
Journal of Computers Vol. 29 No. 5, 2018, pp. 129-141

doi:10.3966/199115992018102905011

129

Cooperative Co-evolution Algorithm with Problem Adaptive

Variable Grouping for Large Scale Global Optimization

Fei Wei1*, Shugang Li2, Jinfeng Xue3

1 College of Sciences, Xi’an University of Science and Technology, Xi’an, 710054, China

feiweixjf@163.com

2 College of Safety Science and Engineering, Xi’an University of Science and Technology,

Xi’an, 710054, China

3 31662 Army, Lin xia, 731100, China

Received 7 June 2017; Revised 7 November 2017; Accepted 7 December 2017

Abstract. For large scale global optimization problems, evolutionary algorithms (briefly, EAs)

will face a huge challenge, and their efficiency and effectiveness will be much reduced. To

enhance their efficiency and effectiveness, in this paper, a problem adaptive variable grouping

strategy (briefly, PAVG) is firstly proposed. In PAVG, we make the grouping directly via the

expression of the objective function which usually consists of finite number of operations of

four arithmetic operations “ + , − , 2f , ÷ ” and composite operation of basic elementary

functions. We classify these operations into two classes: one will result in non-separable

variables, and the other will result in separable variables. In this way, the variables can be

grouped into several non-interacting subcomponents, while the variables in each subcomponent

are interactive. Then, combining with PAVG, a novel algorithm, called cooperative co-evolution

algorithm with problem adaptive variable grouping strategy (briefly, CCPA), is designed, and

evolution can be conducted in these subcomponents separately. In this way, a large-scale

problem can be decomposed into several small-scale problems and this makes the problem

solving much easier. To further enhance the efficiency of CCPA, a new local search scheme is

designed, and when a good solution is found in the evolution process (e.g., by crossover and

mutation), it will be further improved by the local search scheme. To verify the efficiency of

CCPA, the simulations are made on the standard benchmark suites of CEC’2010 and CEC’2013,

and CCPA is compared with several well performed algorithms. The results indicate that the

proposed algorithm CCPA is more efficient and effective.

Keywords: cooperative co-evolution, initialization method, large scale global optimization,

problem adaptive, variable grouping strategy

1 Introduction

Many real-world optimization problems involve a large number of decision variables. For example, in

shape optimization, a large number of shape design variables are often used to represent complex shapes,

such as turbine blades, aircraft wings, and heat exchangers, etc. How to handle this sort of real-world

large scale global optimization (LSGO) problems efficiently still remains an open problem.

In recent years, many new theoretical and computational contributions have been reported for solving

LSGO problems, e.g., cooperative co-evolution (briefly, CC) [1-11], decomposition methods [12-13],

estimation of distribution algorithms [14-15], memetic algorithms [16-17], etc. Moreover, to test the

effectiveness of the large scale global optimization algorithms, some benchmark suites have been

proposed (e.g., [18-19]).

* Corresponding Author

Cooperative Co-evolution Algorithm with Problem Adaptive Variable Grouping for Large Scale Global Optimization

130

For LSGO problems, a natural approach is to adopt a divide-and-conquer strategy. In existing

approaches, CC is proposed by Potter and De Jong [1], which is one of the most efficient and popular

algorithms. First, it divides a problem into several smaller subcomponents, then each subcomponent is

evolved by using a separate evolutionary algorithm (EA) [1]. In the early stage of the development of CC,

two decomposition methods: one-dimension based and splitting-in-half methods were adopted. These

two methods do not take the interaction between variables into consideration. Thus, they cannot solve

problems consisting of non-trivial variable interactions efficiently. In order to mitigate this problem,

recently, some effective grouping methods (e.g., [2-8]) have been successively proposed. For example,

Yang et al. proposed a random grouping method (used in DECC-G [3], MLCC [4]). However, the

random grouping method just increases the probability of two interacting variables allocated into the

same subcomponent; Chen et al. proposed a variable interaction learning grouping strategy in CCVIL [5]

which takes the advantage of variable correlation information. However, it is only a sufficient condition

rather than a sufficient and necessary condition to find interacting variables. More importantly, the

number of problem evaluations needed in CCVIL is very large for LSGO. Recently, Mohammad and Li

et al. proposed an automatic decomposition strategy called differential grouping (DECC-DG) [7] that is a

great improvement to the existing grouping strategies. The experiments on CEC’2010 benchmark suite

[18] have shown this grouping strategy is very efficient. However, the parameter ε involved in the

differential grouping will affect the effect of the grouping, and the condition given in the differential

grouping is only a sufficient condition rather than a sufficient and necessary condition to find interacting

variables. In addition, some of the aforementioned algorithms just tested the small scale benchmark suites

(e.g., [20-21]). To overcome aforementioned shortcomings, in this paper, we propose a novel problem

adaptive variable grouping strategy based on the formulation characteristic of a general function. In this

variable grouping strategy, we make the grouping directly via the expression of the objective function.

Note that a general function consists of finite number of operations of four arithmetic operations

“+ , − ,× , ÷ ” and composite operation of basic elementary functions. We classify these operations into

two classes: one will result in the variables non-separable, and the other will result in the variables

separable. In this way, we do not need to determine any parameter and the strategy can be applied any

function.

