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Abstract. Multi-pattern matching is a core technique of many applications. However, many of 

the existing algorithms cannot efficiently deal with large pattern sets or pattern sets with very 

short patterns. To address these issues, in this paper, an adaptive architecture for multi-pattern 

matching (AAMPM), which is based on a new data structure called adaptive matching tree 

(AMT), is proposed. In particular, each tree node in AMT saves only some pattern fragments of 

the whole pattern set, and the inner data structure of each tree node is adaptively chosen 

according to the features of those pattern fragments. Due to this adaptivity, each tree node can 

take as little memory as possible, additionally, matching the text fragments with the pattern 

fragments in the tree nodes can be very efficient. Based on AMT, AAMPM adopts an effective 

approach to search patterns in the text string. The experimental results show that, AAMPM has a 

strong robustness on pattern sets with short patterns. Moreover, due to the good scalability of 

AMT, AAMPM offers an excellent support for large pattern sets. 
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1 Introduction 

Pattern Matching (PM) has been historically one of the key problems of computer science, where the 

term “pattern” is referred to as the plain strings in this paper. According to the number of patterns to be 

matched at a time, PM technologies can be classified into the Single-Pattern Matching (SPM) and Multi-

Pattern Matching (MPM), and this work mainly focuses on the latter. 

The MPM is a primitive but important technique which is used in many applications such as 

Information Retrieval (IR), Intrusion Detection System (IDS), Anti-virus System (AVS), Bio-informatics, 

etc. In general, it seeks all locations in a given text that might match any of the patterns in a given pattern 

set. Efficient MPM algorithms scan the text only once and search for the potential matches in all patterns 

simultaneously. Traditionally, these algorithms include two major phases, i.e. the preprocessing phase 

and the matching phase. In particular, the preprocessing phase converts the target patterns in the pattern 

set into a suitable data structure, and then the matching phase scans and compares the given text with the 

data structures to find the occurrence positions of the target patterns. It is obvious that in the matching 

phase, the time/space efficiency of the data structure generated in the preprocessing phase can have a 

significant impact on the global performance of the MPM algorithm. 

Preferably, given a matching task, the matching time of the adopted algorithm should mainly depend 

on the size of the text and the pattern set, rather than the intrinsic features of the patterns. Unfortunately, 

many of the existing algorithms, such as the classical Wu-Manber (WM) [1] algorithm and the more 

recent Pre-filter+AC [2] algorithm, are seriously affected by the length of the patterns, particularly, they 

cannot efficiently deal with the pattern sets containing very short patterns. What dramatically degrades 

the performance of these algorithms when encountering with short patterns is the poor robustness of the 

data structures used by them. Therefore, it is quite meaningful to design a kind of data structure that has a 

strong robustness on the lengths of the patterns and can further efficiently match various pattern sets. 

Nowadays, the number of patterns to be matched becomes huge in some applications, e.g. the 

signature library of a modern IDS might contain millions of signatures (patterns). Unfortunately, many 
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existing algorithms, such as the classical AC [3] algorithm and the recent hardware-based algorithms, 

often fail to process large pattern sets, which is mainly due to their data structure that might lead to the 

problem of lacking storage space as the number of patterns grows. Therefore, how to design efficient 

MPM algorithms for large-scale pattern matching has become a challenge in the big data context. 

In this paper, we proposed an adaptive architecture for multi-pattern matching (AAMPM) which is 

able to effectively match the pattern set with various lengths of patterns and with large scale. Similar to 

the traditional approaches, AAMPM also consists of the preprocessing phase and the matching phase. In 

the preprocessing phase, the whole pattern set is partitioned gradually into several small parts, and the 

pattern fragments of each small part is stored in a separate node in an adaptive matching tree (AMT) for 

subsequent matching, which is a compact tree-like data structure. Then in the matching phase, each 

position of the text is compared with the nodes in the AMT from the root to find whether there are 

matched patterns. For any given pattern set, since the inner data structure of each tree node in AMT can 

be adaptively chosen according to the features of the pattern fragments (which makes the tree nodes as 

efficient and compact as possible), the whole AMT has a strong robustness for the given pattern set and 

the efficiency of the pattern matching hereafter can be improved. Moreover, owing to the space-

efficiency and scalability of the AMT, AAMPM also provides excellent support for large pattern sets. 

2 Related Work 

Because of the importance of PM, several efficient algorithms have been proposed in the past decades. 

Well-known algorithms for PM include Knuth-Morris-Pratt (KMP) [4], Boyer-Moore (BM) [5], Wu-

Manber (WM) [1], and Aho-Corasick (AC) [3]. The KMP and BM algorithms are appropriate for SPM, 

but not suitable for MPM. The AC algorithm is a generalization of the KMP algorithm by preprocessing 

the patterns and building a deterministic finite automaton (DFA) that can match multiple patterns 

simultaneously. It is the first algorithm for MPM that has a linear time complexity. However, the AC 

algorithm is alphabet-sensitive and requires a huge amount of memory to build the DFA, which limits its 

application in large-scale pattern matching. 

To reduce the memory requirement of AC, Tuck et al. [6] proposed an algorithm called Bitmapped AC. 

This algorithm uses the bitmap data structure to replace the conventional child pointers in each state of 

DFA. In addition, it uses a path compression technique which can merge successive single-child states 

into one state. It is reported that, the compression optimization of Bitmapped AC results in a 50 times 

reduction in memory consumption over the original AC algorithm. However, since traversal from node to 

node requires checking a bit in a bitmap and then performing a sum up to 256 prior bits in the bitmap, the 

average performance of this algorithm is not high. Another algorithm to reduce the space requirement is 

the Compressed AC algorithm proposed by Bremeler-Barr et al. [7]. In addition to use a similar path 

compression method, this algorithm also develops a technique that is able to eliminate the leaf states. The 

experiment shows that Compressed AC can reduce at most 60% memory requirement of the traditional 

AC algorithm. But this method suffers from the similar problem, i.e. it works well only for a few pattern 

sets. Lee and Huang [2] proposed an algorithm called Pre-filter+AC. As the name shows, this algorithm 

consists of a prefilter and a verification engine. The function of the prefilter is to find the starting 

positions of potential pattern occurrences. Once a suspicious starting position is found, the verification 

engine confirms true pattern occurrence. The prefilter uses a bit vector, called “master bitmap”, with 

simple bitwise and and shift operations to accumulate query results, while the verification engine, which 

is a modification of the AC automaton, checks all candidate patterns simultaneously. However, as the 

authors said, the prefilter is suitable for patterns of moderate or large lengths. For short patterns, its 

performance degrades seriously. Similarly, Kandhan et al. [8] proposed an algorithm called sigMach 

which is also based on the prefilter-verification framework. This algorithm develops a cache-efficient q-

gram index structure called sigTree which can filter out a large number of patterns that are impossible to 

be matched. 

