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Abstract. The filled function method is an effective approach to find the global minimizer of 

multi-modal functions because of its strict theoretical framework. Most of the conventional 

filled functions are numerical unstable due to exponential or logarithmic term and sensitive to 

parameters; in addition, most filled functions are discontinuous and non-differentiable that might 

influence effectiveness of the algorithm. In this paper, a new filled function with two parameters 

is proposed for solving global optimization problem, and several important theorems are proved. 

Unusually, this proposed filled function is continuously differentiable and non-sensitive to all 

parameters; although this new filled function contains two parameters, all of the parameters are 

easily set in numerical experiments. Based on these, a new filled function algorithm is proposed 

and tested on several benchmark functions. The numerical experiment results show that the new 

filled function algorithm is efficient. In addition, the proposed algorithm is compared, and the 

results indicate that the proposed filled function method can find more optimal solutions.  

Keywords:  filled function, global optimization, local minimizer, global minimizer 

1 Introduction 

More and more practical problems in science, economics, engineering and other fields can be formulated 

as global optimization problems. Lots of researchers have been attracted to the field of global 

optimization. In recent years, many new theoretical and computational contributions have been reported 

for solving global optimization problems. Global optimization is mainly concerned with the 

characteristics and algorithms on the multi-modal functions. In general, the existing approaches can be 

classified into two categories: deterministic methods [1-30] and probabilistic methods [31-36]. The 

typical examples of the former are the filled function method (FFM) [1-25], the trajectory method [26-

27], the tunneling method [28], and the covering method [29, 30], whereas ones of the latter are the 

clustering method [31] and the methods reported in [32-33], the simulated annealing method [34] and 

genetic algorithms [35-36]. 

However, the existence of multiple local minima of a general nonconvex objective function makes 

global optimization become a great challenge. For global optimization problems, there are two major 

issues: 

(1) How to find a lower minimizer of the objective function from a known local minimizer. 

(2) How to evaluate the convergence and, accordingly, design the stopping criteria.  

In this paper, we shall focus our research on the FFM, and mainly issue (1). Among the existing methods 

for global optimization problems, the FFM appears to have several advantages over others mainly due to 

its relatively easy realization with a process that aims at successively finding smaller local minima. The 

FFM was firstly proposed by Ge in [1], which was used to solve the global minimizer of unconstrained 

                                                           
* Corresponding Author 



Journal of Computers Vol. 29, No. 5, 2018 

97 

multi-extremum function. Later, many scholars have also done a lot of valuable works to improve this 

method [3-10, 37-41]. However, conventional filled functions are often nondifferentiable [8], need more 

than one adjustable parameters [9-10], or contain ill-conditioned terms [1-2]. To overcome these 

shortcomings, some parameter-free filled functions [38-39] and some filled functions without ill-

conditioned terms [40] are proposed, however, they are usually nondifferentiable, which often results in 

additional local minimizers. And a continuously differentiable filled function with one parameter has 

been proposed [14], but the parameter is not easy to adjust. To deal with this problem, a new class of 

filled function with two parameters, which is continuously differentiable and all of the parameters is easy 

to adjust, is proposed in this paper. Based on this, a new filled function method is proposed, and 

numerical experiment shows that the methods are efficient and numerical stability. In addition, the 

proposed method can be used to solve the multidimensional problem. 

2 Overview of the FFM 

In this paper, we consider the following global optimization problem: 

 

min ( )
( )

. .n

  f x
P       

s.t     x R

⎧
⎨

∈⎩
  

where ( ) : nf x R R→  is a twice continuously differentiable function. Suppose ( )f x  satisfies the 

condition ( )f x →+∞  as x →+∞ . Then there exists a closed bounded domain Ω  called operating 

region that contains all local minimizers of ( )f x . Then the global optimization problem (P) can be 

rewritten into an equivalent form as follows. 

 

[ ] { }
min ( )

( )
. , , , .n

  f x
P1       

s.t     x l u x|l x u l u R

⎧⎪
⎨

∈Ω = = ≤ ≤ ∈⎪⎩
 

Because Ω  can be estimated before problem (P) is solved, so we can assume that Ω  is known without 

loss of generality. We only consider problem (P1) in the following. 

2.1 Basic Concepts and Assumptions  

In this paper, we adopt the following symbols. 

k : The iteration number; 

k
x ′ : The initial point in the k-th iteration; 

k
x
∗ : The local minimizer of the objective function in the k-th iteration; 

k
f ∗ : The function value at 

k
x
∗ ; 

k
B

∗ : The basin of ( )f x  at an isolated local minimizer 
k
x
∗ ; 

x
∗ : The global minimizer of the objective function. 

Assumption 1. The function ( )f x  in (P1) is continuously differentiable in n

R  and ( )f x  has only a 

finite number of minimizers in Ω , and therefore every minimizer is an isolated minimizer. 

