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Abstract. For large scale global optimization problems, evolutionary algorithms (briefly, EAs) 

will face a huge challenge, and their efficiency and effectiveness will be much reduced. To 

enhance their efficiency and effectiveness, in this paper, a problem adaptive variable grouping 

strategy (briefly, PAVG) is firstly proposed. In PAVG, we make the grouping directly via the 

expression of the objective function which usually consists of finite number of operations of 

four arithmetic operations “ + , − , 2f , ÷ ” and composite operation of basic elementary 

functions. We classify these operations into two classes: one will result in non-separable 

variables, and the other will result in separable variables. In this way, the variables can be 

grouped into several non-interacting subcomponents, while the variables in each subcomponent 

are interactive. Then, combining with PAVG, a novel algorithm, called cooperative co-evolution 

algorithm with problem adaptive variable grouping strategy (briefly, CCPA), is designed, and 

evolution can be conducted in these subcomponents separately. In this way, a large-scale 

problem can be decomposed into several small-scale problems and this makes the problem 

solving much easier. To further enhance the efficiency of CCPA, a new local search scheme is 

designed, and when a good solution is found in the evolution process (e.g., by crossover and 

mutation), it will be further improved by the local search scheme. To verify the efficiency of 

CCPA, the simulations are made on the standard benchmark suites of CEC’2010 and CEC’2013, 

and CCPA is compared with several well performed algorithms. The results indicate that the 

proposed algorithm CCPA is more efficient and effective.  

Keywords: cooperative co-evolution, initialization method, large scale global optimization, 

problem adaptive, variable grouping strategy 

1 Introduction 

Many real-world optimization problems involve a large number of decision variables. For example, in 

shape optimization, a large number of shape design variables are often used to represent complex shapes, 

such as turbine blades, aircraft wings, and heat exchangers, etc. How to handle this sort of real-world 

large scale global optimization (LSGO) problems efficiently still remains an open problem. 

In recent years, many new theoretical and computational contributions have been reported for solving 

LSGO problems, e.g., cooperative co-evolution (briefly, CC) [1-11], decomposition methods [12-13], 

estimation of distribution algorithms [14-15], memetic algorithms [16-17], etc. Moreover, to test the 

effectiveness of the large scale global optimization algorithms, some benchmark suites have been 

proposed  (e.g., [18-19]). 

                                                           
* Corresponding Author 
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For LSGO problems, a natural approach is to adopt a divide-and-conquer strategy. In existing 

approaches, CC is proposed by Potter and De Jong [1], which is one of the most efficient and popular 

algorithms. First, it divides a problem into several smaller subcomponents, then each subcomponent is 

evolved by using a separate evolutionary algorithm (EA) [1]. In the early stage of the development of CC, 

two decomposition methods: one-dimension based and splitting-in-half methods were adopted. These 

two methods do not take the interaction between variables into consideration. Thus, they cannot solve 

problems consisting of non-trivial variable interactions efficiently. In order to mitigate this problem, 

recently, some effective grouping methods (e.g., [2-8]) have been successively proposed. For example, 

Yang et al. proposed a random grouping method (used in DECC-G [3], MLCC [4]). However, the 

random grouping method just increases the probability of two interacting variables allocated into the 

same subcomponent; Chen et al. proposed a variable interaction learning grouping strategy in CCVIL [5] 

which takes the advantage of variable correlation information. However, it is only a sufficient condition 

rather than a sufficient and necessary condition to find interacting variables. More importantly, the 

number of problem evaluations needed in CCVIL is very large for LSGO. Recently, Mohammad and Li 

et al. proposed an automatic decomposition strategy called differential grouping (DECC-DG) [7] that is a 

great improvement to the existing grouping strategies. The experiments on CEC’2010 benchmark suite 

[18] have shown this grouping strategy is very efficient. However, the parameter ε  involved in the 

differential grouping will affect the effect of the grouping, and the condition given in the differential 

grouping is only a sufficient condition rather than a sufficient and necessary condition to find interacting 

variables. In addition, some of the aforementioned algorithms just tested the small scale benchmark suites 

(e.g., [20-21]). To overcome aforementioned shortcomings, in this paper, we propose a novel problem 

adaptive variable grouping strategy based on the formulation characteristic of a general function. In this 

variable grouping strategy, we make the grouping directly via the expression of the objective function. 

Note that a general function consists of finite number of operations of four arithmetic operations 

“+ , − ,× , ÷ ” and composite operation of basic elementary functions. We classify these operations into 

two classes: one will result in the variables non-separable, and the other will result in the variables 

separable. In this way, we do not need to determine any parameter and the strategy can be applied any 

function. 

Except for the novel grouping strategy, to further improve the efficiency and effectiveness of CC, a 

local search strategy is designed and integrated into CC, and when a good solution is found in the 

evolving process (e.g., by crossover and mutation), it will be further improved by the local search. Note 

that there have been some very efficient local search algorithms, e.g., Quasi Newton algorithm and 

conjugate gradient algorithm. However, these algorithms require the gradients of the function, and cannot 

be applicable to non-differentiable problems. To keep the efficiency of these local search algorithms and 

avoid computing the gradients, a revised version of Quasi Newton algorithm is designed and as the local 

search scheme in this paper. 