The WM algorithm is another efficient algorithm for MPM which is known to be faster than AC in 

practical matching. The WM algorithm is an adaptation of the BM algorithm to multiple patterns. It uses 

a similar “shift idea” of the BM algorithm, but the shift of WM is not based on a single character as the 

BM does, instead, it is based on a B-gram that is a character block consists of B characters (B is usually 

set to 2 or 3 in practice). In a typical search, its time complexity is O (B·n / lsp), where lsp is the length of 

the shortest pattern in the pattern set. Therefore, the performance of WM is seriously affected by lsp. 
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To improve the WM algorithm, Zhou et al. [9] proposed an algorithm called MDH. Instead of using 

the first m characters as the signature of each pattern, MDH adopts a heuristic strategy to select the 

optimum m consecutive characters as the signature of each pattern. Similarly, Zhan et al. [10] proposed a 

different way to search for the optimal signatures of the patterns, additionally, this algorithm designs an 

index structure to reduce the time for searching the candidate patterns in the hash table. These algorithms 

can improve the performance of WM for common patterns but they do not solve the inefficiency caused 

by short patterns. To address this problem, Zhang et al. [11] proposed the High Concurrence WM 

algorithm (HCWM), which separates the patterns whose length is less than 4 from the pattern set. For 

these short patterns, the algorithm establishes independent data structures and uses different matching 

routines. This method can reduce the effect of short patterns, since short patterns are matched 

independently and concurrently. Another algorithm for this problem is the L+1
-MWM proposed by Choi 

et al. [12], which minimizes the performance degradation caused by the short patterns by appending 

characters to these patterns. It is reported that, the L+1
-MWM improves the performance of WM by as 

much as 20% in average, moreover, when lsp < 5 the L+1
-MWM gains a 38.87% enhancement. 

For large scale pattern matching, which becomes more and more important in big data context, Le and 

Prasanna [13] presented a memory-efficient architecture for large-scale string matching (MASM) based 

on a pipelined binary search tree. It uses a technique called “leaf-attaching” to compress the given pattern 

set. The compressed pattern set are then transformed to a pipelined binary tree which will be used in the 

matching phase. It is reported that, the MASM achieves a memory efficiency (defined as the ratio of the 

amount of the required storage in bytes and the size of the pattern set in number of characters) of 0.56 for 

the Rogets dictionary and 1.32 for the Snort rule set. Moraru and Andersen [14] also presented a 

memory-efficient and cache-optimized algorithm for large pattern sets. This algorithm builds upon the 

Rabin-Karp [15] SPM algorithm and incorporates a new feed-forward bloom filter which takes into 

account the memory hierarchy of modern computers. This algorithm is also well suited for 

implementation on GPUs which enables the matching to be done in parallel. 

There are also studies that exploited the capacity of hardware to accelerate the proposed MPM engines. 

Agarwal and Polig [16] proposed a hardware architecture which enables high throughout for Information 

Extraction applications. Instead of using the common DFA based approach, this architecture employs a 

novel hashing based scheme. The DFA based approaches (such as AC) typically process one character 

every cycle, while the proposed hash based scheme can process a string token of several characters every 

cycle, thus achieves higher throughout than the DFA based approaches. Zhang et al. [17] proposed a 

GPU-based parallel algorithm G-PEBF which uses the Extended Bloom Filter (EBF). It divides the 

pattern set into N subsets where the lengths of the patterns in each subsets are the same. Then it 

constructs an EBF for each subset and uses N threads to simultaneously process the subsets in parallel on 

the GPU. The performance of G-PEFB highly relies on the number of threads used during matching, and 

it is also not applicable for pattern sets containing very short patterns. 

Nowadays, some variants of the classical MPM problem have been proposed. Tomohiro et al. [18] 

introduced a variant of MPM, where the pattern set is given in a compressed form that can be represented 

by a straight line program (SLP). For a given SLP-compressed pattern set of size n and height h, which 

represents m patterns of total length N, they present an O (n2logN)-size variant of AC automaton that 

recognizes all occurrences of the patterns in O (h + m) running time per character. Khancome and 

Boonjing [19] proposed an algorithm for the dynamic MPM problem. This algorithm uses the inverted 

lists data structure to allow the pattern set to be updated dynamically in an optimal time. Amir et al. [20] 

introduced an algorithm for the gapped MPM problem, where each pattern in the pattern set is a sequence 

of sub-patterns separated by bounded sequences of do not cares. Neuburger and Sokol [21] presented the 

first efficient algorithm that operates in small space for the 2-dimensional MPM problem. 

3 Notations 

Let ∑ be an alphabet consisting of a finite number of character symbols. (In this paper we will only focus 

on the case that ∑ is the ASCII character set, i.e. |∑| = 256 and each character requires one byte in 

memory.) Given the alphabet ∑, a string as well as its substrings over ∑ can be defined as follows: 

Definition 1. A string over ∑ is a sequence consisting of a finite number of characters from ∑. A length-

n string is represented by S = c1c2…cn, where the i-th character of S is: S[i] = ci ∈∑ (1 ≤ i ≤ n). The 

length of S is denoted by | S |. A substring of S is a sequence consisting of any consecutive characters of S. 
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The substring of S, which starts at position i and has length of len, is denoted by S [i, len]. 

Given a string S, its prefix and suffix, which are both special substrings of S, are defined as follows: 

Definition 2. The length-m prefix of a string S, which is denoted by S +m, is the substring that consists of 

the first m characters of S, that is: S +m = S [1, m]. While the suffix of S, which starts at position m + 1, is 

the substring left after removing the length-m prefix of S. It is denoted by S-m, that is: S-m = S [m+1, | S | – 

m].  

Note that, a string S can be actually regarded as a prefix/suffix of itself, i.e. S = S +|S| = S -0. Finally, the 

MPM problem can be formally defined as follows:  

Definition 3. Given a text string T and a pattern set P = {p1, p2, …, pk}, where T and pi (1 ≤ i ≤ k) are 

strings over ∑. The multi-pattern matching is to find all occurrences of every pattern of P in T, more 

formally, to find the result set R = {(i, pj) | pj ∈ P and T [i, | pj |] = pj}. 