Except for the novel grouping strategy, to further improve the efficiency and effectiveness of CC, a

local search strategy is designed and integrated into CC, and when a good solution is found in the

evolving process (e.g., by crossover and mutation), it will be further improved by the local search. Note

that there have been some very efficient local search algorithms, e.g., Quasi Newton algorithm and

conjugate gradient algorithm. However, these algorithms require the gradients of the function, and cannot

be applicable to non-differentiable problems. To keep the efficiency of these local search algorithms and

avoid computing the gradients, a revised version of Quasi Newton algorithm is designed and as the local

search scheme in this paper.

Based on the above ideas, the goal of the paper is to develop a new cooperative coevolution algorithm

with problem adaptive variable grouping strategy (briefly, CCPA), so that CCPA has the following

advantages: (1) it can decompose a large scale problem into several small scale problems if variables are

divisible; (2) it can search for multiple areas in the search space simultaneously (search for each

decomposed problem respectively); (3) it can find a better local optimal solution (via the local search

scheme). The simulations are made on two benchmark suites (CEC’2010 [18] and CEC’2013 [19]), and

CCPA is compared with several efficient algorithms.

The reminder of the paper is organized as follows. In section 2, first, an initialization method is

introduced; second, a variable grouping strategy is proposed respectively; third, a local search strategy is

designed; finally, a novel algorithm framework CCPA is presented. Numerical experiments are given in

Section 3. Section 4 presents conclusions and future works. In this paper, we adopt the following

notations:

k: the generation number;

D: the dimension of the test problems;
*

k
x : the local minimizer of the objective function in the k-th generation;

*

k
f : the function value at *

k
x ;

*

x : the global minimizer of the objective function;

Journal of Computers Vol. 29, No. 5, 2018

131

FEs: the number of fitness evaluations;

MaxFEs: the maximum number of fitness evaluations.

N-Sep: a set of basic elementary functions and four arithmetic operations affecting variables

interaction.

2 Cooperative Co-evolution

The basic idea of CC is to adopt divide-and-conquer strategy for a problem, and the critical steps of CC

can be summarized as follows:

(1) Problem decomposition: decompose a high-dimensional vector into smaller subcomponents that

can be handled by conventional EAs.

(2) Subcomponent optimization: evolve each subcomponent separately using a certain EA.

(3) Subcomponent combination: merge solutions of all subcomponents, which constitute a solution of

the original problem.

For CC, like other population-based optimization algorithms, the initial population is an important

issue. In the following, we introduce an initialization method.

2.1 Initialization Method

Traditionally, basic random number generators (RNGs) are widely used to initialize the population of CC.

Recently, a large and growing body of literatures has proposed new ways to generate initial population

(e.g., [9-11]). In this paper, we select the chaotic method [10] as a population generator. The detailed

process of chaos initialization is as follows:

Using the following formula to generate the chaos factor:

(1) () (0)
(1 2 | 0.5 |),0 1, 1,2, , .

i i

j j j
z z z j Dµ

+

− − ≤ ≤ == � (1)

where
j

z denotes the j-th chaos factor, and i denotes the chaos iteration number. Set 0i = first and

randomly generate D uniform factors, and in this paper, we use 1µ = . Then, let 1,2, ,i m= �

successively and generate the initial swarms.

After that, these chaos factors ()
, 1,2, ,

i

j
z i m= � will be mapped into the search space of the decision

variables as follows:

()

min, max, min,(), 1,2, , .i

ij j j j j
x x z x x j D= + − = � (2)

and

1 2
(, , ,), 1,2, , .

i i i iD
X x x x i m= =� � (3)

are the initial chaos swarms.

2.2 Problem Adaptive Variable Grouping Strategy: PAVG

The main idea of CC is the decomposition of problem into smaller subcomponents, then every

subcomponent is evolved by an evolutionary algorithm (EA) separately. The ideal goal is that the

decision variables with interaction are grouped into one subcomponent, and the decision variables in any

two subcomponents are not interacted. In this way, a large-scale problem can be divided into separate

subproblems with lower dimensions. However, precisely grouping is a hard task.

At present, some efficient grouping strategies have been proposed, such as randomly grouping

(DECC-G [3], MLCC [4]), variable interaction learning grouping (CCVIL [5]), route distance grouping

[6], differential grouping (DECC-DG) [7], delta grouping (DECC-DML) [8], and so on. However, these

strategies still cannot accurately realize grouping.

To overcome this shortcoming, in this paper, we propose a new problem adaptive variable grouping

method (briefly, PAVG) that can divide all variables into several subcomponents accurately and self-

adaptively.

The PAVG framework is as follows: First, we classify the situations of variable non-separability and

Cooperative Co-evolution Algorithm with Problem Adaptive Variable Grouping for Large Scale Global Optimization

132

build a set N-Sep whose elements are those operations (among arithmetic operations and composite

operations) resulting in variables interaction; second, searching the variables involved in the operations in

N-Sep in the expression of objective function; finally, group the variables involved in any operation in N-

Sep into a subcomponent.

