a point in a two-dimensional Cartesian coordinate system. The next is to randomly generate an integer

θ between 0 and 360 as the rotation angle, (),x y will rotate θ around the origin (0,0) of the degree and

get the new coordinates (),x y′ ′ as shown in Fig. 2. As the code should be positive, absolute values must

be taken for the coordinates (),x y′ ′ , and (),x y′′ ′′ is obtained. The third is to replace the original x by ''x ,

the original y by y′′ .

It should be noted that there may be some genes that no longer meet the coding rule, in this case

modification is needed. The correction method is to randomly generate a feasible data within the range to

replace the inappropriate one.

When talking about quality of service, as the quality of service is encoded as the real number between

lower
q and

upper
q , it is only needed to exchange the corresponding genes in the two parents, if the bit is 1.

Crossover operator 2. Two parents’ corresponding genes can be seen as the axis of coordinates x and

coordinates y , which together determine the coordinates of a point. And the point can be seen as the

center of a circle whose radius is 1. Then two points are selected randomly. Now they can be seen as a

coordinates that is composed of the corresponding gene of the two new offspring. Since the new

offspring are located in the vicinity of the parents, it can meet the requirements of the local correction.

The new offspring generated by this crossover operator can satisfy the constraint conditions.

α

β
(,)x y

(', ')x y

.

.

A

B

Fig. 2. Crossover operator 1 Fig. 3. Crossover operator 2

4.3 Mutation Operator

Mutation operator can produce new individuals, and the purpose is to prevent premature convergence and

fall into local optimum. An excellent mutation operator can help to obtain the global optimal solution.

The process of mutation operator is as follows: first, randomly selecting an individual as the parent,

and then generating a number within the acceptable range as the gene to take part in mutation. Then the

process for mutating scheduling sequence ends.

Journal of Computers Vol. 29, No. 4, 2018

223

For the quality of service, as the goal is to make the quality of service as large as possible, the first step

is to get the average value of all individuals’ quality of service in the current population. For a certain

individual, if its quality of service is less than the average, then the value should be added one. If the

value is greater than the average, then mutation operator degenerates: a random number between the

lowest quality of service and the highest quality of service is chosen to replace the current quality of

service. If the current quality of service is more than the upper limit, the quality of service is to take the

maximum value.

4.4 Selection Operator

The selection operator defines the generation strategy of the next generation. An appropriate algorithm

can select excellent individuals into the next generation while eliminating the poor individuals, and

ensure that the entire population is iterated to the optimal solution. The elitist retention strategy and

roulette strategy are adopted in this paper.

5 An Effective Genetic Algorithm Based on MOEA/D

In this section, the framework of genetic algorithm and the framework of multi-objective optimization

algorithm are given. The framework of genetic algorithm is shown in algorithm 1, and the framework of

MOEA/D algorithm is shown in algorithm 2.

Algorithm 1: A genetic algorithm for task scheduling model

Step 1: (Initializing) Randomly generating initial population (0)P according to coding rules.

Evolutionary algebra 0t = .

Step 2: (Crossover) By the probability of
c
p , selecting two parents for crossover operation from ()P t ,

the offspring of the individual set is defined as
1

O .

Step 3: (Mutation) By the probability of
m
p , selecting a parent for mutation operation from ()P t , the

offspring of the individual set is defined as
2

O .

Step 4: (Selection) Selecting the individuals in the external file EP directly to the next generation of

population to speed up the convergence rate if EP is no more than the size of the population,

Otherwise, the algorithm of roulette wheel is used to select E individual from EP. For the rest of

the (N-E) individuals, the same operation is used to select enough individual to next generation

from the set of
1 2

()p t O O∪ ∪ .

Step 5: (Stopping Criteria) If the termination condition is satisfied, the algorithm terminates; otherwise,

go to step 2.