Based on the above ideas, the goal of the paper is to develop a new cooperative coevolution algorithm 

with problem adaptive variable grouping strategy (briefly, CCPA), so that CCPA has the following 

advantages: (1) it can decompose a large scale problem into several small scale problems if variables are 

divisible; (2) it can search for multiple areas in the search space simultaneously (search for each 

decomposed problem respectively); (3) it can find a better local optimal solution (via the local search 

scheme). The simulations are made on two benchmark suites (CEC’2010 [18] and CEC’2013 [19]), and 

CCPA is compared with several efficient algorithms. 

The reminder of the paper is organized as follows. In section 2, first, an initialization method is 

introduced; second, a variable grouping strategy is proposed respectively; third, a local search strategy is 

designed; finally, a novel algorithm framework CCPA is presented. Numerical experiments are given in 

Section 3. Section 4 presents conclusions and future works. In this paper, we adopt the following 

notations: 

k: the generation number; 

D: the dimension of the test problems; 
*

k
x : the local minimizer of the objective function in the k-th generation; 

*

k
f : the function value at *

k
x ; 

*

x : the global minimizer of the objective function; 
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FEs: the number of fitness evaluations; 

MaxFEs: the maximum number of fitness evaluations. 

N-Sep: a set of basic elementary functions and four arithmetic operations affecting variables 

interaction. 

2 Cooperative Co-evolution 

The basic idea of CC is to adopt divide-and-conquer strategy for a problem, and the critical steps of CC 

can be summarized as follows: 

(1) Problem decomposition: decompose a high-dimensional vector into smaller subcomponents that 

can be handled by conventional EAs. 

(2) Subcomponent optimization: evolve each subcomponent separately using a certain EA. 

(3) Subcomponent combination: merge solutions of all subcomponents, which constitute a solution of 

the original problem. 

For CC, like other population-based optimization algorithms, the initial population is an important 

issue. In the following, we introduce an initialization method. 

2.1 Initialization Method  

Traditionally, basic random number generators (RNGs) are widely used to initialize the population of CC. 

Recently, a large and growing body of literatures has proposed new ways to generate initial population 

(e.g., [9-11]). In this paper, we select the chaotic method [10] as a population generator. The detailed 

process of chaos initialization is as follows: 

Using the following formula to generate the chaos factor: 

 

( 1) ( ) (0)
(1 2 | 0.5 |),0 1, 1,2, , .

i i

j j j
z z z j Dµ

+

− − ≤ ≤ == �  (1) 

where 
j

z  denotes the j-th  chaos factor, and i  denotes the chaos iteration number. Set 0i =  first and 

randomly generate D  uniform factors, and in this paper, we use 1µ = . Then, let 1,2, ,i m= �  

successively and generate the initial swarms. 

After that, these chaos factors ( )
, 1,2, ,

i

j
z i m= �  will be mapped into the search space of the decision 

variables as follows: 

 

( )

min, max, min,( ), 1,2, , .i

ij j j j j
x x z x x j D= + − = �  (2) 

and 

 

1 2
( , , , ), 1,2, , .

i i i iD
X x x x i m= =� �  (3) 

are the initial chaos swarms. 

2.2 Problem Adaptive Variable Grouping Strategy: PAVG 

The main idea of CC is the decomposition of problem into smaller subcomponents, then every 

subcomponent is evolved by an evolutionary algorithm (EA) separately. The ideal goal is that the 

decision variables with interaction are grouped into one subcomponent, and the decision variables in any 

two subcomponents are not interacted. In this way, a large-scale problem can be divided into separate 

subproblems with lower dimensions. However, precisely grouping is a hard task. 

At present, some efficient grouping strategies have been proposed, such as randomly grouping 

(DECC-G [3], MLCC [4]), variable interaction learning grouping (CCVIL [5]), route distance grouping 

[6], differential grouping (DECC-DG) [7], delta grouping (DECC-DML) [8], and so on. However, these 

strategies still cannot accurately realize grouping. 

To overcome this shortcoming, in this paper, we propose a new problem adaptive variable grouping 

method (briefly, PAVG) that can divide all variables into several subcomponents accurately and self-

adaptively. 

The PAVG framework is as follows: First, we classify the situations of variable non-separability and 
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build a set N-Sep whose elements are those operations (among arithmetic operations and composite 

operations) resulting in variables interaction; second, searching the variables involved in the operations in 

N-Sep in the expression of objective function; finally, group the variables involved in any operation in N-

Sep into a subcomponent. 

Note that an expression of the objective function in a general optimization problem consists of the 

finite number of four arithmetic operations “ , , ,+ − × ÷ ” and composite operation of basic elementary 

functions (i.e., power function a

y , exponential functions y
a  and y

e , logarithmic functions ln y  and 

log
a
y , trigonometric functions sin y , cos y , tan y , cot y , sec y  and arcsin y , inverse trigonometric 

functions arcsin y , arccos y , arctan y , arccot y , arcsec y  and arccsc y , and constant, where y R∈ ). We 

classify the situations of variables non-separability based on the exp ression structure of objective 

functions according to the following cases; 

(1) Variables non-separability in four arithmetic operations. If function 
1 1 2 2

( )
m m

p x a x a x a x= + + +� , 

then each 
i i
a x  in this function can be optimized independently and thus the variable 

1 2
, , ,

m
x x x�  in this 

function are separable, where 0,
i
a ≥ 1,2, , .i m= �  If 

i
a R∈  for 1,2, ,= �i m  in function ( )p x =  

1 1 2 2
,

m m
a x a x a x+ + +�  then we can write ( )p x  into another equivalent form ( )p x =  

1 1 2 2 1 1
( ),

m k k k m m
b x b x b x c x c x

+ +
+ + + − + +� �  where 

i
b  and 

i
c  are positive for 1= ∼i k  and 1= + ∼j k m . 

