
Journal of Computers Vol. 29 No. 5, 2018, pp. 1-14

doi:10.3966/199115992018102905001

1

A Multicast-Tree Construction Algorithm for Efficient Data

Collection over Mobile Networks of Military Vehicles

Tien-Yu Chang1, Jichiang Tsai1*, Wen-Tien Huang1

1 Department of Electrical Engineering, National Chung Hsing University, Taichung 402, Taiwan

d9864006@mail.nchu.edu.tw, jichiangt@nchu.edu.tw, etbu5563@livemail.tw

Received 16 May 2017; Revised 12 October 2017; Accepted 30 October 2017

Abstract. Due to tanks moving, joining and leaving, the wireless network topology formed by

them will continuously change. Hence, how to make moving tanks to form a smart networking

system is an important research issue. Moreover, the information exchange between nodes in a

networking system can be performed via a multicast tree structure, and the root node can collect

information from all the nodes in the structure. So in this paper, an algorithm is proposed to

build an efficient distributed multicast tree construction algorithm for a mobile network. Such a

multicast tree can be continually adjusted according to the latest topology information carried on

message packets propagated among nodes. In addition, in all possible routing paths, a path with

the lowest weight will be dynamically selected to improve the overall system messaging

throughput. The above technique can be applied to make military vehicles form a smart

networking system, including tanks, armored vehicles and transport vehicles, etc. Furthermore,

through this network, the fast-changing situation of the battle can be immediately sent back to

the server for the commander to refer to.

Keywords: data collection, Internet of Vehicles (IoV), multicast tree

1 Introduction

Wireless Mesh Network (WMNs) is an emerging network technology as a wireless communications

deployment. The line laying is inconvenience and construction costs are high in the traditional wired

backbone network. If you encounter a wide range of monitoring, the deployment is not convenient.

Compared to the traditional wired backbone network, wireless mesh network deployment costs are low,

and it can provide lower cost of Internet services and applications.

Because of the popularity of the wireless network environment, users can use the wireless network to

transmit and receive data at any time. Such as Wireless Mesh Networks (WMNs), Wi-Fi, ZigBee,

Bluetooth Low Energy (BLE 4.0), and other applications are also attracting more and more people to

develop [1-4]. In many wireless network technology applications, Wireless Mesh Networks has become

an effective way to improve the service area coverage, and widely used in industrial control, natural

environment monitoring, military operations and the Internet of Things and other related fields. In

particular, the Internet of Things has become one of the key technologies of the monitoring system, and

can be applied to power systems, factory rooms, fire alarm, flood forecasting, earthquake warning,

community security and military operations in order to speed up the dissemination of information and

contingency treatment [5].

There are a growing number of vehicles imported IoT [6] communication technology to form a vehicle

network (IoV) [7-11]. Data collection is a key application of the Internet of Things. It is usually formed

by a wireless mesh network formed in the device to establish a multicast tree structure. As shown in Fig.

1, the root node S can collect the data of each member in the system. In particular, the multicast tree must

have the ability to dynamically self-organize, self-heal, and self-route as the node joins, leaves, or moves

to provide the distributed architecture to quickly establish and maintain multi-hop wireless communication.

* Corresponding Author

A Multicast-Tree Construction Algorithm for Efficient Data Collection over Mobile Networks of Military Vehicles

2

As a result, the transmission of data will not be interrupted due to the loss or damage of the nodes [12-14].

Fig. 1. Schematic diagram of multicast tree structure

The composition of the multicast tree structure is the backbone of a tree whose upstream nodes and

downstream nodes may contain multiple hop points as relay nodes. The multicast tree can be

automatically and automatically performed according to the latest topology information through

information about the nodes themselves contained in the packets sent by each node adjustment. In

particular, during the tree establishment, a path with the lowest weight is selected from all possible

routing paths to reduce the overall system message delivery delay. The design of this algorithm is to

effectively collect all the military vehicle information.