The basin 
k

B
∗  of ( )f x  at a local minimizer 

k
x
∗  is defined in [1, 2] as a connected domain, and it 

contains 
k
x
∗  and the steepest descent trajectory of ( )f x converges to 

k
x
∗  from any initial point in 

k
B

∗ . The 

minimal radius of 
k

B
∗  at an isolated minimizer 

k
x
∗  is defined as 

 inf
k

k
x B

R x x
∗

∗

∉

= − . (1) 

Radius R  is not zero if 2 ( )
k

f x∗∇  is positive definite. The basin of ( )f x  at 
k
x
∗  is said to be lower than 

another basin of ( )f x  at another local minimizer 
1
x
∗  if and only if 

1
( ) ( )

k
f x f x∗ ∗

< . The hill of ( )f x  at 

k
x
∗  is the basin of ( )f x−  at its isolated minimizer 

k
x
∗ . 
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The definition of the filled function was first proposed by Ge in [1] as follows. 

Definition 1. Suppose 
k
x
∗  is a current local minimizer of ( )f x . ( , )

k
P x x

∗  is said to be a filled function of 

( )f x  at 
k
x
∗ , if it satisfies the following properties: 

(i) 
k
x
∗  is a strictly maximizer of ( , )

k
P x x

∗  and the whole basin 
k

B
∗  of ( )f x  at 

k
x
∗  becomes a part of a 

hill of ( , )
k

P x x
∗ ; 

(ii) ( , )
k

P x x
∗  has no minimizers or stable points in any basin of ( )f x  higher than 

k
B

∗ ; 

(iii) If ( )f x  has a lower basin than 
k

B
∗ , then there is a point 

1k
x

+

′  in such a basin that minimizes 

( , )
k

P x x
∗  on the line through x  and 

k
x
∗ . 

Based on the filled functions, a global optimization problem can be solved via a two-phase cycle.  

In Phase 1, we start from an initial point and use any local minimization method to find a local 

minimizer 
k
x
∗  of ( )f x . 

In Phase 2, we construct a filled function at 
k
x
∗

 and minimize the filled function in order to identify a 

point 
1k

x
+

′  with
1

( ) ( )
k

f x f x∗
+

′ < . If such a point 
1k

x
+

′  is found, 
1k

x
+

′  is certainly in a lower basin than
k

B
∗ . 

We can then use 
1k

x
+

′  as an initial point in Phase 1 again, and hence we can find a better local minimizer 

1k
x
∗

+
 of ( )f x  with 

1
( ) ( )

k k
f x f x∗ ∗

+
< . This process repeats until no better solution can be found. The final 

local minimum will then be taken as a global minimizer of ( )f x .  

2.2 Overview of the FFM 

As a deterministic yet universal global optimization technique, the development of the FFM undergoes 

the following generations. The representative examples of the FFM in the first generation are P-functions 

[1] and G-functions [2] given by 

 ( ) [ ]2( , , ) exp / / ( )
k

P x r x x r f xρ ρ
∗

= − − + , (2) 

 [ ]{ }2( , , ) ln ( )
p

kG x r r f x x xρ ρ
∗

= − + + − . (3) 

The first-generation filled functions share a common feature: there are two adjustable parameters, 

r and ρ , which greatly affect the performance of the algorithms and need to be appropriately adjusted. 

However, how to adjust the parameters is a very difficult task. Due to these drawbacks, the second-

generation filled functions were proposed and they have only one parameter. Among them, the best 

known one is perhaps the Q-function [2]: 

 ( )2( , ) ( ) ( ) exp
k k

Q x a f x f x a x x∗ ∗⎡ ⎤= − − −⎣ ⎦ . (4) 

where the adjustable parameter is a. This filled function is significantly simple than those in the first 

generation. However, the Q-function is liable to be ill-conditioned in practice since its function value 

increases exponentially due to an exponential function in it. As a becomes larger and larger, which is 

required by the FFM itself, the rapidly increasing exponential function value may result in an overflow in 

the computation. To overcome this drawback, the H-function was proposed by Liu [40]: 

 

21
( , )

ln 1 ( ) ( )
k

k

H x a a x x
f x f x

∗

∗

= − −
⎡ ⎤+ −⎣ ⎦

 (5) 

The H-function retains the advantage of the Q-function with only a single parameter and without 

exponential terms. The performance of the H-function in numerical experiments for a large set of testing 

functions was quite satisfactory [40]. H(X,a) can be regarded as the third generation due to the absence of 

the exponential term. Nevertheless, the H-function has a drawback which is discontinuous at 

{ }/ ( ) ( )
k

x S x f x f x∗∈ = = .  
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However, in one hand, the continuity and differentiability on the FFM are required to the convergence 

analysis in theory [10]. On the other hand, computationally, most local minimization algorithms for the 

numerical nonlinear programming require the gradients information in their procedures (readers can refer 

to [42] or [43] for detail). Thus, it is very necessary to develop a continuously differentiable filled 

function with as few parameters. There are already some works in this area [e.g., 14], but the parameters 

of the filled functions are not easy to adjust. Based on this consideration, a continuously differentiable 

filled function with two parameters is designed, and the parameters is relatively easy to adjust and 

insensitive. 