Thus, 
1 2
, , ,

k
x x x�  are separable and 

1
, ,

k m
x x

+
�  are separable. As a result, variables in ( )p x  are separable. 

While if a function contains “× ” or “ ÷ ” of two variables, these two variables cannot be optimized 

independently and thus they are non-separable. We put two operations “× ” and “ ÷ ” into set −N Sep . 

(2) Variables non-separability in a composite function. For a basic elementary function ( )g y  with 

∈y R  and an n-dimensional function ( )h x , if ( )g y  is monotone and variables in function ( )h x  are 

separable, then variables in composite function ( )( )g h x  are also separable (e.g., if ( ) ,

y
g y e=  and 

( ) 1 2 10
h x x x x= + + +� , then variables in ( )( ) 1 2 10

x x x

g h x e
+ + +

=

�
 are separable). Otherwise, variables in 

( )( )g h x  are non-separable, i.e., when ( )g y  is a non-monotonic function or ( )h x  is non-separable ( ( )h x  

can be seen as a composite function of basic elementary functions and other functions), their composite 

function ( )( )g h x  is non-separable. Thus, the key operation to form a non-separable composite function 

for this case is that ( )g y  is non-monotone, and we put the non-monotonic basic elementary functions 

(e.g., trigonometric functions, inverse trigonometric functions, and power function with ∈y R ) into set 

N-Sep. 

(3) Variables non-separability in a function obtained by one operation of “ , , ,+ − × ÷ ” on two composite 

functions in (2). Note that operations “ + ” and “ − ” do not change the variables separability. The 

variables in “ × ” or “ ÷ ” of two composite functions in (2) are non-separable except for both the 

composite functions are exponential functions. Thus, we put “× ” and “ ÷ ” into set N-Sep (except that 

both the composite functions are exponential functions). 

Through above three cases, we can determine the groups of interactive variables and obtain the set N-

Sep whose elements (in fact, some operations) link the interactive variables. Through set N-Sep, we can 

design the following algorithm PAVG to group the variables into different subcomponents. 

The framework of the variable grouping strategy PAVG. 

(1) For a given problem, construct set N-Sep according to above three cases, then the elements in N-

Sep can be seen as some strings (such as “ cos ”, “ sin ” and “× ”, etc.); 

(2) If some variables are linked by an element in N-Sep, then put these variables into a subcomponent. 

If other variables are also linked to the variables in this subcomponent by an element in N-Sep, then these 

additional variables are also put into this subcomponent. Note that if we have checked the non-

separability of some variables in a function in previous steps, when we meet this function again in the 

objective function, we can directly use this result in the following steps instead of checking the term by 

term of this function again. This will improve the efficiency of grouping. For example, if we have 

checked variables 
1
x  and 

5
x  in 

1 5
cos( )x x  are non-separable, when we meet cos( )

i j
x x  in the following 

check, we can directly get the result that 
i
x

 

and 
j

x
 

are non-separable instead of making the check process 
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from the beginning. 

(3) Repeat step 2 until all variables and terms in the expression of objective function are checked. As a 

result, some variables will be grouped into some subcomponents (subcomponent), and the remaining 

variable(s) will not be grouped. 

(4) The variables which are not grouped in step 3 are separable, and each of these variables is grouped 

into a subcomponent.  

In this section, an example is given to illustrate the variable grouping strategy PAVG. 

For example:
1 2 1 3 4 5 5 6

( ) sin( ) tan( ) exp( ) exp( )f x x x x x x x x x= × + + − + + × . We know that { , sin× } is 

contained in N-Sep and we match these strings with N-Sep by using regular expressions. Then we can 

obtain that 
1
x  and 

2
x

 

are related, 
1
x  and 

3
x  are related. Trigonometric function ( )tan x  is monotone, so 

4
x

 

and 
5
x  are not related. Though 

5 6
exp( ) exp( )x x×  contain “ × ”, 

5 6 5 6
exp( ) exp( )= exp( + )x x x x× and 

exponential function exp( )x  is monotone, so 
5
x  and 

6
x  are not related. Therefore, 

1
x , 

2
x  and 

3
x  are 

related and put them in a subcomponent, and 
4
x , 

5
x  and 

6
x  are separately put into different 

subcomponents. Thus, all variables are grouped into four subcomponents. 

2.3 A New Local Search Strategy 

To further enhance the efficiency of the proposed algorithm CCPA which will be described in Section 3, 

we design a new local search scheme. 

When a good solution is found in the evolving process (e.g., by crossover and mutation) of an EA, it 

may not be a local optimal solution, and it usually can be further improved by local search. Thus, after 

evolving process in each generation, a local search strategy would be helpful to improve the searching 

efficiency of the algorithm. There have been some efficient local search algorithms, e.g., Conjugate 

Gradient Method, Newton Method and Quasi Newton Method, etc. However, these local search 

algorithms require the gradients of the function, and are not suitable for solving non-differentiable 

problems. To keep the advantages of these local search algorithms and avoid computing the gradients, a 

revised version of Quasi Newton algorithm is designed and its pseudocode is shown in algorithm 1. 

