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Abstract. Superpixels partition an image into homogeneous regions with regular shapes and 

adherence to object edges. A critical factor of superpixels generation is the distance measure of 

pixels. Euclidean distance is usually utilized to compute the spatial and color difference between 

pixels. As a pre-processing procedure, superpixels should provide image information as much as 

possible for further analysis. But image content is ignored as Euclidean distance can hardly deal 

with. In this paper, we focus on the distance computation of superpixel methods. We propose the 

adaptive k distance method for image content analysis. We design a computational method of 

adaptive k distance which is applied to images specially. Combining Euclidean distance and the 

proposed distance, we present a superpixel method which provides tunable parameters to 

compromise between superpixel compactness and image edge adherence. We evaluate our 

method on BSD500 dataset comparing with several state of the art superpixel methods. We 

discuss the experimental results qualitatively and quantitatively, and the referred evaluation 

criteria that have not been analyzed in detail. Experimental results show that our method 

achieves favorable performance against the state of the art. 
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1 Introduction 

Superpixels aim to provide an over-segmentation of images, which is usually used as a preprocessing 

procedure [1]. In human vision system, people tends to group elements together if they are proximal, 

similar or connected (or continuous) to each other [2]. At the same manner, superpixels group pixels of 

different objects into perceptually homogeneous regions while adherence to object edges. Superpixel 

algorithm is a rational method because pixels of natural images are not independent to each other 

especially in the local scope. Superpixels with regular-ity lattice are able to represent an image with only 

a couple of hundred segments instead of tens of thousands of pixels, which heavily reduce the number of 

elements to handle. Superpixels are beneficial for a wide range of application domains in computer vision: 

salience detection [3-4] and tracking [5-6] etc. 

To provide suitable representation of images, superpixels should have the following properties. 

(1) Homogeneity: pixels of each superpixel should have similar colors and be connected. 

(2) Boundary Adherence: superpixels should preserve object edges of images. 

(3) Compactness: superpixels should have regular shapes and form a lattice structure. 

(4) Practical Applicability: superpixels should be computational efficient, memory saving, and easy to 

use. 

(5) Controllable Numbers of Superpixels: the number of superpixels could be specified by users. 

Note that it is negative correlation between compactness and boundary adherence [7]. A good 

superpixel algorithm should provide tunable parameters to control the generation of superpixels 

according to the requirements on these two properties. 

The published superpixel methods have two principal steps; distance computation and iteration 
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procedure, while detail discussion about these methods is described in next section of related work. In 

this paper, distance metric between image pixels is mainly considered as the baseline. Distance metric 

measures the proximity, similarity and connectivity of pixels which determines the content and the shape 

of a superpixel. Euclidean distance is the most frequently used criterion to judge the proximity and 

similarity of pixels. The connectivity of pixels needs to be calculated in the large scope. Euclidean 

distance is sensitive to noise and is based on the assumption that the underlying data distribution is 

Gaussian [8]. But these two conditions can’t be satisfied in a large scope on images. As a result, the 

connectivity of pixels that reflects the content of images can’t be measured by Euclidean distance. 

To accommodate the non-Gaussian character of images, geodesic distance is recommended which is 

computed by finding shortest paths in a connected graph [9]. Geodesic distance [10] and manifold [11] 

have also been used to design superpixel algorithms. However geodesic distance is not robust enough 

against noise and outliers as well which widely exist in natural images [12]. When there are variations 

caused by noises or outliers, all gaps between pixels along the path will be accumulated to geodesic 

distance. 

The min-max distance is proposed which is also a path-based dissimilarity measure [13]. According to 

this definition, two image pixels are located on the same object if they are either similar or there exists a 

path that the two consecutive pixels on the path are similar. This is the essential property of superpixel 

algorithms which need to preserve image edges. In the meantime, this path-based distance can eliminate 

the effect of accumulative error because only one edge is involved in the final distance value. However, 

this distance metric may loss some important spatial relations and feature variations of image contents 

because only the largest edge cost of the minimal path is taken into consideration. 