3 A New Filled Function and Its Properties 

Definition 1 relies on the concept of the basin and hill of ( )f x , which requires that the minima in the 

operating region are isolated, and Definition 1 also requires there exists a minimal point of ( )f x  along a 

line. This is more difficult to be guaranteed. Therefore, many improvements in the definition are given in 

the literatures [e.g., 41], which make it more convenient to construct a new filled function. In this section, 

we use the revised definition in [41] for the problem (P1).  

Definition 2. Suppose 
k
x
∗  is a current local minimizer of ( )f x . ( , )

k
P x x

∗  is said to be a filled function of 

( )f x  at 
k
x
∗ , if it satisfies the following properties: 

(1) 
k
x
∗  is a strictly maximizer of ( , )

k
P x x

∗ ;  

(1) For any 
1

x∈Ω , one has 0 ( , )
k

P x x
∗

∉∂ , where { }1
/ ( ) ( ),

k k
x f x f x x x∗ ∗

Ω = ∈Ω ≥ ≠ ; 

(1) If { }2
/ ( ) ( ),

k
x f x f x x∗

Ω = < ∈Ω  is not empty, then there exists a point 
2k

x ′ ∈Ω  such that 
k
x ′  is a 

local minimizer of ( , )
k

P x x
∗ . 

Note that Definition 2 about the filled function is different from the definition mentioned in [1]. It is 

much easier to construct a new filled function by Definition 2 and the local optimal solution of the filled 

function can be easily found. For example, suppose that 
k
x
∗  is not a global minimizer, then by condition 

(III) of definition 2, we can find a point 
2k

x ′ ∈Ω  by minimizing ( , )
k

P x x
∗ . Therefore, we can obtain a 

local minimizer 
1k+

x
∗  of ( )f x  by searching ( )f x  starting at 

k
x ′  via local search schemes. In the process 

of minimizing ( , )
k

P x x
∗ , it does not require, unlike the definition 1, that 

1k+
x
∗  must be on the straight line 

through 
k
x ′  and 

k
x
∗ . So the design of the filled function is much easier and flexible. 

In order to find a global minimizer of ( )f x , the major issue of the filled function method is to find a 

lower minimizer of ( )f x  or justify whether the obtained local minimizer is a global minimizer of ( )f x . 

This heavily relies on the performance of the filled function used. 

In this section, we propose a new filled function for problem (P1) at a local minimizer 
k
x
∗  as follows: 

 

( )

( )
( )

2

( , ) ( ) ( ) ,

0, 0,

arctan , 0.

k k k
P x x x x g f x f x

                  t
g t

r t tρ

∗ ∗ ∗= − − + −

≥⎧⎪
= ⎨

⋅ <⎪⎩

, (6) 

where r is an adjustable positive real number as large as possible, used as the weight factor, and 0ρ >  is 

an even number. 

Note that the proposed filled function has some advantages: first, the parameter r is a positive real 

number as large as possible, thus it is easy to adjust, and second, it is continuously differentiable, which 

makes it more easily solved by the existing local optimization method, and finally, ( )arctan 0,
2

t
ρ π⎡ ⎞
∈ ⎟⎢
⎣ ⎠

 is 

bounded, which ensures that the calculation of ( , )
k

P x x
∗  will not overflow and is numerical stability. The 

following theorems show that ( , )
k

P x x
∗  satisfies Definition 2. 
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Theorem 1. Suppose that 
k
x
∗  is a local minimizer of ( )f x , then 

k
x
∗  is a strictly local maximizer of 

( , )
k

P x x
∗ . 

Proof. Since 
k
x
∗  is a local minimizer of ( )f x , then there exists a small positive real number ε , and a 

neighborhood ,
k

U(x )δ ε
∗

= , such that for all x δ∈ , 
k

x x
∗

≠ , and ( ) ( )
k

f x f x∗> .  

Then 
2

( , ) 0 ( , )
k k k k

P x x x x P x x
∗ ∗ ∗ ∗

= − − < = . Thus, 
k
x
∗  is a strictly local maximizer of ( , )

k
P x x

∗ . 

Theorem 1 clearly shows that ( , )
k

P x x
∗  satisfies the property (I) of Definition 2. 

Theorem 2. Suppose Assumption 1 is satisfied, 
k
x
∗  is a local minimizer of ( )f x , for any 

 { }1
/ ( ) ( ), ,

k k
x x f x f x x x x∗ ∗

∈Ω = ≥ ∈Ω ≠ , one has 0 ( , )
k

P x x
∗

∉∇ . 

Proof. For any 
1

x∈Ω , ( ) ( )
k

f x f x∗≥ , and 
k

x x
∗

≠ , one has ( )( , ) 2 0
k k

P x x = x x
∗ ∗

∇ − − ≠ . Consequently, 

0 ( , )
k

P x x
∗

∉∇ . 