4 The Adaptive Architecture for Multi-pattern Matching 

The procedure of AAMPM consists of the preprocessing phase and the matching phase. In the 

preprocessing phase, the whole pattern set is transformed to a compact tree-like structure called Adaptive 

Matching Tree (AMT), in which each tree node is built adaptively to save the information of a small part 

of the pattern set. While in the matching phase, the built AMT is compared against the text string to 

search patterns in that string. The framework of constructing the AMT from the pattern set is introduced 

in Section 4.1, and using the AMT to search patterns in the text string is described in Section 4.2, finally, 

adaptively creating the tree nodes is presented in Section 4.3. 

4.1 AMT Construction  

In the preprocessing phase, the given pattern set will be transformed to an AMT. This transformation 

includes five major steps:  

(1) Create a suffix set SF, and put each pattern of the pattern set into SF. Each pattern is regarded as a 

suffix of itself. 

(2) Compute the length of the shortest suffix (lss) in SF. For each suffix in SF, remove its length-lss 

prefix, and all the removed prefixes are collected together to form a prefix set PF. Discard the repetitions 

in PF, and calculate |PF| which refers to the number of distinct prefixes (ndp). 

(3) Create a tree node t, which is actually a kind of index, to hold the prefixes in PF. Each prefix 

serves as a key in t. The structure of t is selected adaptively according to ndp and lss which have been 

computed in step 2.  

(4) Divide SF by putting together its suffixes, whose removed prefixes are the same, to form a sub-

suffix-set. Associate each sub-suffix-set with the corresponding prefix in the tree node t. 

(5) For each newly created sub-suffix-set in step 3, repeat the same procedure from step 2.  

Note that, since each pattern is a suffix of itself, the whole pattern set P can be also regarded as a 

suffix set SF. Fig. 1 shows an example of this transformation on a pattern set P = {p1, p2, …, p13}. First, 

since p6 is the shortest pattern (suffix) in P, we have lss = | p6 | = 2. Then the length-2 prefix of each 

pattern (suffix) is removed, and the removed prefixes are formed a prefix set: 
2 2 2

1 2 13
{ , , , }.PF p aa p aa p cc

+ + +

= = = … =  After discarding the repetitions in PF, only 3 distinct prefixes 

left: PF = {aa, bb, cc}, thus, we have ndp = | PF | = 3. 

Then a tree node, which is actually the root of AMT, is created to hold the prefixes in PF. Each prefix 

serves as a key in the root and has a pointer (initialized to NULL) to the (future) child node. As will be 

seen in Section 4.3, the structure of root is selected adaptively according to two parameters: lss = 2 and 

ndp = 3. 

After creation of the root, the suffixes left in P are grouped based on their lost length-2 prefixes: 

those suffixes having the same length-2 prefixes removed are grouped together to form a sub-suffix-

set. In order to reveal the correspondence between the sub-suffix-set and the lost prefix, the tuple 

(node.key, sub-suffix-set) is used: the suffixes in the sub-suffix-set have the same prefix key removed, 

while the key is held as a key in the newly created node. Based on this notation, there are three 

tuples created after grouping the suffixes left in P: 2 2 2 2 2 2

1 1 1 2 3 4 5 7
( . , { , , , , , }),tp root aa SF p p p p p p

− − − − − −

= =  

2 2 2

2 2 8 9 10
( . , { , , })tp root bb SF p p p− − −

= =  and 
2 2 2

3 3 11 12 13
( . , { , , }).tp root cc SF p p p

− − −

= = This indicates that P is  
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Fig. 1. Constructing the AMT from a pattern set, each arrow indicates a child pointer 

divided into three sub-suffix-sets: SF1, SF2, SF3 and each sub-suffix-set corresponds to a prefix held as a 

key in the root (it also means that the root may have three child nodes). Note that, the shortest suffix 

(pattern) p6 has disappeared in the sub-suffix-sets, since after removing the length-2 prefix of p6, there is 

nothing left. 

The same procedure is repeated on each of the three created sub-suffix-sets. As a further example, SF1 

of tp1 is processed. First, the lss of SF1 is computed by:
2

7
| | 6.lss p−

= = Then the length-6 prefix of each 

suffix in SF1 is removed to form a prefix set: 
2 6 2 6 2 6 2 6 2 6 2 6

1 1 2 3 4 5 7
{( ) , ( ) , ( ) , ( ) , ( ) , ( ) }.PF p p p p p p

− + − + − + − + − + − +

=  

After discarding the duplicates in PF1, only three distinct prefixes left: PF1 = {a6, e6, b6} (we use the 

notation cn to denote a length-n string consisting of the same character c). A new tree node node1 is built 

adaptively upon PF1 to hold its prefixes as keys. According to the first component of tp1 (i.e. root.aa), 

node1 is then associated with the key aa in the root by a child pointer, which makes it to be the first child 

of root. Once again, the suffixes left in SF1 are grouped based on their lost length-6 prefixes, which 

formed three new tuples: tp4 = (node1.a
6, SF4 =

8

1
{ }p

−

), tp5 = (node1.e
6, SF5 = 

8 8 8

2 3 4
, }{ ,p p p

− − −

) and tp6 = 

(node1.b
6, SF6 = 

5

8{ }p
−

). 

Note that, in order to mark the end of a pattern, once the last part of the pattern has been removed and 

then stored in a node, that last part is marked with an asterisk in the corresponding node. As a result of 

this, any path from the root to a key that marked with an asterisk represents a complete pattern. It can be 

seen that, the patterns are stored implicitly in the AMT and can be reconstructed from the paths ended 

with an asterisk. 

During the construction of AMT, we use a breadth-first strategy to process the sub-suffix-sets and 

create tree nodes (which means the next sub-suffix-set to be processed is SF2 rather than SF4). For the 

purpose of tracing the order in which the sub-suffix-sets are processed, a first-in-first-out queue is 

employed to maintain the created tuples. The tuple at the beginning of the queue contains the sub-suffix-

set that will be processed next, while the newly created tuples are inserted to the end of the queue in 

order. In our example, the root node is built initially, then tp1, tp2 and tp3 are inserted to the queue. Next, 

SF1 of tp1 is processed and the newly created tuples tp4, tp5 and tp6 are inserted to the queue in order. 