Note that an expression of the objective function in a general optimization problem consists of the

finite number of four arithmetic operations “ , , ,+ − × ÷ ” and composite operation of basic elementary

functions (i.e., power function a

y , exponential functions y
a and y

e , logarithmic functions ln y and

log
a
y , trigonometric functions sin y , cos y , tan y , cot y , sec y and arcsin y , inverse trigonometric

functions arcsin y , arccos y , arctan y , arccot y , arcsec y and arccsc y , and constant, where y R∈). We

classify the situations of variables non-separability based on the exp ression structure of objective

functions according to the following cases;

(1) Variables non-separability in four arithmetic operations. If function
1 1 2 2

()
m m

p x a x a x a x= + + +� ,

then each
i i
a x in this function can be optimized independently and thus the variable

1 2
, , ,

m
x x x� in this

function are separable, where 0,
i
a ≥ 1,2, , .i m= � If

i
a R∈ for 1,2, ,= �i m in function ()p x =

1 1 2 2
,

m m
a x a x a x+ + +� then we can write ()p x into another equivalent form ()p x =

1 1 2 2 1 1
(),

m k k k m m
b x b x b x c x c x

+ +
+ + + − + +� � where

i
b and

i
c are positive for 1= ∼i k and 1= + ∼j k m .

Thus,
1 2
, , ,

k
x x x� are separable and

1
, ,

k m
x x

+
� are separable. As a result, variables in ()p x are separable.

While if a function contains “× ” or “ ÷ ” of two variables, these two variables cannot be optimized

independently and thus they are non-separable. We put two operations “× ” and “ ÷ ” into set −N Sep .

(2) Variables non-separability in a composite function. For a basic elementary function ()g y with

∈y R and an n-dimensional function ()h x , if ()g y is monotone and variables in function ()h x are

separable, then variables in composite function ()()g h x are also separable (e.g., if () ,

y
g y e= and

() 1 2 10
h x x x x= + + +� , then variables in ()() 1 2 10

x x x

g h x e
+ + +

=

�
 are separable). Otherwise, variables in

()()g h x are non-separable, i.e., when ()g y is a non-monotonic function or ()h x is non-separable (()h x

can be seen as a composite function of basic elementary functions and other functions), their composite

function ()()g h x is non-separable. Thus, the key operation to form a non-separable composite function

for this case is that ()g y is non-monotone, and we put the non-monotonic basic elementary functions

(e.g., trigonometric functions, inverse trigonometric functions, and power function with ∈y R) into set

N-Sep.

(3) Variables non-separability in a function obtained by one operation of “ , , ,+ − × ÷ ” on two composite

functions in (2). Note that operations “ + ” and “ − ” do not change the variables separability. The

variables in “ × ” or “ ÷ ” of two composite functions in (2) are non-separable except for both the

composite functions are exponential functions. Thus, we put “× ” and “ ÷ ” into set N-Sep (except that

both the composite functions are exponential functions).

Through above three cases, we can determine the groups of interactive variables and obtain the set N-

Sep whose elements (in fact, some operations) link the interactive variables. Through set N-Sep, we can

design the following algorithm PAVG to group the variables into different subcomponents.

The framework of the variable grouping strategy PAVG.

(1) For a given problem, construct set N-Sep according to above three cases, then the elements in N-

Sep can be seen as some strings (such as “ cos ”, “ sin ” and “× ”, etc.);

(2) If some variables are linked by an element in N-Sep, then put these variables into a subcomponent.

If other variables are also linked to the variables in this subcomponent by an element in N-Sep, then these

additional variables are also put into this subcomponent. Note that if we have checked the non-

separability of some variables in a function in previous steps, when we meet this function again in the

objective function, we can directly use this result in the following steps instead of checking the term by

term of this function again. This will improve the efficiency of grouping. For example, if we have

checked variables
1
x and

5
x in

1 5
cos()x x are non-separable, when we meet cos()

i j
x x in the following

check, we can directly get the result that
i
x

and
j

x

are non-separable instead of making the check process

Journal of Computers Vol. 29, No. 5, 2018

133

from the beginning.

(3) Repeat step 2 until all variables and terms in the expression of objective function are checked. As a

result, some variables will be grouped into some subcomponents (subcomponent), and the remaining

variable(s) will not be grouped.

(4) The variables which are not grouped in step 3 are separable, and each of these variables is grouped

into a subcomponent.

In this section, an example is given to illustrate the variable grouping strategy PAVG.

For example:
1 2 1 3 4 5 5 6

() sin() tan() exp() exp()f x x x x x x x x x= × + + − + + × . We know that { , sin× } is

contained in N-Sep and we match these strings with N-Sep by using regular expressions. Then we can

obtain that
1
x and

2
x

are related,
1
x and

3
x are related. Trigonometric function ()tan x is monotone, so

4
x

and
5
x are not related. Though

5 6
exp() exp()x x× contain “ × ”,

5 6 5 6
exp() exp()= exp(+)x x x x× and

exponential function exp()x is monotone, so
5
x and

6
x are not related. Therefore,

1
x ,

2
x and

3
x are

related and put them in a subcomponent, and
4
x ,

5
x and

6
x are separately put into different

subcomponents. Thus, all variables are grouped into four subcomponents.

2.3 A New Local Search Strategy

To further enhance the efficiency of the proposed algorithm CCPA which will be described in Section 3,

we design a new local search scheme.