In Fig. 1, three points are considered, the common start point and the two end points of two arrows 

which are red color. The two end points have the same distance from the start point in image space, and 

the three points possess similar appearance because they are all located in the glass. Obviously Euclidean 

distance gives the same values in spatial and feature space. Geodesic distance accumulates the small gaps 

produced by illumination variation and noise. Meanwhile min-max distance captures only one edge while 

there are two extra edges along the upwards arrow actually. 

 

Fig. 1. Illustration of different distance methods 

To capture the image content that is ignored by the distance methods aforementioned, we propose a 

new distance method for superpixels generation. The contributions of this paper are listed briefly. Firstly, 

we propose a new path based distance, adaptive k distance to analyze the image content. Secondly, we 

give a computational method of this path based distance for image pixels. Thirdly, we present a 

superpixel method that integrates the spatial relation, the color similarity, and the image content between 

two pixels. Actually, the proposed distance metric can be applied to other superpixel methods as well. 

The organization of this paper is described as follows. In Section 2, we summarize the recent related 

work of superpixel methods. In Section 3, we present our method, content perception superpixel. In 

Section 4, we evaluate our superpixel method on Berkeley Segmentation Dataset (BSD500) against 

several state of the art methods. Finally, we conclude our paper and further work in Section 5. 
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2 Related Work 

In this section, some typical superpixel methods and superpixel-like segmentation methods are shortly 

summarized to give a brief introduction of this field. At the same time, algorithms adopted by these 

papers are discussed to show their emphases on superpixel generation. 

A graph-based image segmentation method is proposed in [14]. This method is initialized by defining 

each pixel as a subgraph. And then similar subgraphs are merged by evaluating their similarity until 

convergence. Quick shift is another popular image segmentation method [15] which originates from 

Mean Shift algorithm. By connecting each point to the nearest neighbor, a tree is constructed and then 

splitted to generate superpixels. Because these two methods don’t consider the requirements of 

superpixels, quite cluttered superpixels with varying sizes and irregular shapes are produced. 

As a consequence, superpixel methods are designed specifically to overcome these drawbacks. The 

published superpixel methods have two principal steps: distance computation and iteration procedure. 

Many methods like clustering, morphological processing and optimization algorithms have been 

introduced to implement the iteration procedure. Distance computation is another research direction 

which attempt to reflect the image content. 

SLIC algorithm leverages k-means clustering approach to generate superpixels [16]. Despite its 

simplicity, SLIC provides superior performance like boundary adherence and computational efficient. 

LSC maps the similarity metric of pixels to the high dimensional feature space using a kernel function 

[17]. Then simple K-means clustering method is applied to generated superpixels. SCSP builds the 

connectivity-constrained probabilistic model based on Gaussian Mixture Model [18]. Connectivity 

constraints ensure that each superpixel is simply connected. 

GSM-TM computes the geographic element distribution and image edges of topographic map firstly 

[19]. Then, both elements and edges are input to guided watershed transform to obtain superpixels. 

Waterpixels method leverage the marker controlled watershed transformation to generate superpixels 

[20]. The spatial regularized gradient image is introduced to comprise between boundary adherence and 

regularity. 

SEEDs method builds an energy driven function based on the color distribution and boundary of 

superpixels [21]. The hill climbing optimization algorithm is utilized to solve this function. LRW method 

produces initial boundaries of superpixels by lazy random walk firstly [22]. Further on an energy 

optimization framework is introduced, which is composed of the positions and the homogeneous of 

superpixels. Initial superpixels are re-fined during calculating process for these two methods. 

Another critical component of superpixel algorithms is the distance metric between image pixels. SSS 

exploits geodesic distance to sense image structures [10]. The density of superpixels can be automatically 

adjusted according to image content. M-SLIC maps the 5-dimensional image features to a 2-dimensional 

manifold [11]. The content density of images can be computed by area elements of the manifold. Similar 

to [10], M-SLIC generates small superpixels in content-dense regions and large superpixels in content-

sparse regions. A more detailed and comprehensive review of superpixels can be found in literature [1, 

23]. 