Subsequently, SF1, SF2, SF3, SF4, … are processed in sequence. Once there is no tuple left in the queue, the 

whole AMT has been constructed. It is worth pointing out that, we can also use a depth-first strategy to 

build the AMT in a branch by branch way, but regardless of the strategies used, the final built AMTs are 

the same. 

The framework of constructing the AMT from a pattern set is illustrated in Algorithm 1. Firstly, an 

empty queue Q is created in line 2 for maintaining the tuples. Then the tuple (NULL, P) is inserted to Q 

in line 3 by function push_queue which always inserts an element to the end of a queue. Since P is the 

initial pattern set here, there is no prefix removed from P yet, and this is indicated by the NULL 

component of the tuple. By this way, the creation of the root can be combined with the creation of other 

tree nodes in the following while loop. 
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Algorithm 1. Constructing the AMT  

Input: 
  The pattern set P 

Output: 
  The corresponding AMT 

1: 

2:   Q ← Create an empty queue 

3:   push_queue((NULL, P), Q) 

4: 

5:   while Q is not empty do 

6:         (parent_node.key, SF) ← pop_queue(Q) 

7:         lss ← |sufst|, where sufst is the shortest suffix in SF 

8:         for each suf ∈  SF do 

9:                   if |suf | = lss then 

10:                   Mark suf +lss to be the pattern end 

11:               Remove suf +lss of suf, and put suf +lss  into PF 

12:         Discard the repetitions in PF, and let ndp ← |PF| 

13:    According to lss and ndp, adaptively create a new_node to hold the 
  prefixes in PF 

14:        if (parent_node.key = NULL) then 

15:             root ← new_node 

16:        else 

17:             Associate new_node with parent_node.key by a child pointer 

18:           TP ← {(new_node.pf, SSF) | SSF ⊆  SF and ∀ p, q ∈ SSF: p, q  

   have the same length-lss prefix pf removed} 

19:        for each tp ∈ TP in order do 

20:              push_queue(Q, tp) 

21: 

22:  return root 

 

If Q is not empty, the while loop body from line 5 to line 20 constructs a tree node based on the first 

tuple in Q. The tuple at the beginning of Q is fetched by the pop_queue(Q) function in line 6: the suffix 

set to be processed is assigned to SF, and the corresponding prefix of SF in the parent node is denoted by 

parent_node.key. Then the lss of SF is computed in line 7. In the inner for loop from line 8 to line 11, the 

length-lss prefix of each suffix in SF is removed, and the prefixes are collected to form the prefix set PF. 

If a prefix is the last part of some pattern, it is marked as a pattern end. Line 12 discards the repetitions in 

PF, after that a new tree node is created adaptively to hold the prefixes PF in line 13. The if statement in 

line 14 determines whether the newly created node is the root node or not. If the prefix component of the 

current tuple is NULL, the new node is the root node; otherwise, the new node is a child node which will 

be then associated with the corresponding prefix in its parent node. Next in line 18, the suffixes left in SF 

are grouped based on their lost prefixes to form tuples. Finally the created tuples are inserted to the queue 

in order. Once there is no tuple left in Q, the whole AMT has been completely constructed, and the root 

of AMT is returned. 

4.2 Text Matching 

In the matching phase, an algorithm based on the built AMT is used to search the patterns in the text 

string. The algorithm checks every position of the text to verify whether there is a potential pattern 

starting at that position. For each position i of the text, the algorithm executes a matching round to search 

the various sequential substrings of the text, where the first substring starts at i, in the corresponding 

nodes in AMT from the root. If some substring of the text successfully matched a key that is marked as a 

pattern end in some node, a pattern is declared to be found at position i. However, if there is a mismatch 
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or the searching goes beyond the leaves of AMT, the current matching round terminates and the 

algorithm goes forward to the next position of the text and restarts a new matching round. Once every 

position of the text has been checked, the whole algorithm terminates. 

The pseudocode of the matching phase of AAMPM is shown in Algorithm 2. Suppose i is the current 

matching position in the text. The m_len is the total length of the successfully matched sub-strings of the 

text in the current matching round. The node points to the current matching node in the AMT. These 

three variables are initialize to 1, 0 and the root of AMT respectively from line 2 to line 4. In addition, 

since all the keys in a node have the same length, the notation key_len(node) is used to denote the length 

of the keys in node. 

 

Algorithm 2. Matching the text string  

Input: 
  The text string T 
  The AMT built from the pattern set P 

Output: 
  The result set R = {(i, p)| 1≤ i ≤ |T|, p∈P: T[i,|p|]= p} 

1: 

2:  i ← 1 

3:  m_len ← 0 

4:  node ← root of AMT 

5: 

6:  while  i ≤ | T | do 

7:   while node ≠ NULL and ョ key∈ node: key = T[i+m_len, key_len(node)] do 

8:                 m_len ← m_len + key_len(node) 

9:                if key is marked as a pattern end then 

10:                     Put (i, T[i, m_len]) into R 

11:              node ← The child of node.key 

12:      i ← i + 1 

13:      node ← root 

14:      m_len ← 0 

15: 

16:  return R 

 

The major part of the pseudocode is a double while loop from line 6 to line 14. The outer while loop 

checks every position of the text. For each position i, the inner while loop performs a specific matching 

round to determine the potential patterns starting at i. The matching starts form the root of AMT: if the 

corresponding sub-string T [i+m_len, key_len(node)] matches some key in the current node, the totally 

matched length m_len is increased by the length of the key. At the same time, if the matched key is also 

marked as a pattern end, which means T [i, m_len] matches some pattern in the pattern set, this pattern as 

well as its starting position i are inserted into the result set R. Then the matching transfers to the child of 

node.key and makes that child node to be the current node. Once there is a mismatch or the current node 

goes beyond the leaves of AMT (i.e. node = NULL), the current matching round terminates. And the 

algorithm starts a new matching round for position i+1 after resetting the variables node and m_len. If all 

the positions of T have been checked, the whole algorithm terminates and returns the result set R. 

Note that, since the nodes in AMT have various types of inner structures, the search of the target string 

in a node, must use the search routine specified to the type of that node.  