Theorem 3. Suppose Assumption 1 is satisfied, 
k
x
∗  is a local minimizer of ( )f x , and  

{ }2
/ ( ) ( ),

k
x f x f x x∗

Ω = < ∈Ω  is not empty, then there exists a point 
2k

x ′ ∈Ω  such that 
k
x ′  is a local minimizer 

of ( , )
k

P x x
∗

. 

Proof.  

(1) For any 
2

x∈Ω , ( )
2

( , ) ln(arctan ( ) ( ) )
k k k

P x x = x x r f x f x
ρ

∗ ∗ ∗

− − + ⋅ − , ( , ) 0
k

P x x
∗

>  is very easy to 

guarantee, when r is a positive real number as large as possible. Thus, there exists 0,r >  and 
2

x∈Ω , 

such that ( , ) 0
k

P x x
∗

> .  

(2) For any 
1

x∈Ω , ( , ) 0
k

P x x
∗

< , and in theorem 2, for any 
1

x∈Ω , one has 0 ( , )
k

P x x
∗

∉∇ .  

(3) In addition, ( , )
k

P x x
∗  is continuously differentiable,  

Thus, there exists a point 
2k

x ′ ∈Ω , such that ( , ) 0
k k

P x x
∗′∇ = , and 

k
x ′  is a local minimizer of ( , )

k
P x x

∗ . 

Theorems 1-3 state that the proposed filled function satisfies properties of Definition 2. 

4 Filled Function Algorithm 

4.1 A Local Search Method 

Conventional local optimization method minimize function ( )f x  directly from the initial point, and then 

a local minimizer 
k
x
∗  is obtained. In the process, the function is called repeatedly when the derivative and 

the search direction are calculated, in addition, the number of function evaluations is also increased in the 

one-dimensional search process. More importantly, with the increase of dimension, the number of 

iterations is also increasing, and the number of function evaluations has also increased. Thus, the amount 

of computation for the traditional local search methods is very large, which would affect the 

computational efficiency. In this subsection, a local search strategy called randomly and uniformly local 

search (RULS) is given [11], which can make the initial point closer to the local optimal solution, thereby 

the number of iterations and the number of function evaluations will be reduced, and the convergence 

speed will be accelerated. 

The details for RULS are as follows: 

Step 1. [ ] { }, , ,

n

k
x l u x|l x u l u R′ ∈Ω = = ≤ ≤ ∈  is an initial point for the k-th iteration, and M is the set 

of all points that have been used so far. Calculate 

1

1

1

M -

k i

i

x x

a
M -

=

′ −

=

∑
, 

i
x M∈ . 
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Step 2. Γ∈Ω  is a neighborhood at 
k
x ′ , where [ ], , ,

l u k k

a a

x e x e

m m

⎡ ⎤′ ′Γ = Γ Γ = − +⎢ ⎥
⎣ ⎦

 1m > , and 

(1, ,1)T n
e R= ∈� . 

Randomly and uniformly select b n∗  points { }1 2
, , ,

k bn
Y y y y= �  in Γ , where n  is the dimension of 

the problem, and b  is the number of points selected in each dimension, { },
k

M M Y= . 

Step 3. Calculate the function value of these points { }1 2
, , ,

k bn
Y y y y= �  to find the points Y  

corresponding to the smallest function value, where 

 { }1 2
, {1,2, , }

argmin ( ), ( ), , ( )
i

bn
y i bn

Y f y f y f y
∈Γ ∈

=

�

� . 

Let 
1

,

argmin{ ( ), ( )}
k k

k
x y Y x

X f x f y
∈ ∪

=  as a set of the initial points. 

Step 4. Starting from any point 
1kz X∈ , minimize ( )f x  by using a local optimization method to 

obtain a local minimizer sequence { }2 k
X z

∗

=  and a local minimum value sequence { }2
( )

k
F f z∗= , set 

{ }2,M M X= . 

Step 5. Calculate { }( ) min ( )
k k

f x f z∗ ∗

=  to obtain a local minimizer 
k
x
∗ , { },

k
M M x∗= . 

Explanation of RULS algorithm: uniformly and randomly generate some points near the initial point 

k
x ′ , and select one of the points corresponding to the smallest function value as the new initial point to 

minimize the function ( )f x , and obtain a local minimizer 
k
x
∗ . 

4.2 Filled Function Algorithm 

Based on the results of the previous content, a new filled function algorithm is proposed as follows. 

Step 1. Initialization Step 

(1) Choose a tolerance 0ε > , e.g. : 1.0 20eε = − . 

(2) Choose a large integer constant B  and a positive real number as large as possible r , and a small 

constant : 1.0 3eδ = − . 

(3) Set 
1

( )
k

f x∗
−

= +∞ , and : 1k = . 