Based on the above discussion, the traditional routing method requires a longer time cost to search for

a viable path. As a result of this motivation, we propose an algorithm for establishing an efficient

multicast tree on the Internet of Things. Compared with the traditional MAODV, this method has fewer

child nodes and lower transmission delay to the root node.

This paper is divided into six chapters: the first chapter is a brief introduction, the basic introduction to

the research motive and the content of the paper; the second chapter is the basic introduction to the

relevant multicast routing protocol of the wireless mesh network; the fourth chapter presents the result of

our simulation experiment. The fifth chapter is conclusion and future prospect.

2 The Multicast Routing Protocol

Multicast routing protocol in wireless mesh networks can be divided into three types, namely Proactive,

Reactive, and Hybrid.

Proactive Routing Protocol would be to establish a viable route for data transmission, and routing

information is obtained via the node periodically updates. More specifically described, in such

agreements, each node will store a routing table, and it is also known as Table Driven Routing Protocol

[15]. This will be stored in the routing table of the node to the transmission path between all nodes. If

they find a node in the network topology changes, the node must be recalculated each path, and sends the

updated message to an adjacent node. When the neighbor receives the updated message, it will also

recalculate each transmission path in order to update its own routing table. Such agreements are highly

mobile features and have a good effect for small-scale mesh network [16]. You can quickly create a path

to send a message, and the message has a lower latency. However, the drawback is that if the mobile

network is low, the network bandwidth will be wasted. Because the nodes periodically transmit broadcast

packets and flood to other nodes and thus cause waste. The flooding behavior is shown in Fig. 2.

Reactive Routing Protocol only the node sends a message to a destination, and the demand will be

followed to establish a viable route. It can also be called On-demand Routing, common examples

ODMRP (On-Demand Multicast Routing Protocol) [17] and MAODV (Multicast Operation of Ad Hoc

On-Demand Distance Vector) [18], and the method mentioned in this paper also belongs to this protocol.

In terms of performance, MAODV is superior to DSDV and DSR [19]. DSR is better than OLSR [20-21]

and better than DSDV [22], so we use MAODV as the object of comparison in this paper.

Journal of Computers Vol. 29, No. 5, 2018

3

Fig. 2. Flooding

In particular, such agreements only when a node wants to send messages to other nodes, and it will

dynamically establish routing path from the source to the end. Therefore, when the source needs to

transmit the packet, it will find the appropriate path from the routing table to send the message, and if it

cannot be transmitted in the path, the source will send a routing message to the destination side. When

the destination receives, it will return a response to the message source. Thereafter, when the source

receives the response message, it can immediately produce a valid path and added to the routing table. In

particular, in the routing table, if the path within a certain period of time is not used and it will be

removed, so you can effectively reduce the cost of bandwidth required to maintain routing tables.

However, the disadvantage of this agreement is the need to spend more time in the search for a feasible

path. The following is a brief description of how the MAODV routing protocol works:

Ad-hoc On-Demand Distance Vector Routing (AODV) [23] is a unicast routing protocol and MAODV

is a multicast application for AODV. In the MAODV routing protocol, the routing path is established and

the route path is maintained. Each node has three routing tables. The first routing table is the routing table

of the node itself. If the node is used as a member of the multicast tree, the message can be routed to the

multicast group to the destination. The second routing table is a multicast routing table that prepares the

next hop point for each tree member of the multicast community. The third routing table for the request

message table is used to achieve the goal for optimization. The MAODV protocol establishes a shared

delivery tree to support multiple transport and receivers in a multicast group. The MAODV relies on

flooding to discover the routing path and establish a multicast tree for the entire network. In the MAODV,

the first group of multicast members is called the Group leader, which periodically broadcasts the Group

HELLO (GRPH) message to update or maintain the information of the multicast group. When a node

wants to join or send a message to the multicast group, which will broadcast a route request (RREQ)

message. The intermediate node creates a reverse route and route request (RREQ) message. After

receiving the route request (RREQ) message, the multicast group member replies to a route reply (RREP)

message to set the delivery path. If the incoming node receives multiple Route reply (RREP) messages

from the destination in time, the message sender with the maximum number of sequences and the

minimum number of hops is selected and unicast a multicast activation (MACT) message to the next hop.