Algorithm 2: Multi-objective global optimization genetic algorithm

Step 1: (Initializing) Initializing the external file, the weight vector, determining the distance between

the individual and its neighbors, initializing the positive point of each target and choosing the

decomposition algorithm of multi-objective optimization.

Step 2: (Updating) According to the nearest neighbor of each individual, selecting two parent

individuals who participate in the evolutionary computation for crossover and mutation

operation. Updating the positive value point, each individual’s nearest neighbor and external

file.

Step 3: (Stopping Criteria) If the termination criteria is satisfied, the algorithm terminates; otherwise,

go to step 2.

Task Scheduling Model and Multi-objective Optimization Genetic Algorithm Considering Quality of Service

224

6 Experiment Results and Analysis

6.1 Experiment Parameters

The parameter data of the processor in the distributed environment is decided by the data provided in the

literature [9], as shown in table 1. In the genetic algorithm, the following parameters are used: the

number of neighbors of each individual is 10Neighbor = , population size is 100N = , crossover

probability is 0.6
c
p = , mutation probability is 0.1

m
p = , the value of elite reserves is 5E = and of

iterations is
max

1000t = . According to the linear relationship described in literature [14] and quality of

service, ` Qosω ω= × are used to measure the real execution rate when the quality of service are

considered, where Qos means the quality of service. In the experiments,
lower
q and

upper
q are selected as 1

and 9, respectively.

Table 1. Parameters of the processors in heterogeneous system

P o s g ω

P1 70.554750 57.951860 0.533424 2.895625

P2 30.194800 1.401760 0.774740 7.607236

P3 81.449010 4.535275 0.709038 4.140327

P4 86.261930 37.353620 0.790480 9.619532

P5 87.144580 94.955670 0.056237 3.640187

P6 52.486840 5.350452 0.767112 5.924582

P7 46.870010 62.269670 0.298165 6.478212

P8 26.379290 82.980160 0.279342 8.246021

P9 58.916300 91.096430 0.986093 2.268660

P10 69.511550 24.393140 0.980003 5.338731

P11 10.636970 67.617590 0.999415 1.570390

P12 57.518380 10.302260 0.100052 7.988844

P13 28.448030 29.577290 0.045649 3.820107

P14 30.090500 97.982940 0.948571 4.013743

P15 27.828000 16.282160 0.160442 6.465871

6.2 Experiment Results and Analysis

In this paper, a task scheduling model with the objective of minimizing the makespan and maximizing

the quality of service is established, and the genetic algorithm with new crossover and mutation operators

are designed. In order to verify the above model and algorithm, a series of experiments have been carried

out.

In the experimental part, the workload is of the size of 100 to 9900. The genetic algorithm based on

MOEA/D proposed in this paper is expressed by Mul-GA. In [9], an algorithm is proposed according to

the increment of
i

g , denoted as IG, and [8] proposed an algorithm to allocate the workload according to

the increment of
i

w , denoted as IW. Because both IG and IW are aimed at minimizing the completion

time of the task, the quality of service is not taken into account and there have not been relevant literature

that takes the quality of service into consideration, only makespan of the three algorithms are compared

in this part. As shown in Table 2.