 

Algorithm 1. Pseudocode of the local search strategy 

1   Initialization: Choose a tolerance 0ε < , e.g. 1.0e-5ε = , and a small constant δ σ∈(0,1), ∈(0,0.5),  and 

1.0 -1x eΔ = . 

2     Give an initial point 
0

χ  and an approximate inverse of the Hessian matrix 
0

Β , 

3     k = 0.  

4    Calculate the approximate -i th  component of gradient vector 
k

g  by ( ( ) ( ))
ki k i k

g f x xe f xx= + Δ − Δ⁄   

for 1 ,i n= +  where (0, ,0,1,0, ,0)T
i
e = � �  with the -i th  component of 

i
e  being one. 

5      Repeat 

6             Obtain a direction    .

k k k k
d by d B g= −   

7             Perform a line search based on the Armijo criterion [25] to find an acceptable step size  

 

mk

k
λ δ= , where 

k
m  is the smallest non-negative integer that satisfy the following inequality: 

 ( ) ( )
mk mk T

k k k k k
f x d f x g dδ σδ+ ≤ + .  

8             Set 
k k k
s dλ= , and 

1
+

k k k
x x s

+
= , then calculate the approximate i-th component of gradient  

vector 
1

g
k+
 by ( ) ( )( )1 1

e 1 / ;
k k i k

g f x x f x x
+ +
= + Δ − + Δ  

for 1~i n=  and set
1

 y
k k k

g g
+

= − , then 

 
1 ,

( )

1 .

T T T T

k k k k k k k k k k k k k

T T

k k k k k k

B B s s B y s s y B s y

y B y s y

β

β

+
⎧ = + − −⎪
⎨

= +⎪⎩

⁄

⁄

  

9               Let  1k k= + , 

10     untill 
k

g ε≤ ; 

11    
k

x x
∗

= , 

12     return x
∗

. 



Cooperative Co-evolution Algorithm with Problem Adaptive Variable Grouping for Large Scale Global Optimization 

134 

2.4 Cooperative Co-evolution Algorithm with Problem Adaptive Variable Grouping Strategy (CCPA) 

For large scale optimization problems, we have proposed a variable grouping method in algorithm PAVG. 

Using this algorithm, a large-scale optimization problem can be decomposed into several small-scale 

optimization problems. For these small-scale optimization problems, it is important to use an efficient 

algorithm to solve them in order to further enhance the performance of the whole algorithm. 

It is well known that Differential Evolution (DE) is very effective and simple [22], but the general DE 

suffers the sensitivity of its control parameters [23]. It has been indicated that self-adaptive differential 

evolution with neighborhood Search (SaNSDE) [24] performs significantly better than other similar DE 

algorithms due to its self-adapted crossover rate CR and scaling factor F [24], and SaNSDE has been 

successfully applied in a variety of problems (e.g., [3-4]). Thus, we choose this algorithm as the 

evolutionary algorithm in each subcomponent. Based on algorithm 1 and SaNSDE, we design a new 

algorithm: a cooperative co-evolution algorithm with problem adaptive variable grouping strategy 

(CCPA). Its pseudocode is given in Algorithm 2. 

 

Algorithm 2. Pseudocode of CCPA 

1    Initialization: let 0, 0K FEs= =  and ε  is a tolerance threshold, i  is the iteration number. Generate 

initial population POP , where POP N= ; 

2      Perform PAVG, and obtain ( ), {1,2, ,SubPOP j j M= };�  

3      repeat 

4            for 1, ,j M= �  do 

5                 while 
+1

( ) ( )
i i

f x f x ε− >  do 

6                 optimize ( )SubPOP j  by SaNSDE; 

7            end 

8           record the current best solution. 
j

y
∗  corresponding to ( )SubPOP j ; then update .FEs  

9       end 

10     Update current best solution by * * * *

1 1
, , , ,

K K M
x Best x y y

+
= { }�  

11     Generate ( 1)N M− +  new individuals, and use these individuals and * * *

1
, , ,

K M
x y y�  as the new initial 

population; 1K K= + ; 

12     until MaxFEs  is met; 

13    * *

K
x x=  and * *( ) ( );

K
f x f x=  

14     return *

x  and *( )f x . 

 

It’s worth mentioning that. after the variables grouping, SaNSDE can be used to optimize each 

subcomponent, respectively; however, for a very small subcomponent (e.g., the size of subcomponent is 

equal to one), using SaNSDE may waste FEs. In order to reduce the cost of FEs , an efficient 

deterministic method (e.g., algorithm 1) can be used to solve the very small subcomponent problem. 