Finally, it will begin transmitting the broadcast multicast message to perform the route, as shown in Fig.

3.

Fig. 3. MAODV operation

A Multicast-Tree Construction Algorithm for Efficient Data Collection over Mobile Networks of Military Vehicles

4

In the MAODV, when an On-tree node detects a link break, it starts routing recovery. First, the node

needs to check whether the disconnected node is its upstream node. If the disconnected node is its

upstream node, the node will remove it from the routing table, and the downstream node will send the

multicast message and add the route request (RREQ) message of Flag_J, and then use these messages to

rebuild a new branch. If the broken node is its downstream node, it is removed from the routed routing

table, as shown in Fig. 4.

Fig. 4. MAODV link disconnected operation

Finally, the Hybrid Routing Protocol [24] is a Proactive Routing protocol and Reactive Routing mixed

agreements, also known as Balanced-Hybrid Routing. More specifically described, the routing

information of the node is maintained by its own router. When there is any change in network topology,

the router will need to update its routing table. And according to their own routing, that is, active routing

or reactive routing, to confirm the destination, and then try to find the best routing path to the destination.

In particular, the advantage is that the power consumption can be effectively reduced and the number of

times the node replaces the battery can be reduced, and can reduce the end to end delay of messages sent.

3 The Method of Establishing Multicast Tree

In this paper, the proposed algorithm is based on the multicast tree, and the tree-based multicast routing

protocol has high transmission efficiency and low bandwidth consumption [25-27]. The packets sent by

the nodes in the multicast tree contain the information of each node itself. The multicast tree can be

adjusted according to the latest topology information, and dynamically find the efficient routing path for

each node in the system in all possible routing paths.

The paper proposed the establishment of multicast tree algorithm, in order to effectively utilize radio

characteristics, taking into account the following four benchmarks: SrcDist (the number of hops to the

root node), Timestamp (the root node to the node message propagation delay), ChildNum (the number of

child nodes of the current node is connected) and the Request (the node currently received his request to

join the node number). Among them, the first two are respectively used to reduce the number of hops

from each node to the root node and transmission delay. The latter two are due to the tree structure

established, mainly used in data collection systems of the members, so that each child in order to reduce

the message collision between child nodes and specifically to join them. In particular, when a node

receives a large number of the requests from other nodes, it may have a greater number of sub-nodes in

the future, so we will reference this into account together.

3.1 Control Message

Our proposed algorithms use the following types of control messages to efficiently build multicast tree:

Join Request (JREQ). In addition to the root node, each node will transmit such control message to the

neighboring node as a request to join the above process as shown in Fig. 5.

Journal of Computers Vol. 29, No. 5, 2018

5

Fig. 5. The process of sending JREQ message

Join Reply (JREP). When a node receives a message JREQ, if this node is multicast tree, then return

JREP message to the sender. Among them, this type of message contains information about the current

construction of the sender node, namely: SrcDist, Timestamp, ChildNum and Request, the above process

shown in Fig. 6.

Fig. 6. The process of sending JREP message

Join Determinant (JDET). Such messages are used to inform the receiver node. The sender has selected

its parent node, and you can let the receiver statistics on the number of its child nodes above process as

shown in Fig. 7.

Fig. 7. The process of sending JDET message

Join Invalidate (JINV). This type of message is used when a node is disconnected from its parent. This

message will tell all of its children to re-find the appropriate parent. When child node receives this

message, child node also needs to re-find the appropriate parent node and transmits JINV message to

their child nodes, the above process shown in Fig. 8.