3 Content Perception Superpixel 

In this section, we describe the details of our method, including the image content analysis encountered 

in super-pixels, the path based distance computation method and the procedure of our superpixel 

algorithm. For image content analysis issue, we present a new path based distance, adaptive k distance 

method and the corresponding computing method for image pixels. Then we give the total work flow of 

our algorithm which combines Euclidean distance and the proposed path based distance. To bring down 

the computational burden, we use several strategies to simplify the distance computation. 

3.1 Image Content Analysis 

In this section, we discuss the content analysis for superpixels generation. According to the discussion 

aforementioned, the relation of two pixels is determined by three factors: spatial location, feature 

similarity and image content in-between. The first two factors are usually measured by Euclidean 

distance. But when the third factor is neglected, the measurement value remains the same even if the 
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image content in-between varies dramatically. This may lead to disconnection and irregularity on 

superpixels’ shape and size. The image content between two pixels needs to be taken into account as well. 

To solve this problem, we propose an adaptive k path based distance method for image content analysis. 

The proposed path based distance method can be synthesized into the computation of Euclidean distance 

easily. 

Firstly we give the spatial and color difference computation method for pixels. Euclidean distance is 

utilized to calculate spatial location and feature similarity of pixels. The distance of spatial locations of 

two pixels pi and pj is calculated by their image coordinates 

 

2 2( , ) ( ) ( )
s i j i j i j

d p p x x y y= − + − , (1) 

where (x, y) is the image coordinate of a pixel. The distance of feature values of two pixels is calculated 

by their pixel value in CIELAB color space 

 

2 2 2( , ) ( ) ( ) ( )
c i j i j i j i j

d p p L L a a b b= − + − + − , (2) 

where (L, a, b) is the color of a pixel. 

Our path based distance is based on geodesic distance and min-max distance. Geodesic distance and 

min-max distance are two commonly used methods to define path based distance. Geodesic distance is 

defined by 

 

1

1
min ( [ ], [ 1])

P

G ciP R

d d P i P i
−

=
∈

= +∑ , (3) 

where R is the set of all paths connecting two specific pixels and symbol | | is the set size. Min-max 

distance is defined by 

 { }{ }{1,..., 1}
min max ( [ ], [ 1])

MM c
P R i P

d d P i P i
∈ ∈ −

= + , (4) 

where only the maximum cost edge is considered in contrast to geodesic distance. These two distances 

can be obtained efficiently by finding the minimal path of two pixels. Min-max distance can alleviate the 

negative impact of noise and outliers. But some spatial relations and feature variations may be neglected 

as illustrated in Fig. 1. As a result, we need a well-designed method to refrain from these drawbacks. 

We propose an adaptive k path based distance method formulated as 

 ( )k k MM
d L Num d= ⋅ , (5) 

where parameter L is the length of the minimal path dMM and Num is the amount of maximum value along 

this path. Actually subscript k reflects the amount of edges crossing the path, which is shown in the next 

section. This method can alleviate the flaws of min-max distance which misses some important image 

contents like the edges in Fig. 1. Meanwhile this distance method inherits the robustness of min-max 

distance. Parameter L can be viewed as a penalty term. We utilize the length of a path as another metric 

in Equation 5. Under the condition of the same k, the longer the path length, and the larger value this 

distance has. This term is intuitive because the correlation of two pixels is inversely proportional to the 

length of the minimal path between them. Under this assumption, paths even encountering few edges will 

be penalized due to its too long length. 

Given the three distance measures, an evaluation criterion is needed to judge how similar two pixels 

are. To combine the three terms into a uniform criterion, it is necessary that they need to be normalized. 