Next, an example is given in Fig. 2 to illuminate a matching round at position i of a given text string T, 

using the AMT built in section 4.1. The matching round starts from the root of AMT: according to 

key_len(root) = 2, the same length sub-string starting at position i of T, which is T [i, 2] = aa, is taken to 

check whether it is one of the keys in root. The result is that: aa∈root, and also aa is marked as a pattern 

end. Therefore the pattern T [i, 2] = aa (actually p6 in P) is found at position i. Then the matching 

transfers to node1, which is the child node of root.aa. 
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Fig.2. The matching round that searches patterns starting at position i of the text 

At node1, since key_len(node1) = 6, the same length sub-string T [i+2, 6] = e6, which appears following 

T [i, 2], is trying to match with some key in node1. The result is that: e6 ∈ node1 but it is not marked as a 

pattern end. Then the matching simply transfers to node5, which is the child of node1.e
6.  

At node5, since the next sub-string T [i + 8, 5] = u5 ∈ node5 and u5 is marked as a pattern end, another 

pattern T [i, 13] = a2 e6 u5 (actually p4 in P) is found at position i. Then the matching goes to the child of 

node5.u
5, i.e. node10.  

At node10, since T [i+13, 4] = sscc ∉ node10, the current matching round for position i terminates. The 

algorithm restarts a new matching round for the next position i + 1. Once all the positions of the text have 

been checked, the whole algorithm terminates. 

In our approach, each matching round actually corresponds to a matching path in the AMT, whose tree 

nodes have been compared with the text in the matching round. In particular, the matching path of the 

given example is: root → node1 → node5 → node10, which is indicated by the dashed arrows in Fig. 2. 

4.3 Adaptive Creation of Tree Nodes  

As stated in section 4.1, each node of AMT has a specific structure to hold the prefixes of a prefix set as 

the keys. The type of the node structure is chosen adaptively according to the features of the prefix set. 

Since all the keys in the prefix set have the same length, the features of the prefix set can be mainly 

characterized by two parameters: the length and number of the keys in the prefix set. These two 

parameters are respectively symbolized by lss and ndp in Section 4.1. In this work, three kinds of 

structures, i.e. character map, string array and hash table are adopted for prefix sets with different lss 

and ndp combinations. Next, the detailed descriptions of them will be presented. 

Character Map. Given a prefix set, if the length of keys is equal to 1 (lss = 1), i.e. each key in the prefix 

set is just a single character, we adopt the space-efficient character map structure, which was proposed 

by Leis et al. [22], as the tree node. There are four sub-types of character maps with different capacities 

for different number of keys (ndp), where 1≤ ndp ≤ 256. 

Fig. 3 illustrates the four sub-types of character maps which are named according to their maximum 

capacity. Instead of using an array of (key, child pointer) pairs, the keys and the child pointers are stored 

in separate arrays, which is able to keep the node structure compact while supporting efficient search.  

‧ Map 4 (1 ≤ ndp ≤ 4): The smallest map type can store up to 4 keys. It uses an array of 4 entries for 

keys and another array of the same length for child pointers. The keys and child pointers are stored at 

corresponding positions in their arrays, and the keys are sorted according to their ACSII values. Once 

the target character is found in the key array, its child pointer can be located through the same position 

in the pointer array. Fig. 3(a) shows a Map 4 structure with three keys: a, b and c, where the triangles 

with the keys inside represent the corresponding child nodes. 
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Fig. 3. The four sub-types of character maps, the triangles represent the corresponding child nodes 

‧ Map 16 (5 ≤ ndp ≤ 16): This map type is used for storing 5 to 16 keys. It has the similar structure as 

Map 4, but both arrays have up to 16 entries. A target character can be retrieved efficiently by a binary 

search in the key array. Fig. 3(b) shows a Map 16 structure with 14 keys: a~ n. 

‧ Map 48 (17 ≤ ndp ≤ 48): As the number of keys increases, searching in the key array becomes 

expensive. Therefore, maps with more than 16 (but less than 49) keys do not store the keys explicitly. 

Instead, a 256-element index array is used, which can be directly indexed by the ASCII value of the 

target character. This array stores only the array indexes (small inters in the range of [0, 47]) of 

another pointer array that contains up to 48 child pointers. In this way, the storage space can be saved 

comparing with storing pointers directly, because each array index only requires one byte. Fig. 3(c) 

shows a Map 48 structure, where the ASCII values of a, b and c are 97, 98 and 99 respectively. 

‧ Map 256 (49 ≤ ndp ≤ 256): The largest map type is simply an array of 256 child pointers with each 

pointer initialized to NULL. It is used for storing 49 to 256 keys. In this kind of character map, the 

child node can be found directly through the array index which is the ASCII value of the target 

character. Different from other sub-types of character maps, in Map 256, there is only one array and 

not necessary to carry out the additional indirect access. Therefore, if most entries are not empty, this 

representation is also very space efficient. Fig. 3(d) shows a Map 256 structure, where only the pointer 

array is needed. 

For the sake of clarity, the pseudocode of searching in a node, whose type is character map, is given in 

Algorithm 3. 

 

Algorithm 3. Searching in a node whose type is character map  

Input: 
  A tree node whose type is character map 
  The target character t_ch. 

Output: 
  The child node of node.t_ch (possibly NULL).  

1: 

2:  count ← Number of keys in node 

3:  switch (the sub-type of the node) 

4:       case Map 4: 
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5:               for i ← 0 to count – 1 do 

6:                     if keys[i] = t_ch then 

7:                          return child_pointers[i]. 

8:               return NULL. 

9:     case Map 16: 

10:              low ← 0, high ← count – 1 

11:              while low ≤ high do 

12:                    
( ) / 2mid low high← +⎢ ⎥⎣ ⎦  

13:                    if t_ch = keys[mid] then 

14:                          return child_pointers[mid] 

15:                    else if t_ch < keys[mid] then 

16:                          high ← mid – 1 

17:                    else 

18:                          low ← mid + 1 

19:              return NULL 

20:      case Map 48: 

21:              if index[t_ch] ≠ NULL then 

22:                       return child_pointers[index[t_ch]] 

23:                else 

24:                       return NULL 

25:      case Map 256: 

36:              return child_pointers[t_ch] 

 

String Array. For the prefix set whose length of keys is greater than 1 (lss > 1) and the number of keys 

is not greater than 100 (ndp ≤ 100), the string array structure is constructed as a tree node. Similar to the 

character map, the keys are stored in lexicographical order in a separate key array of ndp×lss bytes, in 

which each key takes lss bytes. The child pointers are stored at the corresponding positions in another 

pointer array of 8×ndp bytes, where each pointer takes 8 bytes in a typical x86_64 architecture. Fig. 4 

illustrates a string array structure holding three keys: aaa, bbb and ccc. The key and pointer arrays 

occupy 9 and 24 bytes respectively.  