A Multicast-Tree Construction Algorithm for Efficient Data Collection over Mobile Networks of Military Vehicles

6

Fig. 8. The process of sending JINV message

3.2 Operating Procedures

Apart from the root node S, each node will send JREQ to its neighbor nodes. When S receives JREQ

from its neighbor nodes, and then returns JREP to the sender. In addition, when other nodes of the non-

root node receive the JREQ and receive the JREP within the waiting time if the node is not in the current

tree structure and compare the weight of each JREP. After the waiting time is over, the JREP sender

whose weight is the smallest is selected as the parent node, becomes the child node of the node, and

sends the JDET message to its parent node.

On the other hand, after the multicast tree is created, each node checks whether the connection to the

parent node or child node is broken at a fixed period. If the connection to the child node is disconnected,

the child node set is updated. If it is disconnected from the parent node, it marks itself as not in the

current tree structure and re-finds the appropriate parent node, and sends a JINV to all of its own children

to inform them of the appropriate parent node. Finally, the operational flow described above is from Fig.

9 to Fig. 12.

Fig. 9. A flowchart of the operation of the root node (static start)

Journal of Computers Vol. 29, No. 5, 2018

7

Fig. 10. A flowchart of the operation of the non-root node (static start)

Fig. 11. A flowchart of the operation of the root node (dynamic process)

A Multicast-Tree Construction Algorithm for Efficient Data Collection over Mobile Networks of Military Vehicles

8

Fig. 12. A flowchart of the operation of the non-root node (dynamic process)

3.3 Weight Calculation

In the JREP message, there are four items for calculating the weights, namely SrcDist (the number of

jumps from the source to the node), timestamp (the time delay for the message received by the node),

ChildNum (the number of children to which the node is connected), and request (the number of requests

received by the node).

The receiving end can select the lowest-weight party as its parent node, which is initialized at the

beginning of the operation. When the node receives JREP, it calculates the delay between the sending of

the message and the sender and adds it to its Timestamp field. In addition, each node after receiving

JDET, it will update its ChildNum value. After receiving JREQ, Request value is updated. In particular,

when a node determines its parent, it will be the parent node SrcDist value plus 1 as their SrcDist value.

More importantly, when a node returns a JREP control message to other nodes, it will carry all the

weight-related calculations described above to the receiver for reference by the receiver.

Choosing the above four benchmarks is to determine the weight of the decision to avoid a single

benchmark. For example, if we choose only the transfer delay between nodes as a reference, we may

discard the parent node that is temporarily congested but closer to the root node. In addition, if we did not

consider the number of hops from the root to a node, then the probability of selecting a parent node with

a large number of hops is increased. As a result, the quality of the transmitted message will be reduced

due to the increase in the number of hops, and thus affect the size of the system throughput. On the other

hand, if a node has a large number of child nodes or a larger number of received requests, it means that

the node may connect with multiple child nodes in the future. Therefore, each child node will easily

collide with the node when it returns data to the node. This point in the application of data collection

must be included in the consideration, but also the method of this paper and the existing related

technology differences.

To make a conclusion here, we use these benchmarks to build efficient multicast tree structure. When

a node wants to join, you can dynamically select a minimum weight of the JREP message sender as the

Journal of Computers Vol. 29, No. 5, 2018

9

parent node, and you can improve the efficiency of the overall system data collection. In order to use the

above parameters at the same time, we propose a weighting function as shown in equation (1), using it as

a weight comparison method:

) 2*
5

timestamp
W(i SrcDist childNum request= + + + (1)

Wherein, in order to balance the influence of each reference, we set the SrcDist to 2. Experiments use

the exponential function x

e to simulate the parameters of the time delay and define the range, record the

time delay, and record the delay time of the previous node. In addition, the value of the transmission

delay will be larger than the other reference value. In order to avoid loss of accuracy, its value is divided

by 5, so that nodes can easily select the low-latency, high-efficiency path to the root node. Finally, the

Fig. 13 gives an outline of the weights of the other nodes that each node needs to consider.