Location proximity and content connectivity are normalized by their respective maximum values, the 

initial superpixel interval S and the max path length M. Because the size of images is known, these two 

parameters can be estimated in advance. Normalization of color similarity can be implemented by 

divided a constant C. The total score is then formulated as 

 ( , ) (1 )s c k
i j

d d d
Dis p p

S C M
α β α β= + + − − , (6) 

where compactness parameters control the proportion of the three terms. These two compactness 

parameters directly affect the superpixel shape and size. 
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The evaluation criterion has two types of parameters, the normalization parameters and the 

compactness parameters. Though 5 parameters are needed, they are friendly for users. The setting of 

normalization parameters and the effect of compactness parameters will be discussed in the next sections. 

3.2 Distance Computation 

In this section, we depict the adaptive k distance computation method for content perception superpixel. 

The adaptive k distance needs minimal paths between any two pixels as a preprocessing stage. The initial 

weight graph is constructed by the 4-neighbor of pixels. The minimal paths can then be calculated by 

Minimum Spanning Tree (MST). Prim and Kruskal algorithms can be applied to solve MST problem. A 

minimal path is denoted as mp(p1, p2, L) where p1 and p2 are endpoints and L is the number of pixels on 

the path. After minimal paths are acquired, the image content between two specific pixels can be 

analyzed. 

If the minimal path between two pixels has been obtained, the next step is the computation of adaptive 

k distance. Edges reflect the primary content of an image, by which superpixels should be separated. The 

goal of adaptive k distance is to capture the number of edges crossing the minimal path between the given 

two pixels. An intractable problem is the determination of parameter k. It isn’t a constant because images 

have different content and prior information is unknown. 

It can be regarded that the content of images comprises homogeneous regions and edges. In 

homogeneous regions, pixels present slight different values caused by noise and illumination etc.; in 

edges, pixels present significant variations in contrast to homogeneous regions. As a result, the maximum 

variations of a path correspond to the edges encountered by this path. Based on this observation, zero-

crossings of second derivatives of pixels can be used to capture the maximum variations. Note that values 

of nodes along a path can be regarded as magnitudes of the first gradient of pixels. Parameter k can be 

identified by the count of pixels which satisfy 

 ( ) { }2| ( ) , ( ) 0,
k i i i i

Num mp p I p T I p p mp= ∇ > ∇ = ∈ , (7) 

where symbol | | also denotes the magnitude of vectors, and T is the pre-specified threshold. 

To reduce the computation burden, several strategies are leveraged. A too long path indicates that two 

pixels have weak relations. Because superpixels are suggested regular shapes for subsequent analysis 

steps, long paths should be ignored. To implement this operation, a further step is adopted directly 

 
k

d M if L l= > , (8) 

where parameter l depends on the size of superpixels which is set as 2S in this paper and parameter M is 

the max path length. 

Given two pixels p1 and p2, the value of adaptive k distance is also related to their spatial locations and 

color similarity. According to this observation, two other strategies are introduced. In view of 

homogeneity of superpixels, a minimal path meets 

 ( , )k c i jd M if d p p µ= > , (9) 

where parameter μ is a specified threshold. In view of compactness of superpixels, a minimal path meets 

 ( , )k s i jd M if d p p ν= > , (10) 

where parameter ν is a specified threshold as well. In this paper, parameters μ and ν are set as the 

constants C and 2S respectively. These two equations show that if two pixels are away from each other in 

color space or image space, the minimal path between them is set at the maximum value M. Under these 

three conditions, the number of needed minimal paths can be reduced dramatically. 

3.3 Algorithm Procedure 

In this section, we present the implementation details of our superpixel algorithm. Firstly the block 

diagram of the major work flow is illustrated in Fig. 2. Our method comprises four steps: a pre-

processing step and a main loop that is composed of three steps. The generation of MST is a 

preprocessing stage before the main loop procedure. The loops should be executed until the error 



Journal of Computers Vol. 29, No. 5, 2018 

85 

between two iterations converges. Generally after about 20 loops, shapes and locations of superpixels 

trends to be stable. The number of loops can be controlled by users on account of their requirement on 

accuracy. According to our experiments, 20-30 loops are recommended as reference. 