When a good solution is found in the evolving process (e.g., by crossover and mutation) of an EA, it

may not be a local optimal solution, and it usually can be further improved by local search. Thus, after

evolving process in each generation, a local search strategy would be helpful to improve the searching

efficiency of the algorithm. There have been some efficient local search algorithms, e.g., Conjugate

Gradient Method, Newton Method and Quasi Newton Method, etc. However, these local search

algorithms require the gradients of the function, and are not suitable for solving non-differentiable

problems. To keep the advantages of these local search algorithms and avoid computing the gradients, a

revised version of Quasi Newton algorithm is designed and its pseudocode is shown in algorithm 1.

Algorithm 1. Pseudocode of the local search strategy

1 Initialization: Choose a tolerance 0ε < , e.g. 1.0e-5ε = , and a small constant δ σ∈(0,1), ∈(0,0.5), and

1.0 -1x eΔ = .

2 Give an initial point
0

χ and an approximate inverse of the Hessian matrix
0

Β ,

3 k = 0.

4 Calculate the approximate -i th component of gradient vector
k

g by (() ())
ki k i k

g f x xe f xx= + Δ − Δ⁄

for 1 ,i n= + where (0, ,0,1,0, ,0)T
i
e = � � with the -i th component of

i
e being one.

5 Repeat

6 Obtain a direction .

k k k k
d by d B g= −

7 Perform a line search based on the Armijo criterion [25] to find an acceptable step size

mk

k
λ δ= , where

k
m is the smallest non-negative integer that satisfy the following inequality:

 () ()
mk mk T

k k k k k
f x d f x g dδ σδ+ ≤ + .

8 Set
k k k
s dλ= , and

1
+

k k k
x x s

+
= , then calculate the approximate i-th component of gradient

vector
1

g
k+

 by () ()()1 1
e 1 / ;

k k i k
g f x x f x x

+ +
= + Δ − + Δ

for 1~i n= and set
1

 y
k k k

g g
+

= − , then

1 ,

()

1 .

T T T T

k k k k k k k k k k k k k

T T

k k k k k k

B B s s B y s s y B s y

y B y s y

β

β

+
⎧ = + − −⎪
⎨

= +⎪⎩

⁄

⁄

9 Let 1k k= + ,

10 untill
k

g ε≤ ;

11
k

x x
∗

= ,

12 return x
∗

.

Cooperative Co-evolution Algorithm with Problem Adaptive Variable Grouping for Large Scale Global Optimization

134

2.4 Cooperative Co-evolution Algorithm with Problem Adaptive Variable Grouping Strategy (CCPA)

For large scale optimization problems, we have proposed a variable grouping method in algorithm PAVG.

Using this algorithm, a large-scale optimization problem can be decomposed into several small-scale

optimization problems. For these small-scale optimization problems, it is important to use an efficient

algorithm to solve them in order to further enhance the performance of the whole algorithm.

It is well known that Differential Evolution (DE) is very effective and simple [22], but the general DE

suffers the sensitivity of its control parameters [23]. It has been indicated that self-adaptive differential

evolution with neighborhood Search (SaNSDE) [24] performs significantly better than other similar DE

algorithms due to its self-adapted crossover rate CR and scaling factor F [24], and SaNSDE has been

successfully applied in a variety of problems (e.g., [3-4]). Thus, we choose this algorithm as the

evolutionary algorithm in each subcomponent. Based on algorithm 1 and SaNSDE, we design a new

algorithm: a cooperative co-evolution algorithm with problem adaptive variable grouping strategy

(CCPA). Its pseudocode is given in Algorithm 2.

Algorithm 2. Pseudocode of CCPA

1 Initialization: let 0, 0K FEs= = and ε is a tolerance threshold, i is the iteration number. Generate

initial population POP , where POP N= ;

2 Perform PAVG, and obtain (), {1,2, ,SubPOP j j M= };�

3 repeat

4 for 1, ,j M= � do

5 while
+1

() ()
i i

f x f x ε− > do

6 optimize ()SubPOP j by SaNSDE;

7 end

8 record the current best solution.
j

y
∗ corresponding to ()SubPOP j ; then update .FEs

9 end

10 Update current best solution by * * * *

1 1
, , , ,

K K M
x Best x y y

+
= { }�

11 Generate (1)N M− + new individuals, and use these individuals and * * *

1
, , ,

K M
x y y� as the new initial

population; 1K K= + ;

12 until MaxFEs is met;

13 * *

K
x x= and * *() ();

K
f x f x=

14 return *

x and *()f x .

It’s worth mentioning that. after the variables grouping, SaNSDE can be used to optimize each

subcomponent, respectively; however, for a very small subcomponent (e.g., the size of subcomponent is

equal to one), using SaNSDE may waste FEs. In order to reduce the cost of FEs , an efficient

deterministic method (e.g., algorithm 1) can be used to solve the very small subcomponent problem.

3 Numerical Experiments

3.1 Benchmark Suite and Parameters Setting for CCPA

In this section, first, CEC’2010 benchmark suite [18] is tested, where the dimensions of the problems are

1000, and the results are recorded in Table 1; second, CEC’2013 benchmark suite [19] is tested, and the

results are recorded in Table 2, where 1 3f f− are fully separable functions, and 4 11f f− are partially

additively separable functions, and 12 15f f− are non-separable functions, and the dimensions of the

problems are 1000.