Fig. 13. A schematic of the weights considered by each node

4 The Experimental Results

In this paper, simulation software Parsec (PARallel Simulation Environment for Complex systems) [28]

was used to simulate the experiment. First, in the simulation, we set up some relevant simulation

parameters, as shown in Table 1. More specifically described, we will set the simulation environment

1000 × 1000 square area and the root S coordinates fixed in the environment directly above (500,999) at

the coordinates, and then randomly generate additional 49 nodes, and the coordinates of these nodes are

all within the range considered. In particular, we only consider the case of a network extension. The node

represents a military vehicle, and the square area represents the battlefield.

We set up in accordance with the above, respectively static and dynamic process of starting two

scripting simulation 100 times, and in each experiment, based on the average number of child nodes of

all the nodes in the system, the transfer delay to the root node and the average number of hops are

compared with MAODV.

Table 1. Experimental simulation parameters

Parameter Value

Node number 50

Area 2
1000*1000 m

Transmission range 200 m

Simulation time 300000 unit

4.1 Static Initial

The results of this experiment are shown from Fig. 14 to Fig. 16.

A Multicast-Tree Construction Algorithm for Efficient Data Collection over Mobile Networks of Military Vehicles

10

Fig. 14. Comparing the average number of child nodes (static)

First, we can see from Fig. 14 that the average number of nodes in each experiment is smaller than that

of MAODV. The smaller the number of children, the smaller the chance of message collision. In

particular, the average of the 100 experimental results of our method was 1.723017, and the standard

deviation was 0.1313782. The mean value of MAODV was 1.9823614 and the standard deviation was

0.173466.

Fig. 15. Transfer delay comparison to the root node (static)

Fig. 16. The average number of hops comparison to the root node (static)

Journal of Computers Vol. 29, No. 5, 2018

11

On the other hand, it can be deduced from Fig. 15 that the average of the 100 times nodes to root node

transfer delay test results of our method is 34.076939 and the standard deviation is 13.024949, while the

mean value of MAODV is 43.38388 and the standard deviation is 16.76644. In this paper, the transfer

delay of the method is low. The longer the node’s message delay, the worse the message transmission

performance. In addition, we can deduce from Fig. 16. Our method to perform 100 times to the root node

of the average number of jumps, and the experimental results of the average is 5.768163, and the

standard deviation is 1.16521. The MAODV average is 5.251633, and the standard deviation is 0.897315.

There is not much difference between the two methods. The number of hops reflects the structure of the

multicast tree. The larger the number of hops, the higher the probability that nodes will transmit

messages because of the longer paths.

4.2 Dynamic Process

In the simulated environment in which the nodes are moving, the same settings as in the stationary state

are used, and the root node is fixed. The difference is that the non-root node will move once according to

the setting in Table 2. Here, the moving distance and moving angle of the node are set to normal

distribution in order to simulate the movement of the military vehicle. The experimental results of this

script are shown in Fig. 17 to Fig. 18 respectively.

Table 2. Simulation parameters for node movement

Parameter Value of normal distribution

Angle
Average: 0°

Standard Deviation: 30°

Step
Average: 20 m

Standard Deviation: 10 m

Fig. 17. Average number of child nodes (dynamic)

Similarly, we can see from Fig. 17 that the average number of child nodes of all the nodes generated

by our method is almost less than the result of MAODV in each experiment. In particular, the mean value

of the 100 experiments in our method is 1.7295171, and standard deviation is 0.1401298. The average

value of MAODV is 1.986001 and the standard deviation is 0.196908. Therefore, the average number of

child nodes of this method is also small.