3 Numerical Experiments 

3.1 Benchmark Suite and Parameters Setting for CCPA 

In this section, first, CEC’2010 benchmark suite [18] is tested, where the dimensions of the problems are 

1000, and the results are recorded in Table 1; second, CEC’2013 benchmark suite [19] is tested, and the 

results are recorded in Table 2, where 1 3f f−  are fully separable functions, and 4 11f f−  are partially 

additively separable functions, and 12 15f f−  are non-separable functions, and the dimensions of the 

problems are 1000. 
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Table 1. Comparison between CCPA and other algorithms on CEC’2010 benchmark suite, D=1000 

P  CCPA MA-SW-Chains DECC-DG CCVIL DECC-G MLCC DECC-DML 

f1 
mean 

std 

0.00E+00 

0.00E+00 

2.01e-14 

1.99e-14 

5.47e+03 

2.02e+04 

1.55e-17

8.62e-08

2.93e-07 

7.75e-17 

1.53e-27 

7.66e-27 

1.93e-25 

1.86e-25 

f2 
mean 

std 

5.16E+01 

1.42E+01 

8.10e+02 

5.88e+01 

4.39e+03 

1.97e+02 

6.71e-09

3.24e+01 

1.31e+03

2.31e-08 

5.57e-01 

2.21e+00 

2.17e+02 

2.98e+01 

f3 
mean 

std 

1.10E-13 

1.56E-15 

7.28e-13 

3.40e-13 

1.67e+01 

3.34e-01 

7.52e-11

9.59e-02

1.39e+00

6.58e-11 

9.88e-13 

3.70e-12 

1.18e-13 

8.22e-15 

f4 
mean 

std 

4.84E+10 

2.28E+10 

3.53e+11 

3.12e+10 

4.79e+12 

1.44e+12 

9.62e+12 

3.38e+12 

5.00e+12

3.43e+12

9.61e+12 

3.43e+12 

3.58e+12 

1.54e+12 

f5 
mean 

std 

8.08E+07 

1.71E+07 

1.68e+08 

1.04e+08 

1.55e+08 

2.17e+07 

1.76e+08 

8.44e+07 

2.63e+08

6.47e+07

3.84e+08 

6.93e+07 

2.98e+08 

9.31e+07 

f6 
mean 

std 

3.42E+06 

1.36E+07 

8.14e+04 

2.84e+05 

1.64e+01 

2.71e-01 

2.94e+05 

8.02e+05 

4.96e+06

6.09e+05

1.62e+07 

4.97e+06 

7.93e+05 

3.97e+06 

f7 
mean 

std 

2.03E-10 

2.27E-12 

1.03e+02 

8.70e+01 

1.16e+04 

7.41e+03 

8.00e+08 

1.38e+08 

1.63e+08

2.48e+09

6.89e+05 

7.37e+05 

1.39e+08 

7.72e+07 

f8 
mean 

std 

1.28E+06 

1.90E+06 

1.41e+07 

3.68e+07 

3.04e+07 

2.11e+07 

6.50e+07 

2.89e+07 

6.44e+07

3.07e+07

4.38e+07 

3.45e+07 

3.46e+07 

3.56e+07 

f9 
mean 

std 

7.65E+06 

9.55E+05 

1.41e+07 

1.15e+06 

5.96e+07 

8.18e+06 

6.66e+07 

3.39e+07 

3.21e+08

1.60e+07

1.23e+08 

1.33e+07 

5.92e+07 

4.71e+06 

f10 
mean 

std 

1.31E+04 

3.47E+02 

2.07e+03 

1.44e+02 

4.52e+03 

1.41e+02 

1.28e+03 

2.93e+02 

1.06e+04

7.95e+01

3.43e+03 

8.72e+02 

1.25e+04 

2.66e+02 

f11 
mean 

std 

2.56E+01 

2.50E+00 

3.80e+01 

7.35e+00 

1.03e+01 

1.01e+00 

3.48e+00 

1.79e+00 

2.34e+01

1.91e+00

1.98e+02 

6.98e-01 

1.80e-13 

9.88e-15 

f12 
mean 

std 

7.20E-03 

2.49E-02 

3.62e-06 

5.92e-07 

2.52e+03 

4.86e+02 

8.95e+03 

6.90e+03 

8.93e+04

5.39e+03

3.49e+04 

4.92e+03 

3.79e+06 

1.50e+05 

f13 
mean 

std 

5.58E+01 

4.43E+01 

1.25e+03 

5.72e+02 

4.54e+06 

2.13e+06 

5.72e+02 

3.95e+03 

5.12e+03

2.55e+02

2.08e+03 

7.27e+02 

1.14e+03 

4.31e+02 

f14 
mean 

std 

5.54E+07 

4.79E+06 

3.11e+07 

1.93e+06 

3.41e+08 

2.41e+07 

1.74e+08 

6.06e+07 

8.08e+08

2.68e+07

3.16e+08 

2.77e+07 

1.89e+08 

1.49e+07 

f15 
mean 

std 

4.32E+03 

1.28E+02 

2.74e+03 

1.22e+02 

5.88e+03 

1.03e+02 

2.65e+03 

9.10e+02 

1.22e+04

9.34e+01

7.11e+03

1.34e+03 

1.54e+04 

3.59e+02 

f16 
mean 

std 

1.92E+01 

3.05E+00 

9.98e+01 

1.40e+01 

7.39e-13 

5.70e-14 

7.18e+00 

8.14e+00 

7.66e+01

2.23e+00

3.76e+02 

4.71e+01 

5.08e-02 

2.54e-01 

f17 
mean 

std 

7.18E+02 

2.86E+02 

1.24e+00 

1.25e-01 

4.01e+04 

2.85e+03 

2.13e+04 

1.97e+04 

2.87e+05

9.16e+03

1.59e+05 

1.43e+04 

6.54e+06 

4.63e+05 

f18 
mean 

std 

1.29E+03 

1.31E+02 

1.30e+03 

4.36e+02 

1.11e+10 

2.04e+09 

1.33e+04 

1.05e+04 

2.46e+04

1.00e+04

7.09e+03 

4.77e+03 

2.47e+03 

1.18e+03 

f19 
mean 

std 

9.22E+05 

3.91E+04 

2.85e+05 

1.78e+04 

1.74e+06 

9.54e+04 

3.52e+05 

5.00e+04 

1.11e+06

2.04e+04

1.36e+06 

7.35e+04 

1.59e+07 

1.72e+06 

f20 
mean 

std 

2.49E+03 

2.21E+02 

1.07e+03 

7.29e+01 

4.87e+07 

2.27e+07 

1.11e+03 

3.66e+02 

4.06e+03

3.04e+02

2.05e+03 

1.80e+02 

9.91e+02 

3.51e+01 

Table 2. Comparison between CCPA and other algorithms on CEC’2013 benchmark suite, D=1000 