Journal of Computers Vol. 29, No. 5, 2018

135

Table 1. Comparison between CCPA and other algorithms on CEC’2010 benchmark suite, D=1000

P CCPA MA-SW-Chains DECC-DG CCVIL DECC-G MLCC DECC-DML

f1
mean

std

0.00E+00

0.00E+00

2.01e-14

1.99e-14

5.47e+03

2.02e+04

1.55e-17

8.62e-08

2.93e-07

7.75e-17

1.53e-27

7.66e-27

1.93e-25

1.86e-25

f2
mean

std

5.16E+01

1.42E+01

8.10e+02

5.88e+01

4.39e+03

1.97e+02

6.71e-09

3.24e+01

1.31e+03

2.31e-08

5.57e-01

2.21e+00

2.17e+02

2.98e+01

f3
mean

std

1.10E-13

1.56E-15

7.28e-13

3.40e-13

1.67e+01

3.34e-01

7.52e-11

9.59e-02

1.39e+00

6.58e-11

9.88e-13

3.70e-12

1.18e-13

8.22e-15

f4
mean

std

4.84E+10

2.28E+10

3.53e+11

3.12e+10

4.79e+12

1.44e+12

9.62e+12

3.38e+12

5.00e+12

3.43e+12

9.61e+12

3.43e+12

3.58e+12

1.54e+12

f5
mean

std

8.08E+07

1.71E+07

1.68e+08

1.04e+08

1.55e+08

2.17e+07

1.76e+08

8.44e+07

2.63e+08

6.47e+07

3.84e+08

6.93e+07

2.98e+08

9.31e+07

f6
mean

std

3.42E+06

1.36E+07

8.14e+04

2.84e+05

1.64e+01

2.71e-01

2.94e+05

8.02e+05

4.96e+06

6.09e+05

1.62e+07

4.97e+06

7.93e+05

3.97e+06

f7
mean

std

2.03E-10

2.27E-12

1.03e+02

8.70e+01

1.16e+04

7.41e+03

8.00e+08

1.38e+08

1.63e+08

2.48e+09

6.89e+05

7.37e+05

1.39e+08

7.72e+07

f8
mean

std

1.28E+06

1.90E+06

1.41e+07

3.68e+07

3.04e+07

2.11e+07

6.50e+07

2.89e+07

6.44e+07

3.07e+07

4.38e+07

3.45e+07

3.46e+07

3.56e+07

f9
mean

std

7.65E+06

9.55E+05

1.41e+07

1.15e+06

5.96e+07

8.18e+06

6.66e+07

3.39e+07

3.21e+08

1.60e+07

1.23e+08

1.33e+07

5.92e+07

4.71e+06

f10
mean

std

1.31E+04

3.47E+02

2.07e+03

1.44e+02

4.52e+03

1.41e+02

1.28e+03

2.93e+02

1.06e+04

7.95e+01

3.43e+03

8.72e+02

1.25e+04

2.66e+02

f11
mean

std

2.56E+01

2.50E+00

3.80e+01

7.35e+00

1.03e+01

1.01e+00

3.48e+00

1.79e+00

2.34e+01

1.91e+00

1.98e+02

6.98e-01

1.80e-13

9.88e-15

f12
mean

std

7.20E-03

2.49E-02

3.62e-06

5.92e-07

2.52e+03

4.86e+02

8.95e+03

6.90e+03

8.93e+04

5.39e+03

3.49e+04

4.92e+03

3.79e+06

1.50e+05

f13
mean

std

5.58E+01

4.43E+01

1.25e+03

5.72e+02

4.54e+06

2.13e+06

5.72e+02

3.95e+03

5.12e+03

2.55e+02

2.08e+03

7.27e+02

1.14e+03

4.31e+02

f14
mean

std

5.54E+07

4.79E+06

3.11e+07

1.93e+06

3.41e+08

2.41e+07

1.74e+08

6.06e+07

8.08e+08

2.68e+07

3.16e+08

2.77e+07

1.89e+08

1.49e+07

f15
mean

std

4.32E+03

1.28E+02

2.74e+03

1.22e+02

5.88e+03

1.03e+02

2.65e+03

9.10e+02

1.22e+04

9.34e+01

7.11e+03

1.34e+03

1.54e+04

3.59e+02

f16
mean

std

1.92E+01

3.05E+00

9.98e+01

1.40e+01

7.39e-13

5.70e-14

7.18e+00

8.14e+00

7.66e+01

2.23e+00

3.76e+02

4.71e+01

5.08e-02

2.54e-01

f17
mean

std

7.18E+02

2.86E+02

1.24e+00

1.25e-01

4.01e+04

2.85e+03

2.13e+04

1.97e+04

2.87e+05

9.16e+03

1.59e+05

1.43e+04

6.54e+06

4.63e+05

f18
mean

std

1.29E+03

1.31E+02

1.30e+03

4.36e+02

1.11e+10

2.04e+09

1.33e+04

1.05e+04

2.46e+04

1.00e+04

7.09e+03

4.77e+03

2.47e+03

1.18e+03

f19
mean

std

9.22E+05

3.91E+04

2.85e+05

1.78e+04

1.74e+06

9.54e+04

3.52e+05

5.00e+04

1.11e+06

2.04e+04

1.36e+06

7.35e+04

1.59e+07

1.72e+06

f20
mean

std

2.49E+03

2.21E+02

1.07e+03

7.29e+01

4.87e+07

2.27e+07

1.11e+03

3.66e+02

4.06e+03

3.04e+02

2.05e+03

1.80e+02

9.91e+02

3.51e+01

Table 2. Comparison between CCPA and other algorithms on CEC’2013 benchmark suite, D=1000