A Multicast-Tree Construction Algorithm for Efficient Data Collection over Mobile Networks of Military Vehicles

12

Fig. 18. Comparison of the transfer delay to the root node (dynamic)

Fig. 19. Comparison of the average number of hops to the root node (dynamic)

On the other hand, it can be deduced from Fig. 18 that the average transfer delay of the 100

experimental results of our method was 32.33421 and the standard deviation was 13.659204, while the

mean value of MAODV was 39.15983817 and the standard deviation was 15.983817. The transfer delay

of this method is also low. In addition, from Fig. 19 can be deduced from doing our method 100 times the

average number of hops to the root node experimental results is 5.5116991, and standard deviation is

1.0160507, while the MAODV average is 5.3622449, and standard deviation is 1.1088654. There is no

difference between the two too much, and this is because MAODV root node is the average number of

hops as the main consideration.

5 Conclusions and Future Work

In this paper, mainly for the military vehicle network data collection, we propose a new multicast tree

construction algorithm for the data collection of mobile Internet of Things. It not only dynamically

adjusts the multicast tree according to the current network topology information, but also takes the

number of hops to the root node and the delay of the message transmission to the root node and the

number of the connected child nodes to improve the whole system message delivery performance. In

particular, we can see from the simulation results that compared with the traditional MAODV protocol,

and our method has less number of child nodes and lower number of nodes in the case of the average

number of hops to which the protocol focuses to root node transfer delay. This paper can be applied to

the vehicle network system. The road vehicle group will be able to immediately return the relevant

Journal of Computers Vol. 29, No. 5, 2018

13

sensing data back to the back-end server database, and the battlefield on the rapid changes in the

environmental information provided to the decision-makers reference.

In the future research, we can consider adding other kinds of algorithms, such as Multichannel

Multicast, Ant Colony Optimization, and Particle Swarm Optimization, and compare the differences

between the various algorithms to find the most appropriate way to route.

References

[1] M. Jahanshahi, A.T. Barmi, Multicast routing protocols in wireless mesh networks: a survey, Computing 96(11)(2014) 1029-

1057.

[2] C. Kolias, G. Kambourakis, A. Stavrou, S. Gritzalis, Intrusion detection in 802.11 networks: empirical evaluation of threats

and a public dataset, IEEE Communications Surveys & Tutorials 18(1)(2016) 184-208.

[3] A. Narmada, P.S. Rao, Zigbee based WSN with IP connectivity, in: Proc. 2012 International Conference on Computational

Intelligence, Modelling and Simulation, 2012.

[4] B. Yu, L. Xu, Y. Li, Bluetooth low energy (BLE) based mobile electrocardiogram monitoring system, in: Proc. 2012

International Conference on Information and Automation, 2012.

[5] Z. Sheng, C. Mahapatra, C. Zhu, V. Leung, Recent advances in industrial wireless sensor networks towards efficient

management in IoT, IEEE Access 3(2015) 622-637. doi:10.1109/ACCESS.2015.2435000

[6] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, M. Ayyash, Internet of Things: a survey on enabling technologies,

protocols, and applications, IEEE Communications Surveys & Tutorials 17(4)(2015) 2347-2376.

[7] A. Al-Fuqaha, A. Khreishah, M. Guizani, A. Rayes, M. Mohammadi, Toward better horizontal integration among IoT

services, IEEE Communications Magazine 53(9)(2015) 72-79.

[8] J.-J. Cheng, J.-L. Cheng, M.-C. Zhou, F.-Q. Liu, S.-C. Gao, C. Liu, Routing in Internet of Vehicles: a review, IEEE

Transactions on Intelligent Transportation Systems 16(5)(2015) 2339-2352.

[9] K.M. Alam, M. Saini, A.E. Saddik, Toward social Internet of Vehicles: concept, architecture and applications, IEEE Access

3(2015) 343-357. doi:10.1109/ACCESS.2015.2416657

[10] L. Guo, M. Dong, K. Ota, Q. Li, T. Ye, J. Wu, J. Li, A secure mechanism for big data collection in large scale Internet of

Vehicle, IEEE Internet of Things Journal 4(2)(2017) 601-610.

[11] Y. Fan, N. Zhang, A survey on software-defined vehicular networks, Journal of Computers 28(4)(2017) 236-244.