Journal of Computers Vol. 29, No. 4, 2018

225

Table 2. makespan comparison

Algo Wtotal Makespan Algo Wtotal Makespan Algo Wtotal Makespan

Mul-GA 183.5 Mul-GA 2103.7 Mul-GA 3721.6

IG 283.6 IG 2156 IG 3766.3

IW

100

235.2 IW

3500

3697.1 IW

6900

6809.6

Mul-GA 440.3 Mul-GA 2234.1 Mul-GA 3841.6

IG 471.1 IG 2250.7 IG 3861.1

IW

300

499.1 IW

3700

3883.5 IW

7100

6990.5

Mul-GA 521.1 Mul-GA 2301.4 Mul-GA 3933.1

IG 599.4 IG 2345.5 IG 3955.8

IW

500

729.5 IW

3900

4069.9 IW

7300

7171.1

Mul-GA 681.8 Mul-GA 2411.4 Mul-GA 4041.9

IG 718 IG 2345.5 IG 4050.6

IW

700

959.9 IW

4100

4069.9 IW

7500

7351.5

Mul-GA 827.5 Mul-GA 2503.1 Mul-GA 4146.8

IG 835.8 IG 2543.9 IG 4145.3

IW

900

1190.3 IW

4300

4442.7 IW

7700

7532.1

Mul-GA 948.9 Mul-GA 2583.1 Mul-GA 4201.8

IG 952.5 IG 2629.6 IG 4240

IW

1100

1392.6 IW

4500

4624.8 IW

7900

7711.7

Mul-GA 1012.9 Mul-GA 2684.9 Mul-GA 4301.2

IG 1067.6 IG 2724.4 IG 4334.1

IW

1300

1601.5 IW

4700

4807.8 IW

8100

7891.3

Mul-GA 1146.3 Mul-GA 2783.1 Mul-GA 4401.3

IG 1174.4 IG 2819.1 IG 4429.5

IW

1500

1793.6 IW

4900

4990.8 IW

8300

8070.8

Mul-GA 1251.3 Mul-GA 2901.8 Mul-GA 4513.7

IG 1279.5 IG 2913.8 IG 4524.2

IW

1700

1988.2 IW

5100

5173.8 IW

8500

8250.3

Mul-GA 1327.6 Mul-GA 2998.7 Mul-GA 4604.9

IG 1384.7 IG 3008.5 IG 4618.9

IW

1900

2182.7 IW

5300

5355.9 IW

8700

8429.8

Mul-GA 1437.4 Mul-GA 3013 Mul-GA 4700.4

IG 1489.8 IG 3103.3 IG 4713.7

IW

2100

2377.3 IW

5500

5537.7 IW

8900

8609.4

Mul-GA 1557.3 Mul-GA 3170.2 Mul-GA 4789.2

IG 1587.6 IG 3198 IG 4808.4

IW

2300

2568.2 IW

5700

5719.4 IW

9100

8788.9

Mul-GA 1652.3 Mul-GA 3249 Mul-GA 4903.1

IG 1682.4 IG 3292.7 IG 4993.1

IW

2500

2759.2 IW

5900

5901.1 IW

9300

8968.4

Mul-GA 1767.7 Mul-GA 3382.1 Mul-GA 4913.4

IG 1777.1 IG 3387.5 IG 4997.9

IW

2700

2947.7 IW

6100

6082.8 IW

9500

9147.9

Mul-GA 1854.6 Mul-GA 3460.1 Mul-GA 5071.2

IG 1871.8 IG 3482.2 IG 5092.6

IW

2900

3136.1 IW

6300

6264.5 IW

9700

9327.5

Mul-GA 1927.6 Mul-GA 3551.1 Mul-GA 5113.4

IG 1966.6 IG 3576.9 IG 5187.3

IW

3100

3324.3 IW

6500

6446.2 IW

9900

9507

Mul-GA 2003.6 Mul-GA 3641.2

IG 2061.3 IG 3671.7

IW

3300

3510.7 IW

6700

6627.9

It can be seen from Table 2 that the processing time used by the proposed algorithm is much less than

that used by the other two compared algorithms for different workload.

To evaluate the performance of the genetic algorithm based on MOEA/D, the workload size ranges

from 100 to 9900 and the pareto front are given in Fig. 4. In addition, the following two metrics are used

Task Scheduling Model and Multi-objective Optimization Genetic Algorithm Considering Quality of Service

226

to evaluate the pareto solution:

Spacing Index (SI). defined by Eq.(13) below.

() ()()

() { }

()

21

1

min ' ', '

1

z PF

z PF

SI A d d z

PF

d z z z z z z PF

d d z

PF

∗

∗

∗

∈

∗

∗

∈

= −

−

= − ≠ ∈

=

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

∑

∑

 (13)

Spacing Index is used to metric the uniformly of the pareto front. The smaller the SI is, the better the

solution is.