P CCPA CCR SACC MOS DECC-G

Best 0.00e+00 0.00e+00 0.00e+00 0.00e+00 1.75e-13

Median 0.00e+00 0.00e+00 0.00e+00 0.00e+00 2.00e-13

Worst 0.00e+00 1.81e-03 6.81e-23 0.00e+00 2.45e-13

Mean 0.00e+00 2.58e-04 2.73e-24 0.00e+00 2.03e-13

f1

Std 0.00e+00 6.84e-04 1.36e-23 0.00e+00 1.78e-14

Best 1.79e+01 1.91e+02 2.88e+02 7.40e+02 9.90e+03

Median 3.12e+01 1.15e+03 5.71e+02 8.36e+02 1.03e+03

Worst 7.61e+01 4.11e+03 2.72e+03 9.28e+02 1.07e+03

Mean 3.96e+01 2.11e+03 7.06e+02 8.32e+02 1.03e+03

f2

Std 2.20e+01 1.73e+03 4.72e+02 4.48e+01 2.26e+01

Cooperative Co-evolution Algorithm with Problem Adaptive Variable Grouping for Large Scale Global Optimization

136

Table 2. Comparison between CCPA and other algorithms on CEC’2013 benchmark suite, D=1000

(continue)

P CCPA CCR SACC MOS DECC-G

Best 3.97e-13 2.06e-13 9.24e-14 8.20e-13 2.26e-10

Median 4.22e-13 2.70e-13 1.21e+00 9.104e-13 2.85e-10

Worst 4.58e-13 3.32e-00 3.76e+00 1.00e-12 3.16e-10

Mean 4.32e-13 3.76e-01 1.11e+00 9.17e-13 2.87e-10

f3

Std 2.18e-14 9.96e-01 1.11e+00 5.12e-14 1.38e-11

Best 2.20e+07 7.02e+09 8.48e+09 1.10e+08 7.58e+09

Median 4.47e+08 2.79e+10 3.66e+10 1.56e+08 2.12e+10

Worst 1.14e+09 1.35e+11 1.71e+11 5.22e+08 6.99e+10

Mean 5.83e+08 6.09e+10 4.56e+10 1.74e+08 2.60e+10

f4

Std 3.35e+08 5.46e+10 3.60e+10 7.87e+08 1.47e+10

Best 2.60e+08 1.46e+06 3.36e+06 5.25e+06 7.28e+14

Median 2.99e+06 1.02e+07 6.95e+06 6.79e+06 7.28e+14

Worst 4.67e+06 1.37e+07 1.40e+07 8.56e+08 7.28e+14

Mean 3.35e+06 8.31e+06 7.74e+06 6.94e+06 7.28e+14

f5

Std 7.30e+06 4.90e+06 3.22e+06 8.85e+05 1.51e+05

Best 1.17e+05 1.21e+05 1.57e+05 1.95e+01 6.96e-08

Median 1.28e+05 1.38e+05 2.07e+05 1.39e+05 6.08e+04

Worst 1.52e+05 1.82e+05 6.00e+05 2.31e+05 1.10e+05

Mean 1.30e+05 1.46e+05 2.47e+05 1.48e+05 4.85e+04

f6

Std 1.25e+04 2.56e+04 1.02e+05 6.43e+04 3.98e+04

Best 3.84e+02 2.44e+07 1.72e+06 3.49e+03 1.96e+08

Median 1.90e+03 3.13e+08 1.58e+07 1.62e+04 4.27e+08

Worst 1.09e+03 1.02e+09 1.18e+09 3.73e+04 1.78e+09

Mean 3.08e+03 4.65e+08 8.98e+07 1.62e+04 6.07e+08

f7

Std 3.62e+03 4.22e+08 2.48e+08 9.10e+03 4.09e+08

Best 5.53e+14 5.33e+13 1.47e+14 3.26e+12 1.43e+14

Median 1.15e+15 1.57e+15 9.86e+14 8.18e+12 3.88e+14

Worst 2.35e+15 5.62e+15 3.08e+15 1.32e+13 7.75e+14

Mean 1.40e+15 2.14e+15 1.20e+15 8.00e+12 4.26e+14

f8

Std 6.98e+14 1.77e+15 7.63e+14 3.07e+12 1.53e+14

Best 2.52e+08 2.54e+08 2.29e+08 2.63e+08 2.20e+08

Median 3.72e+08 4.04e+08 5.77e+08 3.87e+08 4.17e+08

Worst 3.81e+08 4.89e+08 1.01e+09 5.42e+08 6.55e+08

Mean 3.45e+08 3.75e+08 5.98e+08 3.83e+08 4.27e+08

f9

Std 4.70e+07 7.97e+07 2.03e+08 6.29e+07 9.89e+07

Best 1.34e+02 5.92e+06 1.38e+07 5.92e+02 9.29e+04

Median 1.83e+02 1.09e+07 2.11e+07 1.18e+06 1.19e+07

Worst 2.37e+02 1.59e+07 .75e+07 1.23e+06 1.73e+07

Mean 1.91e+02 1.02e+07 2.95e+07 9.02e+05 1.10e+07

f10

Std 4.20e+01 3.16e+06 1.93e+07 5.07e+05 4.00e+06

Best 8.36e+07 3.35e+08 8.12e+07 2.06e+07 4.68e+10

Median 9.85e+07 1.88e+10 5.30e+08 4.48e+07 1.60e+11

Worst 1.55e+08 2.93e+11 2.30e+10 9.50e+04 7.16e+11

Mean 1.08e+08 1.01e+11 2.78e+09 5.22e+07 2.46e+11

f11

Std 2.79e+07 1.28e+11 5.90e+09 2.05e+07 2.03e+11

Best 2.20e+03 2.48e+03 2.43e+02 2.22e-01 9.80e+02

Median 2.51e+03 2.71e+03 8.74e+02 2.46e+02 1.03e+03

Worst 3.59e+03 3.00e+03 1.72e+03 1.17e+03 1.20e+03

Mean 2.59e+02 2.71e+03 8.73e+02 2.47e+02 1.04e+03

f12

Std 4.65e+02 1.81e+02 3.71e+02 2.54e+02 5.76e+01

Best 3.54e+08 3.86e+09 6.72e+08 1.52e+06 2.09e+10