 

Fig. 2. Work flow of our method 

Parameters of the proposed algorithm include compactness parameters α, β and normalization 

parameters S, M, C. Suppose that the number of pixels is N and the desired number of superpixels is K. 

Parameter S is the initial interval of superpixel centers that /S N K= . Parameter M is set as the length 

of perimeter of images and parameter C can be in the range [10, 40]. Parameter C isn’t a decisive 

parameter because it can be adjusted by compactness parameters further. Compactness parameters should 

be set according to users’ requirements on shapes of superpixels.  

The processing steps are shown in detail in Program 1. After minimum spanning tree of image pixels 

has been obtained or total scores have been evaluated, superpixel centers need to be figured out again. 

The initial superpixel centers are located on a regular grid with S pixels interval. After each loop, the 

superpixel center will be transferred to the average location of all the pixels belonging to the same 

superpixel. The color term dc is the Euclidean distance between colors of pixels and the mean color of the 

corresponding superpixel. The spatial term ds is the Euclidean distance between locations of pixels and 

the center of the corresponding superpixel. The content term dk is the image structure variations along the 

path from pixels to the center of the corresponding superpixel. Finally, each pixel is assigned to a label 

that is the serial number of superpixels. 

 

Program 1: Superpixel Generation. 

Input: image I, number of superpixels K and compactness parameters α, β 
Output: labels of image pixels 
/* Initialization */ 
Initialize superpixel centers S

k
 on a regular grid with S pixels 

interval 
Generate MST for image I 
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Label(p
i
) = -1 for each pixel 

Dis(p
i
) = ∞ for each pixel 

Repeat 20-30 times 
/* Assignment */ 
For each superpixel with center S

k
 

  For each pixel p
i
 

    If p
i
 is boundary 

      Compute the distance D between p
i
 and S

k
 

      If D < Dis(p
i
) 

        Dis(p
i
) = D 

        Label(p
i
) = k 

  End For 
End For 
 

To reduce the amount of path re-calculation, two extra principles are applied during the loop procedure: 

(1) Only paths with two endpoints at the center and boundary of superfixels are considered;  

(2) If centers of superpixels don’t move dramatically, paths maintain unchanged. 
According to 1, only the distance of boundary pixels of superpixels is computed in each iteration. As a byproduct, 

this operation guarantees the connectedness of superpixels which provides better compactness. According to 2, if 

the center of a superpixel satisfies 

 

1t t

s s
d d ε

+

− < , (11) 

adaptive k distance of boundary pixels stays the same as the previous round. If most boundary pixels of a 

superpixel remain unchanged and the location of the corresponding center doesn’t move more than the 

threshold ε, the adaptive k distance of these boundary pixels maintains unchanged as well. This case 

occurs especially several iterations later. 

4 Experiment and Discussions 

In this section, we set up the experiments to show the performance of the proposed superpixel method. 

The Berkeley Segmentation Dataset (BSD500) is utilized to evaluate the performance of our method. 

BSD500 is a widely used public dataset in the field of image segmentation [24]. BSD500 dataset contains 

three parts: train set, validation set and test set. This dataset comprises 500 color images totally. At least 

5 human annotated ground truth segmentations are given for each image. Superpixel methods are treated 

as a kind of pre-processing tasks in which parameters are usually appointed by users to acquire 

interesting information. In section 4.3, we can see how the specified parameters depend on the need of 

different requirements. So no parameter learning procedure is introduced in our experiments. All the 

three parts are used for performance evaluation. Our method is compared with several recent state of the 

art superpixel methods, including SEEDs [21], WP [20], LSC [17] and LRW [22]. 

In the remaining part of this section, the detailed content is presented. Firstly, evaluation metrics 

involved in our paper are discussed in Section 4.1. Secondly, qualitative results and quantitative results 

are given out in Section 4.2 and 4.3 respectively. 