Step 2. Randomly and uniformly select b n∗  points 
k
Y  in the operating region, where 

{ }1 2
, , , , , {1,2, , }

k bn i
Y y y y  y i bn= ∈Ω ∈� � , and n  is the dimension of the problem, and b  is the number 

of points selected in each dimension. Set { },
k

M M Y= , calculate the function value of these points, and 

find the points corresponding to the smallest function value { }1 2
, {1,2, , }

argmin ( ), ( ), , ( )
i

bn
y i bn

Y f y f y f y
∈Γ ∈

=

�

� . 

Select 
k
x Y∀ ∈ . 

Step 3. Starting from
k
x , minimize ( )f x  by using RULS to obtain a local minimizer 

k
x
∗ , set 

{ },
k

M M x
∗

= and go to Step 6. 

Step 4. Construct  

 ( )
2

( , ) ( ) ( )
k k k

P x x x x g f x f x∗ ∗ ∗

= − − + − , 

 ( )
( )2

0, 0,

arctan , 0.

                     t
g t

r t    t

≥⎧⎪
= ⎨

⋅ <⎪⎩
 

Step 5. Set i

k
x x eδ

∗

= + , use x  as the initial point to minimize ( , )
k

P x x
∗  by using RULS, and find 

minimizers x′  of ( , )
k

P x x
∗ . Set { },M M x′= , 

1
,

k
x x

+
′=  and 1k k= + , and then go to step 3. 

Step 6. Termination step 
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If k B<  or 
1

( ) ( ) , 1,2,
k k

f x f x  kε
∗ ∗

−
− ≤ = � , or ( , )

k
P x x

∗  has no stable point, the algorithm stops and 

k
x x
∗ ∗

=  is taken as a global minimizer of ( )f x ; Otherwise, increase r and go to step 4. 

Some explanations about the above filled function algorithm are necessary. 

(1) In minimization to ( )f x  and ( , )
k

P x x
∗ , a local optimization method is needed to select firstly. In 

our algorithm, the Matlab function ‘fmincon’ is used. 

(2) In step 5, the smaller δ  is needed to select accurately, in the algorithm, the δ  is selected to 

guarantee that ( , )
k

P x x
∗

∇  is greater than a threshold. 

(3) Step 5 means that if local minimizer x′  of ( , )
k

P x x
∗  is found in Ω  and with 

1
( ) ( )f x f x∗′ < , we can 

use x′ as the initial point to minimize ( )f x  and obtain a better local minimizer of ( )f x . 

5 Numerical Experimentation 

5.1 Test Problems 

In this section, the proposed algorithm is tested on problem 1 and some benchmark problems 2-9 taken 

from [9]. 

Problem 1. (One-dimensional function) 

 

min ( ) sin sin 2 cos4 ,

. . 4,

f x x+ x- x

s t    -2 x

=

≤ ≤
 

The global minimizer is 1.4523,x -
∗

=  and the global optimal value is ( ) 2.1175f x∗ = − . 

Problem 2. (Two-dimensional function) 

 

( ) ( )
2 2

2 2 1 2 1

1 2

min ( ) 1 2 sin 4 0.5sin 2 ,

. . 10, 0,

 f x x c x x x x

s t   0 x  -10 x

π π= ⎡ − + − ⎤ + ⎡ − ⎤⎣ ⎦ ⎣ ⎦

≤ ≤ ≤ ≤
 

where 0.2,0.5,0.05c = . The global minimum value is ( ) 0f x∗ =  for all c .  

Problem 3. (Three-hump back camel function) 

 

2 4 6 2

1 1 1 1 2 2

1 2

1
min ( ) 2 1.05 ,

6

. . 3, 3,

 f x x x x x x x

s t   -3 x  -3 x

= − + − +

≤ ≤ ≤ ≤

 

The global minimizer is ( )0,0
T

x
∗

= , and the global optimal value is ( ) 0f x∗ = . 

Problem 4. (Six-hump back camel function) 

 

2 4 6 2 4

1 1 1 1 2 2 2

1 2

1
min ( ) 4 2.1 4 4 ,

3

. . 3, 3,

 f x x x x x x x x

s t   -3 x  -3 x

= − + − − +

≤ ≤ ≤ ≤

 

The global minimizers are ( )0.0898, 0.7127
T

x
∗

= − −  and ( )0.0898,0.7127
T

x
∗

= , and the global 

optimal value is ( ) 1.0316f x∗ = − . 

Problem 5. (Treccani function) 

 

4 3 2 2

1 1 1 2

1 2

min ( ) 4 4 ,

. . 3, 3,

 f x x x x x

s t   -3 x  -3 x

= + + +

≤ ≤ ≤ ≤

 

This problem has two global minimizers in total, which are ( )0,0
T

x
∗

=  and ( )2,0
T

x
∗

= − , and the 

global optimal value is ( ) 0f x∗ = . 
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Problem 6. (Goldstein and Price function) 

 

( ) ( )

1 2

min ( ) ,

. . 3, 3,

 f x g x h x

s t   -3 x  -3 x

=

≤ ≤ ≤ ≤

 

Where ( ) ( ) ( )2 2 2

1 2 1 1 2 1 2 2
1 1 19 14 3 14 6 3g x x x x x x x x x= + + + − + − + + , and 

 ( ) ( ) ( )2 2 2

1 2 1 1 2 1 2 2
30 2 3 18 32 12 48 36 27h x x x x x x x x x= + − + + + − + . 