Median 7.53e+08 4.78e+09 1.51e+09 3.30e+06 3.36e+10

Worst 3.41e+09 7.45e+09 3.40e+09 6.16e+06 4.64e+10

Mean 1.16e+09 5.21e+09 1.78e+09 3.40e+06 3.42e+10

f13

Std 1.04e+09 1.30e+09 8.05e+08 1.06e+06 6.41e+09

Journal of Computers Vol. 29, No. 5, 2018

137

Table 2. Comparison between CCPA and other algorithms on CEC’2013 benchmark suite, D=1000

(continue)

P CCPA CCR SACC MOS DECC-G

Best 7.22e+09 3.91e+08 8.21e+07 1.54e+07 1.91e+11

Median 1.79e+10 7.96e+09 7.34e+09 2.42e+07 6.27e+11

Worst 3.69e+10 2.52e+11 1.10e+11 4.46e+07 1.04e+12

Mean 1.96e+10 4.75e+10 1.75e+10 2.56e+07 6.08e+11

f14

Std 9.77e+09 9.21e+10 2.87e+10 7.94e+06 2.06e+11

Best 2.91e+06 3.91e+08 1.26e+06 2.03e+06 4.63e+07

Median 3.44e+06 6.22e+06 1.88e+06 2.38e+06 6.01e+07

Worst 3.87e+06 7.56e+06 4.90e+06 2.88e+06 7.15e+07

Mean 3.39e+06 5.32e+06 2.01e+06 2.35e+06 6.05e+07

f15

Std 3.48e+05 2.06e+06 7.23e+05 1.94e+05 6.45e+06

In experiments, CCPA was tested on an Intel (R) Core (TM) i7 CPU 870 with 2.93GHz in Matlab

R2012a.

3.2 The Simulation Results

CCPA is executed 25 independent runs for each test problem using stop criterion MaxFEs, and we record

the smallest fitness value in 25 runs, denoted as “Best”; the median fitness value in 25 runs, denoted as

“Median”; the largest fitness value in 25 runs, denoted as “Worst”; the average fitness value in 25 runs,

denoted as “Mean”; and the standard deviation in 25 runs, denoted as “Std”. These results are recorded in

Tables 1 and 2; and the best result of all compared algorithms are shown in bold.

In Table 1, six algorithms (MA-SW-Chains [26], DECC-DG [7], CCVIL [5], DECC-G [3], MLCC [4],

DECC-DML [8]) are compared with CCPA. From Table 1, it can be seen that CCPA is obviously

superior to others for 9 test problems. Respectively, CCPA is better than MA-SW-Chains for 12 test

problems; CCPA is better than DECC-DG for 16 test problems; CCPA is better than CCVIL for 12 test

problems; CCPA is better than DECC-G for 18 test problems; CCPA is better than MLCC for 17 test

problems; CCPA is better than DECC-DML for 15 test problems. On the whole, CCPA is obviously

superior to the other comparison algorithms.

To show the performance of the proposed CCPA, we compare CCPA with four algorithms (CCR,

SACC [27], MOS [28] and DECC-G [3]) on CEC’2013 benchmark suite. In order to test the efficiency of

the proposed variable grouping strategy, we replace the proposed variable grouping strategy by random

grouping strategy [4] in CCPA and the resulted algorithm is denoted as CCR and the group size was set

to 100. The main difference between SACC and CCPA is as follows: one is that SACC uses the random

grouping strategy while CCPA uses the proposed one, and the other is that SACC uses an auxiliary

function to enhance its performance while CCPA does not. The algorithm MOS [28] is one of the best

algorithms in CEC’2013 competition on large scale global optimization. The algorithm DECC-G [3] is

used by many authors in their comparisons (e.g., [7, 28]), and the results has been given in [29] for

CEC’2013 benchmark suite. Although a new method with differential grouping [7] has shown a good

performance, it does not test CEC’2013 benchmark suite [19] and we cannot get their results on these

benchmarks. Thus, we do not make the comparison with this new method. We directly use the results

obtained by SACC, MOS and DECC-G in [27-28] and [3] for a comparison. These results are also given

in Table 2.