 

Fig. 4. The string array structure with three keys: aaa, bbb, ccc 

Algorithm 4. Searching in a node whose type is string array 

Input: 
  A tree node whose type is string array;  
  The target string t_str. 

Output: 
  The child node of node.t_str (possibly NULL). 

1: 

2:  count ← The number of keys in node 

3: 

4:  if count < 5 then 

5:         for i  ← 1 to count – 1 do 

6:               if  keys[i] = t_str then 
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7:                   return child_pointers[i] 

9:         return NULL 

9:    else 

10:         low ← 0, high ← count – 1 

11:         while low ≤ high do 

12:               
( ) / 2mid low high← +⎢ ⎥⎣ ⎦  

13:               if t_str = keys[mid] then 

14:                     return child_pointers[mid] 

15:               else if t_str < keys[mid] then 

16:                     high ← mid – 1 

17:               else 

18:                     low ← mid + 1 

19:         return NULL 

 

For efficiency, if the number of keys is less than 5, a naive linear search routine is used to search the 

target string in the key array; otherwise, a more efficient (but complicated) binary search routine is 

adopted. The pseudocode of the searching in a node whose type is string array is depicted in Algorithm 4. 

For the string array whose number of keys is less than 5, the target string is compared sequentially with 

the keys in the key array. If the target string matched some key, return the child pointer at the 

corresponding position in the pointer array; otherwise, return NULL. On the other hand, if the number of 

keys is greater than 4, the target string is searched by a binary search routine from the middle element of 

the key array. 

Hash Table. For the prefix set whose number of keys is greater than 100 (lss > 1 and ndp > 100), 

searching in the string array structure becomes inefficient even using a binary search. In this case, a more 

fast (but heavy) data structure ― hash table is adopted to deal with large number of keys. In this work, a 

hash table is an array of child pointers with each pointer initialized to NULL, and we utilize a string hash 

function which transforms a string to a positive integer. It is worth noting that, the procedure of building 

a hash table is directly based on the suffix set rather than the prefix set which is the basis of building 

other structures. 

In particular, given a suffix set SF, the size of the hash table (denoted by table_size) is determined by 

ndp and a given load factor lf (ratio of ndp to table_size), i.e. table_size = /ndp lf⎡ ⎤⎢ ⎥ . For example, with 

the ndp of 1000 and a load factor of 70%, the table_size is 1000 / 0.7 1429=⎡ ⎤⎢ ⎥ . Note that, the ndp here is 

defined to be the number of distinct length-lss prefixes of the suffixes in SF, which is equal to the size of 

the prefix set derived from SF (after removing the repetitions).  

Algorithm 5 shows the pseudocode of building a hash table based on SF. SF is firstly partitioned into 

small suffix sets by hashing: for each suffix suf ∈SF, its prefix suf +lss is hashed to an integer i between 0 

and table_size – 1 by the string hash function, then suf is associated with the i-th slot of the hash table. 

After that, the suffixes whose length-lss prefixes are hashed to the same value are associated with the 

same slot of the hash table. Then, to address the hash collisions, for each slot that is not NULL, the 

associated suffixes form a small suffix set SSF, and a new tree node is created adaptively based on the 

prefix set derived from SSF, as shown in the while loop of Algorithm 5. The newly created tree node is 

then associated with the corresponding slot of the hash table. As a result, many tree nodes with various 

types can be associated with one hash table. 

 

Algorithm 5. Building a hash table 

Input: 
  The suffix set SF and the load factor lf. 

Output: 
  The hash table.  

1: 

2:  ndp ← The number of distinct length-lss prefixes of suffixes in SF 

3:   
_ /table size ndp lf← ⎡ ⎤⎢ ⎥  
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4:   hash_table ← Create an array of table_size pointers with each  
          pointer initialized to NULL 

5:     for each suf  ∈ SF do 

6:          i ← Hash(suf +lss) 

7:              Associate suf  with hash_table[i] 

8: 

9:     for i ← 0 to table_size – 1 do 

10:         if hash_table[i] ≠ NULL then 

11:             SSF ← {suf | suf ∈  SF and Hash(suf +lss) = i} 

12:            new_node ← Adaptively create a tree node from SSF, as shown in  
           the while loop in Algorithm 1 

13:              Associate new_node with hash_table[i] 

14: 

15:  return hash_table 

 

In general, for a large pattern set, the root of the corresponding AMT is usually a hash table, and the 

core function of the root can be regarded as a “filter”, which is able to filter out a great number of 

positions of the text that are impossible to match any pattern. Given a target string, the hash value of that 

string is computed and used as the index of the hash table. If the corresponding slot is NULL, which 

means the target string fails to match any key in the hash table, the current matching round terminates 

and the algorithm moves to the next position of the text; otherwise, the process moves to the tree node 

associated with that slot and compare the node with the corresponding substring in the text. 

The string hash function adopted can have a significant effect on the performance of matching. In this 

work, for each matching task, the hash function is selected randomly from a hash function family H, at 

the beginning of the matching phase. The hash function family adopted in our implementation is the fast 

shift-add-xor hash family proposed by Ramakrishna [23], which is claimed to be both uniform and 

universal.  

5 Experimental Results 

In this section, we evaluate the performance of AAMPM, and compare it with other four algorithms: the 

AC [3] and WM [1] algorithms, which are two classic baseline algorithms for MPM; the MASM [13] and 

Pre-filter+AC [2] algorithms, which are two state-of-the-art MPM algorithms with good efficiency in 

practically matching. All these algorithms are evaluated in two aspects: the robustness of these 

algorithms under pattern sets with various lsps and the scalability of the algorithms under pattern sets 

with various number of patterns. 

5.1 Simulation Settings 

The experiments are conducted on a PC with an Intel Core i7 2.93GHz CPU, 8GB of RAM and 1TB 

Disk Driver; the operating system is Ubuntu Linux 16.04 (64-bits). All the testing algorithms are 

implemented in C/C++ and complied by gcc with –O2 option. The test data used in the experiments is the 

real-world English text from the Pizza & Chili corpus (http://pizzachili.dcc.uchile.cl/). The patterns are 

extracted randomly from the text to form the pattern sets. 