The global minimizer is ( )2.6852, 3.0000 ,
T

x
∗

= − −  and the global optimal value is ( ) 9.6233 006.f x e∗

= − +  

Problem 7. (Two-dimensional Shubert function) 

 

( ) ( )
5 5

1 2

1 1

1 2

min ( ) cos 1 cos 1 ,

. . 10, 10,

i i

 f x i i x i i i x i

s t  0 x  0 x

= =

⎧ ⎫⎧ ⎫
= ⎡ + + ⎤ ⎡ + + ⎤⎨ ⎬⎨ ⎬⎣ ⎦ ⎣ ⎦
⎩ ⎭⎩ ⎭

≤ ≤ ≤ ≤

∑ ∑
 

This problem has two global minimizers in total, which are ( )4.8581,5.4829
T

x
∗

=  and 

( )5.4829,4.8581
T

x
∗

= . The global minimum value is ( ) 186.7309f x∗ = − . 

Problem 8. (Shekel’s function) 

 

( )
1

5 4
2

,

1 1

min ( ) ,

. . 10, 1,2,3,4,

j i j i

i j

j

 f x x a c

s t  0 x j

−

= =

⎡ ⎤
= − − +⎢ ⎥

⎣ ⎦

≤ ≤ =

∑ ∑
 

where the coefficients 
,i j

a ,
i
c , 1,2,3,4,i = 1,2,3,4j =  are given in the following: 

Table 1. 
,i j

a , 
i
c , 1,2,3,4,i =  1,2,3,4j =  

i ai,1 ai,2 ai,3 ai,4 ci 

1 4.0 4.0 4.0 4.0 0.1 

2 1.0 1.0 1.0 1.0 0.2 

3 8.0 8.0 8.0 8.0 0.3 

4 6.0 6.0 6.0 6.0 0.4 

5 3.0 7.0 3.0 7.0 0.5 

 

The global minimizer is ( )4. ,4. ,4. ,4.
T

x 0000 0001 0000 0001
∗

=  and the global optimal value is 

( )f x 10.1529∗

= − . 

Problem 9. (n-dimensional function) 

 

( ) ( )
22

1
min ( ) 10sin 1 ,

. . 10, 1,2, , ,

n

i

 f x x g x x
n

s t  -10 x i n

π

π⎡ ⎤= + + −
⎣ ⎦

≤ ≤ = �

 

where ( ) ( )
1

2 2

1

1

( ) 1 1 10sin
n

i i

i

g x x xπ

−

+

=

⎡ ⎤= − +
⎣ ⎦∑ . The global minimizer of this problem is ( )1, ,1

T

x
∗

= �  for 

all n. 

In the following, the solving process schematics of test problem 1 are given respectively by using the 

conventional filled function method and the proposed algorithm, and comparison of these two algorithms 

is also given. 
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5.2.1 Conventional Filled Function Method for Solving the Test Problem 1 

The calculation process are as follows: 

(1) Randomly selected point 
1
1.043x =  in the operating region Ω , starting from 

1
x , minimize ( )f x  by 

using local minimization function ‘fmincon’ to obtain a local minimizer 
1

1.71x
∗

= . 

(2) Construct filled function ( )
2

1 1 1
( , ) ( ) ( )P x x x x g f x f x∗ ∗ ∗

= − − + −  at 
1

1.71x
∗

= , where 

( ) sin sin 2 cos4 ,f x x+ x- x=  

 ( )
( )2

0, 0,

4 arctan , 0.

                    t
g t

t   t

≥⎧⎪
= ⎨

⋅ <⎪⎩
 

(3) Minimize filled function 
1

( , )P x x
∗  to obtain a local minimizer 

2
0.18x =  of 

1
( , )P x x

∗ ; The specific 

process of Step1, 2, and 3 are shown in Fig. 1. 

 

Fig. 1. The specific process of Steps 1, 2, and 3 

(4) Starting from 
2

0.18x =  to minimize ( )f x , obtain a local minimizer 
2

0.2x -
∗

=  of ( )f x . Construct 

the filled function 
2

( , )P x x
∗  at 

2
x
∗ , where 3r = , 2ρ = , and then minimize the filled function 

2
( , )P x x

∗  to 

obtain a local minimizer 
3

1.1x = −  of 
2

( , )P x x
∗ . Shown in Fig. 2. 