[12] L. Junhai, V. Danxia, X. Liu, F. Mingyu, A survey of multicast routing protocols for mobile ad-hoc networks, IEEE

Communications Surveys & Tutorials 11(1)(2009) 78-91.

[13] S.K. Soni, T.C. Aseri, A review of current multicast routing protocol of mobile ad hoc network, in: Proc. the 2nd

International Conference on Computer Modeling and Simulation (ICCMS’ 10), 2010.

[14] A. Nargesi, M. Bag-Mohammadi, Efficient multicast tree construction in wireless mesh networks, Journal of

Communications and Networks 16(6)(2014) 613-619.

[15] M.E.M. Campista, L.H.M.K. Costa, O.C.M.B. Duarte, WPR: a proactive routing protocol tailored to wireless mesh

networks, in: Proc. 2008 Globecom Workshops (GC Wkshps), 2008.

[16] J. Xie, R.R. Talpade, A. McAuley, M. Liu, AMRoute: Ad hoc multicast routing protocol, Mobile Networks and

Applications 7(6)(2002) 429-439.

[17] S.-J. Lee, M. Gerla, C.-C. Chiang, On-demand multicast routing protocol, in: Proc. 1999 Wireless Communications and

A Multicast-Tree Construction Algorithm for Efficient Data Collection over Mobile Networks of Military Vehicles

14

Networking Conference (WCNC), 1999.

[18] E.M. Royer, C.E. Perkins, Multicast operation of the ad-hoc on-demand distance vector routing protocol, in: Proc. the 5th

annual ACM/IEEE international conference on Mobile computing and networking, 1999.

[19] D.T.M. Viet, N.H. Chau, W. Lee, H.Q. Thuy, Using cross-layer heuristic and network coding to improve throughput in

multicast wireless mesh networks, in: Proc. 2008 International Conference on Information Networking (ICOIN), 2008.

[20] G.Z. Santoso, M. Kang, Performance analysis of AODV, DSDV and OLSR in a VANETs safety application scenario, in:

Proc. the 14th International Conference on Communication Technology (ICACT), 2012.

[21] A. Kumar, R. Hans, Performance analysis of DSDV, I-DSDV, OLSR, ZRP proactive routing protocol in mobile ad hoc

networks in IPv6, International Journal of Advanced Science and Technology 77(3)(2015) 25-36.

[22] T.-L. Lin, Y.-S. Chen, H.-Y. Chang, An ant colony optimization routing strategy for wireless sensor networks: a SDN-like

perspective, Journal of Computers 28(4)(2017) 103-113.

[23] C.E. Perkins, E.M. Royer, Ad-hoc on-demand distance vector routing, in: Proc. the 2nd IEEE Workshop on Mobile

Computer Systems and Applications, 1999.

[24] A.B. Mnaouer, L. Chen, C.H. Foh, J.W. Tantra, OPHMR: an optimized polymorphic hybrid multicast routing protocol for

MANETs, IEEE Transactions on Mobile Computing 6(5)(2007) 503-514.

[25] H. Chen, Z. Yan, B. Sun, Y. Zeng, X. He, An entropy-based long-life multicast routing protocol in MAODV, in: Proc. 2009

International Colloquium on Computing, Communication, Control, and Management (ISECS), 2009.

[26] X. Chen, Q. Zhong, D. Liu, An improved MAODV based on mobility prediction and self-pruning flooding, in: Proc. 2009

International Conference on Communications and Mobile Computing (WRI), 2009.

[27] H.L. Nguyen, U.T. Nguyen, High-performance multicast routing in multi-channel multi-radio wireless mesh networks, in:

Proc. 2010 Globecom Workshops (GC Wkshps), 2010.

[28] R. Bagrodia, R. Meyer, M. Takai, Y. Chen, X. Zeng, J. Martin, H.Y. Song, Parsec: a parallel simulation environment for

complex systems. < http://pcl.cs.ucla.edu/projects/parsec/>, 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