Next, the parameter configuration in AAMPM in our experiment is given as follows. For the String 

Arrays, if the number of strings exceeds 4, the binary search is used to search the target string in the key 

array; otherwise, the linear search is adopted (for String Arrays containing no more than 4 strings, the 

simple linear search is faster than binary search due to the complexity of binary search). For the Hash 

Tables, the load factor is set to 0.5, which is a good balance between time and space; the seed of the hash 

function is generated randomly in the range of 1~50; the shift values L and R are set to 2 and 6 

respectively (the parameters about the hash function are chosen from Ramakrishna [23] which are 

claimed to be very efficient). Once the ndp is larger than 100, the Hash Table becomes more efficient 

than the String Array, thus the Hash Table is built once ndp>100. These choices of parameters have been 
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extensively tested on a wide range of pattern sets, and are considered to be very efficient for a typical 

match. 

Table 1. The characteristics of pattern sets with various LSPs 

PS LSP LLP ALP SD TLP Count 

P1 2 50 25.9 14.1 2,599,020 105 

P2 3 50 26.5 13.9 2,646,762 105 

P3 4 50 27.0 13.6 2,704,091 105 

P4 5 50 27.6 13.2 2,745,545 105 

P5 6 50 27.9 13.0 2,793,178 105 

P6 7 50 28.4 12.7 2,843,580 105 

P7 8 50 29.0 12.4 2,903,343 105 

P8 9 50 29.5 12.1 2,948,372 105 

P9 10 50 30.0 11.8 2,998,992 105 

5.2 Evaluation under Various LSPs 

As we’ve mentioned before, many MPM algorithms are sensitive to the length of the patterns, 

particularly, the length of the shortest pattern (lsp) in the pattern set. Therefore, it is necessary to measure 

the performance of the AAMPM and compare it with the other investigated algorithms under pattern sets 

with various lsps. In this evaluation, there are totally 9 pattern sets for testing with lsps ranging from 2 to 

10, and every pattern set has a fixed number of 105 patterns. The size of text string is fixed to 200 MB. 

The characteristics of the pattern sets (PS) are shown in Table 1, which includes: the length of the 

shortest pattern (LSP), the length of the longest pattern (LLP), the average length of the patterns (ALP), 

the standard deviation of the pattern lengths (SD), the total length of the patterns (TLP) and the number 

of patterns in the pattern set (Count). 

Moreover, the performance of AAMPM is stable and reliable. In particular, once the length of the text 

and number of patterns are fixed, the matching time changes little for various lsps. As shown in Table. 2, 

the matching time of AAMPM is always about 10 seconds for a text of 200MB and a pattern set with 105 

patterns; for lsps ranging from 2 to 10, the change in the matching time is less than 2 seconds. In fact, as 

the lsp increases, the average length of the paths from the root to the leaves in AMT will increase slightly. 

Accordingly, in the matching phase, the matching paths for some text positions may get a little longer, 

which might slightly slow down the matching speed. The statistics about node types of corresponding 

AMTs are shown in Table 3. The Map 1 and Single String Array types in the table are actually the Map 4 

and String Array types which contain only one element, respectively. Obviously, as the lsp of the pattern 

set changes, the number of nodes of the each type in the AMT changes accordingly, which reflects the 

adaptivity of AMT. 

Table 2. Matching times for various LSPs (seconds) 

LSP AAMPM MASM Pre-filter+AC WM AC 

2 9.20 16.04 43.26 79.30 60.26 

3 9.25 16.99 26.08 44.08 55.08 

4 9.65 18.01 19.41 31.00 56.41 

5 9.99 19.45 15.97 28.87 53.62 

6 10.56 19.08 14.78 29.50 52.25 

7 10.03 20.45 14.01 29.09 51.68 

8 10.65 20.99 13.54 28.99 51.28 

9 10.54 21.59 13.23 28.67 51.12 

10 10.99 21.89 13.21 28.40 51.23 
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Table 3. The statistics about the node type in the AMTs under various LSPs 

LSP Map 1 Map 4 
Map 

16 

Map

48 

Map

256 

Single  

String Array 

String 

Array 

Hash 

Table 
Total 

2 2,464 2,096 663 133 0 63,274 21,627 10 90,267 

3 2,379 1,636 385 90 0 64,701 22,551 10 91,752 

4 2,273 1,329 201 57 0 66,162 22,736 1 92,759 

5 2,045 1,104 112 45 0 68,152 22,048 1 93,507 

6 1,758 899 52 34 0 70,179 20,818 1 93,741 

7 1,560 807 29 33 0 72,284 19,280 1 93,994 

8 1,515 803 20 31 0 73,447 18,274 1 94,091 

9 1,441 788 24 30 0 74,584 17,120 1 93,988 

10 1,361 794 24 29 0 75,094 16,427 1 93,730 

 

5.3 Evaluation under Various Numbers of Patterns 

In this section, we evaluate the scalability of the investigated algorithms by testing them under pattern 

sets with various numbers of patterns. As before, the size of the text is fixed to 200MB, and there are two 

groups of pattern sets for testing ― the small group and the large group. The small group contains 9 

pattern sets, with the sizes (number of patterns) increasing from 1×105 to 9×105 in steps of 105, while the 

large group contains 10 pattern sets, with the sizes increasing from 106 to 107 in steps of 106. The range 

of the pattern length of each pattern set is fixed to 5 ~ 50. 

For the small group, the mean matching times of the investigated algorithms under 5 independent runs 

are shown in Table 4. The experimental results indicate that, the performance of the AC algorithm is 

relative stable (but not high) as the number of patterns growing, but it cannot deal with pattern sets whose 

size is larger than 7×105 in this testing due to lack of memory. Although the WM algorithm performs 

better than AC, it is less stable, for instance, the matching time only rises about 1s as the number of 

patterns increasing from 2×105 to 3×105, but when the number of patterns increases from 8 ×105 to 9×105, 

the matching time rises roughly up to 9s. Thus, we cannot estimate the matching time of WM based on 

the size of the pattern set. The Pre-filter+AC performs well as the number of patterns growing, but its 

matching time is also unpredictable, e.g. the matching times are nearly the same as the number of 

patterns increasing from 4×105 to 5×105. The instability of WM and Pre-filter+AC is mainly due to that: 

the effect of the filters used by these two algorithms highly depends on the contents of the text and 

patterns themselves, particularly, for some pattern sets whose patterns occurs frequently in the text, the 

effect of the filters degrades. On the other hand, as the number of patterns grows, the matching time of 

MASM grows more slowly than that of the Pre-filter+AC, which is due to that the matching time of 

MASM mainly relies on the depth of the pipelined binary search tree and that depth grows very slow as 

the number of patterns increases. 