4.1 Evaluation Metrics 

We utilize the standard metrics to evaluate the performance of superpixel methods, which are Boundary 

Recall (BR), COmpactness (CO) and three types of under-segmentation error, Levin’s Under-

segmentation Error (LUE), Neubert’s Under-segmentation Error (NUE) and Michael’s Under-

segmentation Error (MUE). The generated superpixels are denoted as { }
i

S s=  and the segmentations of 

the corresponding ground truth are denoted as { }
i

G g= . Evaluation results are computed based on these 

two values. For BR and CO, higher is better; for LUE, NUE and MUE, lower is better. 

4.1.1 Boundary Recall 

Boundary recall is a commonly used metric to assess boundary adherence [24]. Boundary recall 
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calculates the percentage of borders from the ground truth that are captured by the borders of superpixels. 

It can be formulated as 

 

( ){ }| , , 2
( , )

| |

p p G D p S
BR S G

G

∈ <

= , (22) 

where D(p, S) is the minimal distance between p and pixels in S. 

4.1.2  Compactness 

Compactness is firstly proposed by Alexander Schick [7]. This metric is utilized to evaluate the shape of 

superpixels especially the boundary length. Compactness is defined as follows 

 

( )41
( , )

( )
i

i

i

s i

A s
CO S G s

K P s

π

= ∑ , (33) 

where A is the area of superpixel si and P is the area of a circle that has the same perimeter with si. 

Compactness compares the area of each superpixel with the area of a circle with the same perimeter. The 

larger the area of a region for a given boundary length, the higher is its compactness. As a result, this 

metric favors regular superpixels. 

4.1.3  Under-segmentation Error 

Under-segmentation error is another commonly used metric to assess boundary adherence. In ideal 

conditions, each superpixel si should be completely covered by only one segmentation gj from the ground 

truth. Under-segmentation error measures how many pixels from si that has an intersection with gj 

“escape” across the boundary of gj. Owing to different viewpoints, different formulations about under-

segmentation error are proposed. For comprehensive comparisons, we leverage three definitions of 

under-segmentation error. 

Levin’s Under-segmentation Error (LUE). This is the first definition of under-segmentation error [25]. 

It can be formulated as 

 

( )01

| |

i i

i

i is g

g i

s g
LUE

G g

∩ ≠

−

=

∑
∑ , (44) 

where |gi| is the number of pixels in the segmentation gi and |G| is the number of human-annotated 

segmentations. For each ground truth segmentation, the number of pixels in the superpixels that are 

overlap with this ground truth segmentation minus the number of pixels in the segmentation. Then these 

pixels are summarized and divided by the number of segmentations in the ground truth. This metric has 

two main drawbacks. Firstly LUE penalizes those superpixels that are only slightly overlapping with 

neighboring ground truth segmentations. For example, if some pixels of a superpixel locate on the 

boundary of a ground truth segmentation, LUE penalizes this superpixel on at least two ground truth 

segmentations with this boundary. Secondly the result of LUE doesn’t lie in [0, 1]. 

Neubert’s Under-segmentation Error (NUE). Neubert et al propose a new definition of under-

segmentation error [26] which can be formulated as 

 { }
1

min ,

i i i

i i i i

g s g

NUE s g s g
N φ∩ ≠

= ∩ −∑ ∑ , (55) 

where |sj∩gi| is the number of pixels that belong to sj and gi simultaneously, and |sj-gi| is the number of 

pixels that belong to sj but not gi. For each ground truth segmentation, the minimal value between the 

intersection set and the difference set is adopted from the superpixels that are overlap with this ground 

truth segmentation. Then these values are summarized and divided by the number of pixels in the image. 

The value of NUE lies in the interval [0, 1] because the inner sum is less than or equal to the size of gi. 

Michael’s Under-segmentation Error (MUE). Michael et al propose another new definition of under-

segmentation error [21] which can be formulated as 
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1
max

i

j

j g j i

s

MUE s s g
N

= − ∩∑ , (66) 

where the operations are the same as those in NUE. For MUE, each superpixel is assigned to only one 

ground truth segmentation that has the largest overlap. Pixels of each superpixel that don’t belong to the 

corresponding ground truth segmentation are taken into account. Finally these pixels are summarized and 

divided by the number of pixels of the image. The value of MUE also lies in the interval [0, 1] because 

each superpixel is counted only once. 