Hypervolume Index (HI). which is used to test the uniformity, convergence and diversity of the solution,

and is defined by the following Eq.(14).

Fig. 4. multi-objective Pareto front for different workload

Journal of Computers Vol. 29, No. 4, 2018

227

() ()*

z PF

HI PF vol z

∗

∈

= ∪

(14)

Where ()vol z is hypervolume of area which is surrounded by z and the reference point ()
1 2
, ,

m

r r r r= � .

m is the dimensionality of the objective space.

Table 3 shows the two evaluate results of the pareto optimal solution obtained by algorithm Mul-GA.

()lg SI and ()lg HI are used in Table 3.

Table 3. Evaluation index

Workload 100 1100

Metrics SI HI SI HI

Value 3.4062 8.1422 6.6084 9.3298

Workload 2100 3100

Metrics SI HI SI HI

Value 7.3776 9.5965 8.3100 10.1302

Workload 4100 5100

Metrics SI HI SI HI

Value 8.4207 10.3840 10.0516 11.3101

Workload 6100 7100

Metrics SI HI SI HI

Value 10.1482 10.8685 10.1998 11.2102

Workload 8100 9100

Metrics SI HI SI HI

Value 10.4080 11.7733 10.1435 11.2430

By combining the pareto front in Fig. 4 and the evaluate results in Table 3, the following conclusions

can be drawn: the model and algorithm proposed in this paper can solve the multi-objective optimization

problem. By running the algorithm once, multiple sets of solutions can be obtained, and the evaluate

metrics shows the diversity and uniformity of solutions.

Several experiments are conducted to improve the effectiveness of the algorithm proposed in this

paper. In the first experiment, as there have no literatures that have taken both the makespan and quality

of service into consideration, so Table 2 gives only the makespan comparison. The makespan obtained by

Mul-GA are much smaller than those obtained by IG and IW with various workload. In the second

experiment, makespan and the quality of service are both considered, and the pareto fronts obtained by

Mul-GA in Fig. 4 are wide spread and uniformly distributed according to the SI and HI index in Table 3,

what’s more, multiple sets of solutions can be obtained in one time, so it is more possible to satisfy the

requirements of decision makers.

7 Conclusion

We first introduce a concept called quality of service which provides another measure for a task schedule,

and then we set up a multi-objective optimization model by minimizing the make-span and maximizing

the quality of service. This model contains more information of the problem considered and can more fit

to the real world situations. Thus it is more practical and more reasonable. To solve the proposed multi-

objective model efficiently, we design a new genetic algorithm. The experimental results show that: the

proposed model is effective and the proposed algorithm is efficient.

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 61472297 and No.

61572391).

Task Scheduling Model and Multi-objective Optimization Genetic Algorithm Considering Quality of Service

228

References

[1] V. Bharadwaj, D. Ghose, T.G. Robertazzi, Divisible load theory: a new paradigm for load scheduling in distributed systems,

Cluster Computing 6(1)(2003) 7-18.

[2] T.G. Robertazzi, Ten reasons to use divisible load theory, Computer 36(2003) 63-68.

[3] V. Mani, D. Ghose, Distributed computation in linear networks: closed form solutions, IEEE Transactions on Aerospace and

Electronic Systems 30(1994) 471-483.

[4] D. Ghose, V. Mani, Distributed computation with communication delays: asymptotic performance analysis, Journal of

Parallel and Distributed Computing 23(1994) 293-305.

[5] V. Bharadwaj, D. Ghose, V. Mani, Optimal sequencing and arrangement in distributed single-level networks with

communication delays, IEEE Trans on Parallel and Distributed Systems 5(1994) 968-976.

[6] H.J. Kim, G.I. Jee, J.G. Lee, Optimal load distribution for tree network processors, IEEE Trans on Aerospace and Electronic

Systems 32(2)(1996) 607-612.