 

Fig. 2. The specific process of Step 4 

(5) Starting from 
3

1.1x = −  to minimize ( )f x , a local minimizer 
3

1.4523x -
∗

=  is obtained. Construct 

the filled function 
3

( , )P x x
∗  at 

3
x
∗ , where 3r = , 2ρ = , which is shown in Fig. 3, and then minimize 

3
( , )P x x

∗ , there is no any stable point is found. Then the iteration is terminated, set 
3

x x
∗ ∗

= , the global 

minimizer 1.4523x -
∗

=  and the global minimum value ( ) 2.1175f x∗ = −  are obtained. 
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Fig. 3. The specific process of Step 5 

Conventional filled function algorithm is run independently 50 times, the mean number of function 

evaluations is 19.5131. 

5.2.2 The Proposed Filled Function Algorithm for Solving the Test Problem 1 

The following use of the proposed filled function algorithm for solving the test problem 1, and the 

specific process are as follows: 

(1) Uniform randomly generated three points 
01

0,x =  
02

2.2,x =  
03

3.35x =  in the operating region, set 

{ }01 02 03
, ,M x x x= , and calculate the function value ( )f x  of the three points. Find the point 

0
0x =  

corresponding to the smallest function value, as shown in Fig. 4. 

 

Fig. 4. The specific process of Step 1 

(2) Calculated 

1

0

1
0 2.2 0 3.35

2.775
1 2

M -

i

i

x x

a
M -

=

−
− + −

= = =

∑
 by using the rules in RULS, where 

i
x M∈ , let 5m = , and then 

 [ ]0 0 0 0
, 0.555, 0.555

a a

x x = x x

m m

⎡ ⎤
Γ = − + − +⎢ ⎥

⎣ ⎦
; 

Randomly selected three points in Γ , and calculate their value of ( )f x  to find the point 
1
x  

corresponding to the smallest function value, as shown in Fig. 5, and set { }1,M M x= . 
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Fig. 5. The specific process of Step 2 

(3) Starting from 
1
x , minimize ( )f x  by using a local optimization method to find a local minimizer 

1
0.2x

∗

= −  and a minima 
1

( ) 1.285f x∗ = − , as follows in Fig. 6, and set { }1,M M x
∗

= ; 

Step 2, 3 describe the specific process of RULS, as shown in Fig. 5 and Fig. 6. 

 

Fig. 6. The specific process of Step 3 

(4) Construct ( ) ( )
2

1 1 1
( , ) ( ) ( )P x x x x g f x f x∗ ∗ ∗

= − − + −  at 
1

0.2x
∗

= − , as follows in Fig. 7, where 

( ) sin sin 2 cos4 ,f x x+ x- x=  

 ( )
( )2

0, 0,

3 arctan , 0.

                    t
g t

t   t

≥⎧⎪
= ⎨

⋅ <⎪⎩
 

 

Fig. 7. The specific process of jumping 
1
x
∗  
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(5) Using RULS method to optimize the function 
1

( , )P x x
∗  at 

1
0.2x

∗

= − , obtain a minimizer 
2

1.1x = −  

of 
1

( , )P x x
∗ , as shown in Fig. 7, set 

0 2
x x′ = , and { }2,M M x= , and then minimize ( )f x  by using RULS 

to obtain 
2

1.4523,x
∗

= −  and 
2

( ) 2.1175f x∗ = − ; 

(6) Construct a filled function 
2

( , )P x x
∗  at 

2
x
∗ , where 3r = , 2ρ = , as follows in Fig. 8. 

 

Fig. 8. The specific process of jumping 
2
x
∗  

(7) Function 
2

( , )P x x
∗  has not a stable point in { }2x x x

∗

∈Ω ≠ , so the iterations terminate, set 
2

x x
∗ ∗

= ; 

and the global minimizer 1.4523x
∗

= − , and the global minimum value 
2

( ) 2.1175f x∗ = − are obtained. 

The proposed algorithm is run independently 50 times, the mean number of function evaluations is 

11.4358, which significantly less than the former result that of using conventional filled function method. 

Both experimental results of 5.2.1 and 5.2.2 and the mean number of function evaluations show that 

the proposed filled function method is efficient. 

5.2.3 The Proposed Filled Function Method for Solving the Benchmark Problems Taken from [9] 

The proposed algorithm is executed on above 2-9 test problems. The results obtained by the proposed 

algorithm and the comparison with [9] are listed in Table 2 and Table 3. 

The symbols used in Tables are given as follows: 

No.: The order of the test problems; 

n: The dimension of the test problems; 

r: The parameter of the filled function; 

ρ : The parameter of the filled function; 

k : The iteration number; 

k
x
∗ : The local minimizer of the objective function in the k-th iteration; 

k
f ∗ : The function value at 

k
x
∗ ; 

x
∗ : The global minimizer of the objective function; 

f-mean: The mean function value respectively in the 50 runs; 

f-best: The best function value respectively in the 50 runs; 

f-std: The standard deviation of function value respectively in the 50 runs; 

Some explanation of the above experimental results: 

The problems 2-9 are tested by using the proposed algorithm respectively in the 50 runs, and the 

detailed results are shown in Tables 2 and 3, and the specific numerical analysis and the comparison with 

[9] are reported as follows: 

More minimizers could be obtained. In the proposed algorithm, the initial points are randomly 

uniformly generated, so that many different global minimizers are obtained respectively in the 50 runs. 