P  CCPA CCR SACC MOS DECC-G 

Best 0.00e+00 0.00e+00 0.00e+00 0.00e+00 1.75e-13 

Median 0.00e+00 0.00e+00 0.00e+00 0.00e+00 2.00e-13 

Worst 0.00e+00 1.81e-03 6.81e-23 0.00e+00 2.45e-13 

Mean 0.00e+00 2.58e-04 2.73e-24 0.00e+00 2.03e-13 

f1 

Std 0.00e+00 6.84e-04 1.36e-23 0.00e+00 1.78e-14 

Best 1.79e+01 1.91e+02 2.88e+02 7.40e+02 9.90e+03 

Median 3.12e+01 1.15e+03 5.71e+02 8.36e+02 1.03e+03 

Worst 7.61e+01 4.11e+03 2.72e+03 9.28e+02 1.07e+03 

Mean 3.96e+01 2.11e+03 7.06e+02 8.32e+02 1.03e+03 

f2 

Std 2.20e+01 1.73e+03 4.72e+02 4.48e+01 2.26e+01 
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Table 2. Comparison between CCPA and other algorithms on CEC’2013 benchmark suite, D=1000 

(continue) 

P  CCPA CCR SACC MOS DECC-G 

Best 3.97e-13 2.06e-13 9.24e-14 8.20e-13 2.26e-10 

Median 4.22e-13 2.70e-13 1.21e+00 9.104e-13 2.85e-10 

Worst 4.58e-13 3.32e-00 3.76e+00 1.00e-12 3.16e-10 

Mean 4.32e-13 3.76e-01 1.11e+00 9.17e-13 2.87e-10 

f3 

Std 2.18e-14 9.96e-01 1.11e+00 5.12e-14 1.38e-11 

Best 2.20e+07 7.02e+09 8.48e+09 1.10e+08 7.58e+09 

Median 4.47e+08 2.79e+10 3.66e+10 1.56e+08 2.12e+10 

Worst 1.14e+09 1.35e+11 1.71e+11 5.22e+08 6.99e+10 

Mean 5.83e+08 6.09e+10 4.56e+10 1.74e+08 2.60e+10 

f4 

Std 3.35e+08 5.46e+10 3.60e+10 7.87e+08 1.47e+10 

Best 2.60e+08 1.46e+06 3.36e+06 5.25e+06 7.28e+14 

Median 2.99e+06 1.02e+07 6.95e+06 6.79e+06 7.28e+14 

Worst 4.67e+06 1.37e+07 1.40e+07 8.56e+08 7.28e+14 

Mean 3.35e+06 8.31e+06 7.74e+06 6.94e+06 7.28e+14 

f5 

Std 7.30e+06 4.90e+06 3.22e+06 8.85e+05 1.51e+05 

Best 1.17e+05 1.21e+05 1.57e+05 1.95e+01 6.96e-08 

Median 1.28e+05 1.38e+05 2.07e+05 1.39e+05 6.08e+04 

Worst 1.52e+05 1.82e+05 6.00e+05 2.31e+05 1.10e+05 

Mean 1.30e+05 1.46e+05 2.47e+05 1.48e+05 4.85e+04 

f6 

Std 1.25e+04 2.56e+04 1.02e+05 6.43e+04 3.98e+04 

Best 3.84e+02 2.44e+07 1.72e+06 3.49e+03 1.96e+08 

Median 1.90e+03 3.13e+08 1.58e+07 1.62e+04 4.27e+08 

Worst 1.09e+03 1.02e+09 1.18e+09 3.73e+04 1.78e+09 

Mean 3.08e+03 4.65e+08 8.98e+07 1.62e+04 6.07e+08 

f7 

Std 3.62e+03 4.22e+08 2.48e+08 9.10e+03 4.09e+08 

Best 5.53e+14 5.33e+13 1.47e+14 3.26e+12 1.43e+14 

Median 1.15e+15 1.57e+15 9.86e+14 8.18e+12 3.88e+14 

Worst 2.35e+15 5.62e+15 3.08e+15 1.32e+13 7.75e+14 

Mean 1.40e+15 2.14e+15 1.20e+15 8.00e+12 4.26e+14 

f8 

Std 6.98e+14 1.77e+15 7.63e+14 3.07e+12 1.53e+14 

Best 2.52e+08 2.54e+08 2.29e+08 2.63e+08 2.20e+08 

Median 3.72e+08 4.04e+08 5.77e+08 3.87e+08 4.17e+08 

Worst 3.81e+08 4.89e+08 1.01e+09 5.42e+08 6.55e+08 

Mean 3.45e+08 3.75e+08 5.98e+08 3.83e+08 4.27e+08 

f9 

Std 4.70e+07 7.97e+07 2.03e+08 6.29e+07 9.89e+07 

Best 1.34e+02 5.92e+06 1.38e+07 5.92e+02 9.29e+04 

Median 1.83e+02 1.09e+07 2.11e+07 1.18e+06 1.19e+07 

Worst 2.37e+02 1.59e+07 .75e+07 1.23e+06 1.73e+07 

Mean 1.91e+02 1.02e+07 2.95e+07 9.02e+05 1.10e+07 

f10 