An interest phenomenon is that NUE and MUE are relevant even if their definitions seem quite 

different according to Equation 15 and 16. The detailed explanation is as follows. First of all, a simple 

sketch of NUE and MUE is shown in Fig. 3. For NUE, the smaller parts of sp1 are counted for gt1 and 

gt2; for MUE, the smaller parts of sp1 are counted as well but only for gt1. The difference is that NUE 

traverses all the ground truth segmentations, so some superpixels are counted more than once. Meanwhile 

MUE traverses all the superpixels only once. As a result, NUE is at least two times as much as MUE 

because the concerned superpixels are covered by at least two ground truth segments. 

 

Fig. 3. A sketch of NUE and MUE 

4.2 Qualitative Results 

In this section, we present the qualitative results of our superpixel method. First of all, we give the 

parameter setting of our method in Table 1 where N is the number of pixels and K is the number of 

superpixels. Two groups of compactness parameters are adopted to show the performance of our method, 

which are (0.50, 0.45) and (0.75, 0.20). 

Table 1. Parameters 

Parameters Values 

α 0.50/0.75 

β 0.45/0.20 

S /N K   

M 4N 

C 10 

 

Fig. 4 shows a few screenshots generated by our method. 300 superpixels are generated for each image. 

Part (a) is generated under the condition that α and β are 0.50 and 0.45; Part (b) is generated under the 

condition that α and β are 0.75 and 0.20. It can be found that the compactness parameters control the 

shape of superpixels directly. Higher α produces more regular superpixels and lower α produces 

superpixels more adherence to edges. 

As indicated by numbers in red in the first row of Fig. 4, these two superpixels have similar shape and 

size. But from their appearance, these superpixels have different contents. On the contrary, other two 

superpixels indicated by numbers in the second row have similar contents even though they have 

different shape and size. Our method presents a powerful tool to describe these cases. Normalized 

adaptive k distance of pixels locating in the same superpixel is computed and summed which is shown in 

Table 2. Superpixel 1 and superpixel 2 have quite different values; superpixel 3 and superpixel 4 have 

almost the same value. These values depict the contents of these superpixels accurately. 
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(a) α and β are (0.50, 0.45) (b) α and β are (0.75, 0.20) 

Fig. 4. Screenshots of our method 

Table 2. Contents of superpixels 

Superpixels adaptive k distance 

1 0.733097 

2 0.055770 

3 0.000731 

4 0.001266 

4.3 Quantitative Results 

In this section, we present the quantitative results of our superpixel method comparing with the state of 

the art methods based on the metrics described in Section 4.1. The evaluation metrics are divided into 

two groups according to their emphasis on superpixels. One group is boundary recall and compactness 

which focuses on the shape of superpixels; the other is the three types of under-segmentation error which 

focuses on the size and location of superpixels. 

Boundary recall and compactness curve of our method and the other methods are shown in Fig. 5. 

From this figure, we acquire the completely coincident results as Alexander Schick et al [7]. The higher 

the boundary recall, the lower the compactness is and vice versa. This is apparent because for a high 

boundary recall, superpixels have to capture all minor details of an image which results in the more 

irregular shapes. Boundary recall and compactness conflict to each other so they can’t be concerned 

about simultaneously. This conflict comes from the inherent nature of images because edges of images 

aren’t horizontal alignment or vertical alignment in general.  

The conclusion from Fig. 5 doesn’t depend on the superpixel methods no matter how the parameters 

are tuned. As a result, the desire to improve the performance of these two metrics can’t be implemented. 