[7] S. Suresh, V. Mani, S.N. Omkar, The effect of start-up delays in scheduling divisible load on bus networks: an alternate

approach, Journal of Computational and Applied Mathematics 46(10-11) 1545-1557.

[8] V. Bharadwaj, X.L. Li, C.K. Chung, On the influence of start-up costs in scheduling divisible load on bus networks, IEEE

Trans on Parallel and Distributed Systems 11(12)(2000) 1288-1305.

[9] M.S. M.S. Shang, Optimal algorithm for scheduling large divisible workload on heterogeneous system, Applied

Mathematical Modeling 32(2008) 1682-1695, 2008

[10] X.L. Wang, Y.P. Wang, K. Meng, Release time aware divisible-load scheduling optimization model, Journal of XiDian

University 43(1)(2016) 55-60.

[11] G. Murugesan, C. Chellappan, Multi-source task scheduling in grid computing environment using linear programming,

International Journal of Computer Science and Engineering 9(1)(2014) 80-85.

[12] G.N. Iyer, B. Veeravalli, S.G. Krishnamoorthy, On handling large-scale polynomial multiplication in compute cloud

environments using divisible load paradigm, IEEE Transactions on Aerospace and Electronic Systems 48(1)(2012) 820-831.

[13] H. Shi, W. Wang, N.M. Kwok, et al, “Adaptive Indexed Divisible Load Theory for Wireless Sensor Network Workload

Allocation,” International Journal of Distributed Sensor Networks, Vol. 2013, pp. 8-10, 2013.

[14] X.M. Zhu, X. Qin, M.K. Qiu, QoS-aware fault-tolerant scheduling for real-time tasks on heterogeneous clusters, IEEE

Transactions on Computers 60(6)(2011) 800-812.

[15] M. Hu, B. Veeravalli, Requirement-aware strategies for scheduling real-time divisible loads on clusters, Journal of Parallel

and Distributed Computing 73(8)(2013) 1083-1091.

[16] A. Costa, F.A. Cappadonna, S. Fichera, A novel genetic algorithm for the hybrid flow shop scheduling with parallel

batching and eligibility constraints, The International Journal of Advanced Manufacturing Technology 75(5-8)(2014) 833-

847.

[17] R. Garg, A.K. Singh, Multi-objective workflow grid scheduling using fuzzy dominance sort based discrete particle swarm

optimization, The Journal of Supercomputing 68(2)(2014) 709-732.

[18] C. Grosan, A. Abraham, B. Helvik, Multiobjective evolutionary algorithms for scheduling jobs on computational grids, in

International Conference on Applied Computing, 2007.

Journal of Computers Vol. 29, No. 4, 2018

229

[19] Atakan Dogan, Füsun Özgüner, Biobjective scheduling algorithms for execution time? reliability trade-off in heterogeneous

computing systems, The Computer Journal 48(3)(2005) 300-314.

[20] F. Zhang, J. Cao, K. Li, S.U. Khan, K. Hwang, Multi-objective scheduling of many tasks in cloud platforms, Future

Generation Computer Systems 37(2014) 309-320.

[21] D. Liu, X. Yang, Z. Cheng, An energy-aware scheduling algorithm for divisible loads in a bus network, Concurrency &

Computation Practice & Experience 28(5)(2016) 1612-1628.

[22] S. Ghanbari, M. Othman, M.R.A. Bakar, W.J. Leong, Multi-objective method for divisible load scheduling in multi-level

tree network, Future Generation Computer Systems 54(2016) 132-143.

[23] C.Y. Chen, C.P. Chu, Novel methods for divisible load distribution with start-up costs on a complete b-ary tree, IEEE

Transactions on Parallel & Distributed Systems 26(2015) 2836-2848.

[24] L. Zeng, B. Veeravalli, A.Y. Zomaya, An integrated task computation and data management scheduling strategy for

workflow applications in cloud environments, Journal of Network & Computer Applications 50(2015) 39-48.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