Std 4.20e+01 3.16e+06 1.93e+07 5.07e+05 4.00e+06 

Best 8.36e+07 3.35e+08 8.12e+07 2.06e+07 4.68e+10 

Median 9.85e+07 1.88e+10 5.30e+08 4.48e+07 1.60e+11 

Worst 1.55e+08 2.93e+11 2.30e+10 9.50e+04 7.16e+11 

Mean 1.08e+08 1.01e+11 2.78e+09 5.22e+07 2.46e+11 

f11 

Std 2.79e+07 1.28e+11 5.90e+09 2.05e+07 2.03e+11 

Best 2.20e+03 2.48e+03 2.43e+02 2.22e-01 9.80e+02 

Median 2.51e+03 2.71e+03 8.74e+02 2.46e+02 1.03e+03 

Worst 3.59e+03 3.00e+03 1.72e+03 1.17e+03 1.20e+03 

Mean 2.59e+02 2.71e+03 8.73e+02 2.47e+02 1.04e+03 

f12 

Std 4.65e+02 1.81e+02 3.71e+02 2.54e+02 5.76e+01 

Best 3.54e+08 3.86e+09 6.72e+08 1.52e+06 2.09e+10 

Median 7.53e+08 4.78e+09 1.51e+09 3.30e+06 3.36e+10 

Worst 3.41e+09 7.45e+09 3.40e+09 6.16e+06 4.64e+10 

Mean 1.16e+09 5.21e+09 1.78e+09 3.40e+06 3.42e+10 

f13 

Std 1.04e+09 1.30e+09 8.05e+08 1.06e+06 6.41e+09 
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Table 2. Comparison between CCPA and other algorithms on CEC’2013 benchmark suite, D=1000 

(continue) 

P  CCPA CCR SACC MOS DECC-G 

Best 7.22e+09 3.91e+08 8.21e+07 1.54e+07 1.91e+11 

Median 1.79e+10 7.96e+09 7.34e+09 2.42e+07 6.27e+11 

Worst 3.69e+10 2.52e+11 1.10e+11 4.46e+07 1.04e+12 

Mean 1.96e+10 4.75e+10 1.75e+10 2.56e+07 6.08e+11 

f14 

Std 9.77e+09 9.21e+10 2.87e+10 7.94e+06 2.06e+11 

Best 2.91e+06 3.91e+08 1.26e+06 2.03e+06 4.63e+07 

Median 3.44e+06 6.22e+06 1.88e+06 2.38e+06 6.01e+07 

Worst 3.87e+06 7.56e+06 4.90e+06 2.88e+06 7.15e+07 

Mean 3.39e+06 5.32e+06 2.01e+06 2.35e+06 6.05e+07 

f15 

Std 3.48e+05 2.06e+06 7.23e+05 1.94e+05 6.45e+06 

 

In experiments, CCPA was tested on an Intel (R) Core (TM) i7 CPU 870 with 2.93GHz in Matlab 

R2012a. 

3.2 The Simulation Results 

CCPA is executed 25 independent runs for each test problem using stop criterion MaxFEs, and we record 

the smallest fitness value in 25 runs, denoted as “Best”; the median fitness value in 25 runs, denoted as 

“Median”; the largest fitness value in 25 runs, denoted as “Worst”; the average fitness value in 25 runs, 

denoted as “Mean”; and the standard deviation in 25 runs, denoted as “Std”. These results are recorded in 

Tables 1 and 2; and the best result of all compared algorithms are shown in bold. 

In Table 1, six algorithms (MA-SW-Chains [26], DECC-DG [7], CCVIL [5], DECC-G [3], MLCC [4], 

DECC-DML [8]) are compared with CCPA. From Table 1, it can be seen that CCPA is obviously 

superior to others for 9 test problems. Respectively, CCPA is better than MA-SW-Chains for 12 test 

problems; CCPA is better than DECC-DG for 16 test problems; CCPA is better than CCVIL for 12 test 

problems; CCPA is better than DECC-G for 18 test problems; CCPA is better than MLCC for 17 test 

problems; CCPA is better than DECC-DML for 15 test problems. On the whole, CCPA is obviously 

superior to the other comparison algorithms. 