Table 4. Matching times for the small group (seconds) 

Size AAMPM MASM Pre-filter+AC WM AC 

1×105 13.94 24.94 18.26 30.30 63.26 

2×105 16.65 27.71 21.08 33.08 65.08 

3×105 17.65 28.20 21.94 33.00 64.41 

4×105 19.99 30.53 25.32 38.50 65.62 

5×105 21.69 32.98 25.45 39.39 67.25 

6×105 22.54 33.27 28.30 44.78 69.68 

7×105 23.78 33.79 29.88 46.98 70.28 

8×105 24.82 36.88 33.09 47.79 ― 

9×105 25.32 37.54 34.51 55.39 ― 
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Table 5. The statistics about the node type in the AMTs built for the small group 

Size Map 1 Map 4 
Map 

16 

Map 

48 

Map 

256 

Single 

String Array 

String 

Array 

Hash 

Table 
Total 

1×105 2,000 1,006 72 18 0 68,268 21,971 103 93,438 

2×105 4,628 2,808 307 42 0 130,440 46,514 244 184,983 

3×105 7,414 4,858 574 84 0 190,653 71,757 403 275,746 

4×105 10,555 7,282 112 139 0 247,656 97,967 544 365,089 

5×105 13,703 10,651 946 238 4 302,350 124,528 17 452,994 

6×105 17,335 13,536 1,503 298 0 356,644 151,435 31 531,233 

7×105 21,080 16,872 1,954 388 4 408,165 179,621 35 628,570 

8×105 24,357 20,094 2,405 436 3 457,674 208,426 37 714,004 

9×105 28,356 23,924 2,977 513 9 504,779 238,632 42 799,696 

 

Among all these algorithms, the AAMPM is the most efficient as well as stable one. The high 

performance of AAMPM is mainly due to the root node of AMT, which is almost always the hash table 

structure as the number of patterns grows. As mentioned before, the root plays the role of a “filter”, by 

which a large number of positions of the text that are impossible to match with any pattern can be quickly 

filtered out. Moreover, the increasing in the number of patterns mainly leads to the growing of the width 

rather than the depth of AMT. Therefore, for each position of the text, the checking time changes slightly. 

From the experimental results, we can even give a rough estimate on the matching time based on the size 

of pattern set as follows: given the text of 200 MB, an increase of 105 in the number of patterns will lead 

to roughly one more second taken in the matching time. The statistics about the node types of the 

corresponding AMTs for the small group are shown in Table 5. We can see that an increase of 105 in the 

number of patterns will yield about 9×104 tree nodes. 

For the large group, the mean matching times of the investigated algorithms are shown in Table 6. 

From the results we can see that, as the number of patterns grows from 106 to 107, the increases in the 

matching time of the investigated algorithms are respectively: 408% (WM), 371% (Pre-filter+AC), 233% 

(MASM) and 117% (AAMPM). For every increase of 106 in the number of patterns, the mean increment 

in the matching time of the investigated algorithms are: 22.5s (WM), 16.5s (Pre-filter+AC), 11.8s 

(MASM), 3.9s (AAMPM) respectively. From the results we can see that, Pre-filter+AC and WM perform 

not well for large pattern sets. This is because, as the number of patterns grows, the chances for every 

position of the text to successfully match a pattern increases, which will reduce the effect of the filters of 

these algorithms and results in performance degradation. The MASM algorithm outperforms Pre-

filter+AC for pattern sets whose size are larger than 3×106, which is due to its pattern set compression 

strategy and the good scalability of its pipelinded binary search tree. 

Table 6. Matching times for the large group (seconds) 

Size AAMPM MASM Pre-filter+AC WM 
1×106 28.20 45.21 37.26 57.21 

2×106 33.25 56.33 48.08 70.33 

3×106 34.65 68.78 62.41 105.27 

4×106 40.99 80.98 90.62 120.33 

5×106 44.26 90.99 100.25 140.40 

6×106 50.73 106.76 124.68 180.89 

7×106 53.65 113.76 134.28 198.24 

8×106 54.52 123.97 150.12 227.65 

9×106 58.99 140.51 172.00 243.54 

1×107 59.78 152.56 190.12 270.33 

 

On the other hand, among all the algorithms, AAMPM is the most efficient algorithm for large pattern 

sets. An increase of 106 in the number of patterns, only require 3 more seconds to match, this is mainly 

due to the good scalability of the AMT which enables the matching time grows very slow as the number 

of patterns explodes. The statistics about the AMTs for the large group are shown in Table 7. In 

particular, every 106 increase in the number of patterns will yield only about 8×105 tree nodes. 
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Table 7. The statistics about the node type in the AMTs built for the large group 

Size Map 1 Map 4 
Map 

16 

Map 

48 
Map 256

Single 

String Array 

String 

Array 

Hash 

Table 
Total 

1×106 38,935 27,428 6,468 851 4 588,3437 3,986,683 1,027 903,942 

2×106 85,900 68,973 17,084 2,141 20 1,091,527 496,001 2,015 1,763,661

3×106 136,054 117,527 28,092 3,410 17 1,547,659 764,359 2,749 2,599,867

4×106 189,926 171,155 40,328 4,716 23 1,966,326 1,045,558 3,450 3,421,482

5×106 247,707 230,163 83,043 5,989 38 2,354,308 1,332,896 3,885 4,228,029

6×106 304,863 293,591 65,475 7,169 49 2,706,094 1,625,261 4,379 5,006,881

7×106 366,861 361,695 77,899 8,434 53 3,030,673 1,925,027 4,733 5,775,380

8×106 429,121 433,708 90,280 9,660 62 3,336,765 2,226,879 5,070 6,531,545

9×106 494,278 509,992 102,402 10,833 72 3,623,407 2,537,413 5,224 7,283,621

1×107 558,241 591,455 115,012 11,922 79 3,986,683 2,847,277 5,505 8,026,174

6 Conclusion and Future Work 

In this paper, we propose an Adaptive Architecture for Multi-Pattern Matching (AAMPM). The 

AAMPM used a data structure called Adaptive Matching Tree (AMT) which can be constructed to fit the 

feature of the given pattern set. Using the AMT to match with the text can improve the robustness of 

AAMPM for pattern sets with various lsps. Moreover, owing to the scalability and compactness of AMT, 

AAMPM offers a good support for large-scale pattern sets. In the future, we will try to design more 

efficient inner structures of the tree nodes; furthermore, since AAMPM needs to check every position of 

the text string, we will further improve this by designing a “skip scheme” for AAMPM. 
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