But from another point of view, these two metrics are mutually complementary. Until now, none of the 

published methods achieve a satisfactory trade-off between the two metrics. 
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(a) Boundary recall (b) Compactness 

Fig. 5. Boundary recall and compactness curves 

In real applications, superpixel methods are usually utilized as a pre-processing stage to provide 

operation primitives for higher level vision tasks such as image segmentation and object tracking. This 

means that superpixel methods need to be adapted to various sorts of requirements in different 

application scenarios. For example, boundary recall is more important for salience segmentation; 

compactness is more important for image pyramid representation. As a result, it is necessary for 

superpixel methods that they should provide a mechanism to compromise between boundary recall and 

compactness. Our method provides this kind of mechanism as the other methods involved in this section. 

The compactness parameters α, β can be tuned so that our method can handle the demand on boundary 

recall and compactness. The effect of compactness parameters is listed as follows: the bigger the α, the 

more compact superpixels are; the bigger the β, the more tightly superpixels are adherence to image 

edges. 

  

(a) NUE (b) MUE 

 

(c) LUE 

Fig. 6. Under-segmentation error curves 
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Comparisons of our method and the other methods on the three type under-segmentation errors are 

shown in Fig. 6. First of all, it is clearly that as the increasing of the number of superpixels, values of the 

three metrics trend to decrease gradually for all methods. Even though seeds method fluctuates within a 

certain range on NUE and MUE, the downward tendency has not changed. It can be concluded that one 

determining factor of UE is the number of superpixels which controls the superpixel size. Part (a) and (b) 

of Fig. 6 show that results of these methods on NUE and MUE agree with the analysis in Section 4.1. 

Graph representations of NUE and MUE are almost the same as each other. Besides, NUE is about twice 

as much as MUE. This consequence implies that most superpixels cover no more than two ground truth 

segmentations. 

Part (a) and (b) of Fig. 6 shows that our method achieves the second best performance on NUE and 

MUE comparing with the state of the art methods. Although seeds method achieves the best performance 

among these methods especially on NUE and MUE, there exists a difficult issue to tackle for seeds 

method. Its performance on NUE and MUE doesn’t depend on the number of superpixel monotonously. 

If we want to reduce its NUE and MUE, it may not be successful by increasing the number of superpixels 

purely. This makes seeds method not so kindly to use in practical applications. Part (c) shows that our 

method achieves the best performance on LUE comparing with the state of the art methods when the 

number of superpixels is larger than about 270. On the whole, our method is a satisfactory tool for image 

over-segmentation according to the results of experiments. Especially our method provides extra image 

content comparing with the other methods referred in this paper. 

5 Conclusions and Future Work 

Superpixels aim to provide low level image segmentations as a pre-processing stage to alleviate the 

complexity of subsequent operations. In this paper, our research concentrates on the distance calculation 

of superpixel algorithms. Existing superpixel methods focus on the spatial and color difference of pixels 

where Euclidean distance is widely used. But it is difficult for Euclidean distance to depict the image 

content. We propose a path based distance, adaptive k distance, to make up this defect. Following the 

definition of adaptive k distance, we give a computation method of adaptive k distance on image pixels. 

Finally we present the whole algorithm procedure of our method. 

In the experiment section, we leverage the principal evaluation criteria which are divided into two 

groups according to their emphasis on superpixels. One group is boundary recall and compactness, the 

other group is the three types of under-segmentation errors. Comparisons between our method and the 

other methods are presented on the basis of these evaluation criteria. We discuss the results on the public 

dataset BSD500 in detail and analyses the availability of these methods in real applications. In the 

meantime, we investigate these evaluation criteria to give some instructions about their effect on 

evaluating superpixels. As a conclusion, our method achieves favorable performance comparing with the 

state of the art methods. In addition, the proposed distance method can be used in the other superpixel 

algorithms easily. 

In future, we will improve our method continuously. First we will reduce the computational 

complexity of our method in which the generation of MST is a time-consuming operation. We will 

attempt to bring in fast algorithms of MST. Second we will study how the image contents sensitive 

superpixels enhance subsequent operations. Though image contents of superpixels are known, it is still an 

issue to leverage this information in practical applications. Finally we will utilize image pyramid to speed 

up our method based on the characteristic of natural images. 
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