To show the performance of the proposed CCPA, we compare CCPA with four algorithms (CCR, 

SACC [27], MOS [28] and DECC-G [3]) on CEC’2013 benchmark suite. In order to test the efficiency of 

the proposed variable grouping strategy, we replace the proposed variable grouping strategy by random 

grouping strategy [4] in CCPA and the resulted algorithm is denoted as CCR and the group size was set 

to 100. The main difference between SACC and CCPA is as follows: one is that SACC uses the random 

grouping strategy while CCPA uses the proposed one, and the other is that SACC uses an auxiliary 

function to enhance its performance while CCPA does not. The algorithm MOS [28] is one of the best 

algorithms in CEC’2013 competition on large scale global optimization. The algorithm DECC-G [3] is 

used by many authors in their comparisons (e.g., [7, 28]), and the results has been given in [29] for 

CEC’2013 benchmark suite. Although a new method with differential grouping [7] has shown a good 

performance, it does not test CEC’2013 benchmark suite [19] and we cannot get their results on these 

benchmarks. Thus, we do not make the comparison with this new method. We directly use the results 

obtained by SACC, MOS and DECC-G in [27-28] and [3] for a comparison. These results are also given 

in Table 2. 

It can be seen from Table 2 that, among 15 test functions, the mean values of seven functions obtained 

by CCPA are better than those obtained by other four algorithms, and the best values of eight functions 

obtained by CCPA are better than those obtained by other four algorithms, which indicates that CCPA 

are the most efficient algorithms among these compared algorithms for most functions. 

For a pairwise comparison, both the mean values and the best values of nine functions obtained by 

CCPA are better than those obtained by MOS, which indicates that CCPA is more effective than MOS. 

The mean values of thirteen problems obtained by CCPA are better than those obtained by DECC-G and 

the best values of eleven functions obtained by CCPA are better than those obtained by DECC-G. The 

almost all results obtained by CCPA are better than those obtained by SACC and CCR, which indicates 

that the proposed problem adaptive grouping strategy PAVG is more effective than random grouping 

strategy. 
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For fully separable functions 1, 2f f  and 3f , it can be seen from Table 2 that performance of CCPA is 

better than that of all the other four algorithms, which indicates that the proposed variable grouping 

strategy is more efficient. 

For eight partially additively separable functions 4 11f f− , the results obtained by CCPA are better 

than those obtained by CCR and SACC for almost all these functions. The performance of CCPA is 

better than that of MOS on five functions. The mean values of six partially additively separable problems 

4, 5 7, 9, 10f f f f f,  and 11f  obtained by CCPA are better than those obtained by DECC-G, and the best 

solutions of five functions obtained by CCPA are better than those obtained by DECC-G. Thus, CCPA is 

more efficient on the most partially additively separable functions than other four compared algorithms. 

However, it can also be seen from Table 2 that for these eight partially additively separable functions 

4 11f f− , the best solutions obtained by all compared algorithms are far from the real global optimal 

solutions. This may be caused by following two reasons. One may be that the number of local minima 

grows exponentially as the number of decision variables increases; and second one may be that the 

maximum number of function evaluations assigned is not enough for these functions. 

Finally, for overlapping functions 12 14f f−  and non-separable function 15f , the results in CCPA are 

poorer than those in MOS. It indicates that variable grouping strategy PAVG is ineffective for 

overlapping and non-separable functions, which is consistent with the designing of our algorithm. 

In order to show the efficiency and effectiveness of the proposed variable grouping strategy intuitively, 

we use the semi-log line diagram to plot the convergence curve of the fitness value on Fig. 1 to Fig. 5, 

where the horizontal axis is the number of function evaluations and the vertical axis is logarithmic scale 

of the mean fitness value in 25 runs on a problem. Fig.1 to Fig. 5 show the convergence curves for the 

five representative functions: 2, 3, 5, 7f f f f  and 10f , respectively, where the thick line represents the 

convergence curve of CCPA, and thin line represents the convergence curve of SACC, and dotted line 

represents the convergence curve of CCR. 

  

Fig. 1. The convergence curve of three algorithms on 2f  Fig. 2. The convergence curve of three algorithms on 3f  

  

Fig. 3. The convergence curve of three algorithms on 5f  Fig. 4. The convergence curve of three algorithms on 7f  
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Fig. 5. The convergence curve of three algorithms on 10f  

From Fig. 1 to Fig. 5, it can be seen that CCPA converges much faster than the other two algorithms 

and more easily finds better solutions. 

Overall, it can be seen from Tables 1, 2 and Fig. 1 to Fig. 5 that the problem adaptive variable 

grouping strategy PAVG plays an important part in CCPA and CCPA is more effective and efficient. 

4 Conclusions 

In this paper, a new evolutionary algorithm called cooperative co-evolution with problem adaptive 

variable grouping strategy (briefly, CCPA) has been proposed. First, the variable grouping strategy 

PAVG can more accurately group the interacting variables into the same subcomponent such that the 

interaction between different subcomponents is as minimum as possible. Second, a local search strategy 

has been given to enhance EAs. Finally, CC can search multiple regions simultaneously and thus has 

more possibility to find a better local optimal solution. In order to evaluate the actual performance of 

PAVG, we used PAVG in a cooperative co-evolutionary framework and conducted the experiments on 

11 large-scale additively separable functions in CEC’2013 benchmark suite. The experiment results 

revealed that PAVG can accurately make the variable grouping and greatly enhance the performance of 

CC. 

There are several relevant issues to be addressed further in the future. Firstly, more powerful variable 

grouping strategy for large scale global optimization needs to be further explored. Secondly, it is 

necessary to revise CCPA by integrating some other technique which can effectively handle the non-

separable problems. Thirdly, our algorithm can only be applicable to the problems with their function 

equations being known. There are many problems that can be abstracted to the large-scale global 

optimization problems and the objective functions of these problems indeed exist, and CCPA is suitable 

for solving these kinds of large-scale problems. 
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