For example, Problems 2, 5, and 7 get more optimal solutions than in the literature [9]. 
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Table 2. The results obtained by the proposed algorithms and the comparison with [9] 

 The proposed algorithm The algorithm of the literature [9] 

No. r ρ  
k
x
∗

 
k
f ∗

 
k
x
∗

 
k
f ∗

 

2 

(c=0.2) 

(n=2) 

100 2 

(1.5909; 

-0.2703) 

(0.9997; 

-0.0005) 

(1.8784; 

-0.3458) 

(0.9820; 

-0.0565) 

0 
(1.8784; 

-0.3458) 
0 

2 

(c=0.5) 

(n=2) 

100 2 

(1;0) 

(1.5872; 

-0.2606) 

(1.8973; 

-0.3005) 

0 
(1.0000; 

-2.2205e-14) 
0 

2 

(c=0.05) 

(n=2) 

100 2 

(1.8513; 

-0.4021) 

(1.5975; 

-0.2874) 

0 
(1.8513; 

-0.4020) 
0 

3 

(n=2) 
100 2 (0;0) 0 (0;0) 0 

4 

(n=2) 
100 2 

(0.0898; 

0.7127) 

(-0.0898; 

-0.7127) 

-1.0316 

(-0.0898; 

-0.7126) 

(0.0898; 

0.7126) 

-1.0316 

5 

(n=2) 
100 2 

(-2;0) 

(0;0) 
0 (0;0) 0 

6 

(n=2) 
100 2 

(-2.6852; 

-3.0000) 
-9.62e+006 

(0; 

-1.0000) 
3.0000 

7 

(n=2) 
1000 2 

(4.8581; 5.4829) 

(5.4829; 

4.8581) 

-186.7309 
(5.4829; 

4.8581) 
-186.73 

8 

(n=4) 
100 2 

(4.0000; 

4.0001; 

4.0000; 

4.0001) 

-10.1529 

(4.0000; 

4.0001; 

4.0000; 

4.0001) 

-10.1529 

9 

(n=2) 
100 2 (1;1) 0 (1;1) 0 

9 

(n=3) 
100 2 (1;1;1) 0 (1;1;1) 0 

9 

(n=7) 
1000 2 

(1.0000; 

1.0000; 

1.0001; 

1.0000; 

1.0000; 

1.0001; 

1.0000) 

0 

(1.0000; 

1.0000; 

1.0000; 

1.0000; 

1.0000; 

1.0000; 

1.0000) 

0 

9 

(n=10) 
1000 2 

(1.0000; 

1.0000; 

1.0000; 

1.0000; 

1.0000; 

1.0000; 

1.0000; 

1.0000; 

1.0000; 

1.0000) 

0 

(1.0000; 

1.0000; 

1.0000; 

1.0000; 

1.0000; 

1.0000; 

1.0000; 

1.0000; 

1.0000; 

1.0000) 

0 
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Table 3. The results obtained by the proposed algorithms for solving the problem 9 with different 

dimensions 

No. r ρ  f-mean f-best f-std 

9 

(n=12) 
1.0e+6 2 1.2563e-006 1.0015e-010 1.0058e-008 

9 

(n=15) 
1.0e+7 2 3.4013e-005 1.0601e-014 1.1012e-007 

9 

(n=20) 
1.0e+9 2 1.1606e-005 6.2176e-009 6.0453e-007 

9 

(n=30) 
1.0e+10 2 2.5012 e-003 5.5078e-007 3.4016e-005 

 

Effectiveness of the algorithm. The minimizers and the optimal value can be found by using the 

proposed algorithm, which indicates the effectiveness of the algorithm. In particular, compared with [9], 

much smaller optimal value is obtained in problem 6 by using the proposed algorithm. 

The stability of the algorithm. In Table 2, all the data in columns f-mean and f-std shows that the 

algorithm of this paper is stable. 

The algorithm can be used to solve multidimensional problem. In Table 3, the problem 9 with 

different dimensions is tested, and the numerical results indicate that the proposed algorithm is suitable 

for solving multidimensional problem. 

6 Conclusions 

The filled function method is an approach to find the global minima of multi-modal functions. The 

existing filled functions have some drawbacks such as being non-differentiable at some point in search 

domain, including the exponential and logarithm terms, containing sensitive adjust parameters, and being 

discontinuous, and so on. In this paper, a filled function with two parameters is designed, which is 

continuously differentiable and insensitive to parameters, and it can overcome the former shortcomings 

in certain degree. Based on this, a new filled function method is proposed, and the algorithm is numerical 

stability. The comparison results of the computer simulations indicate that the proposed filled function 

method is effective and efficient. 
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