It can be seen from Table 2 that, among 15 test functions, the mean values of seven functions obtained

by CCPA are better than those obtained by other four algorithms, and the best values of eight functions

obtained by CCPA are better than those obtained by other four algorithms, which indicates that CCPA

are the most efficient algorithms among these compared algorithms for most functions.

For a pairwise comparison, both the mean values and the best values of nine functions obtained by

CCPA are better than those obtained by MOS, which indicates that CCPA is more effective than MOS.

The mean values of thirteen problems obtained by CCPA are better than those obtained by DECC-G and

the best values of eleven functions obtained by CCPA are better than those obtained by DECC-G. The

almost all results obtained by CCPA are better than those obtained by SACC and CCR, which indicates

that the proposed problem adaptive grouping strategy PAVG is more effective than random grouping

strategy.

Cooperative Co-evolution Algorithm with Problem Adaptive Variable Grouping for Large Scale Global Optimization

138

For fully separable functions 1, 2f f and 3f , it can be seen from Table 2 that performance of CCPA is

better than that of all the other four algorithms, which indicates that the proposed variable grouping

strategy is more efficient.

For eight partially additively separable functions 4 11f f− , the results obtained by CCPA are better

than those obtained by CCR and SACC for almost all these functions. The performance of CCPA is

better than that of MOS on five functions. The mean values of six partially additively separable problems

4, 5 7, 9, 10f f f f f, and 11f obtained by CCPA are better than those obtained by DECC-G, and the best

solutions of five functions obtained by CCPA are better than those obtained by DECC-G. Thus, CCPA is

more efficient on the most partially additively separable functions than other four compared algorithms.

However, it can also be seen from Table 2 that for these eight partially additively separable functions

4 11f f− , the best solutions obtained by all compared algorithms are far from the real global optimal

solutions. This may be caused by following two reasons. One may be that the number of local minima

grows exponentially as the number of decision variables increases; and second one may be that the

maximum number of function evaluations assigned is not enough for these functions.

Finally, for overlapping functions 12 14f f− and non-separable function 15f , the results in CCPA are

poorer than those in MOS. It indicates that variable grouping strategy PAVG is ineffective for

overlapping and non-separable functions, which is consistent with the designing of our algorithm.

In order to show the efficiency and effectiveness of the proposed variable grouping strategy intuitively,

we use the semi-log line diagram to plot the convergence curve of the fitness value on Fig. 1 to Fig. 5,

where the horizontal axis is the number of function evaluations and the vertical axis is logarithmic scale

of the mean fitness value in 25 runs on a problem. Fig.1 to Fig. 5 show the convergence curves for the

five representative functions: 2, 3, 5, 7f f f f and 10f , respectively, where the thick line represents the

convergence curve of CCPA, and thin line represents the convergence curve of SACC, and dotted line

represents the convergence curve of CCR.

Fig. 1. The convergence curve of three algorithms on 2f Fig. 2. The convergence curve of three algorithms on 3f

Fig. 3. The convergence curve of three algorithms on 5f Fig. 4. The convergence curve of three algorithms on 7f

Journal of Computers Vol. 29, No. 5, 2018

139

Fig. 5. The convergence curve of three algorithms on 10f

From Fig. 1 to Fig. 5, it can be seen that CCPA converges much faster than the other two algorithms

and more easily finds better solutions.

Overall, it can be seen from Tables 1, 2 and Fig. 1 to Fig. 5 that the problem adaptive variable

grouping strategy PAVG plays an important part in CCPA and CCPA is more effective and efficient.

4 Conclusions

In this paper, a new evolutionary algorithm called cooperative co-evolution with problem adaptive

variable grouping strategy (briefly, CCPA) has been proposed. First, the variable grouping strategy

PAVG can more accurately group the interacting variables into the same subcomponent such that the

interaction between different subcomponents is as minimum as possible. Second, a local search strategy

has been given to enhance EAs. Finally, CC can search multiple regions simultaneously and thus has

more possibility to find a better local optimal solution. In order to evaluate the actual performance of

PAVG, we used PAVG in a cooperative co-evolutionary framework and conducted the experiments on

11 large-scale additively separable functions in CEC’2013 benchmark suite. The experiment results

revealed that PAVG can accurately make the variable grouping and greatly enhance the performance of

CC.

There are several relevant issues to be addressed further in the future. Firstly, more powerful variable

grouping strategy for large scale global optimization needs to be further explored. Secondly, it is

necessary to revise CCPA by integrating some other technique which can effectively handle the non-

separable problems. Thirdly, our algorithm can only be applicable to the problems with their function

equations being known. There are many problems that can be abstracted to the large-scale global

optimization problems and the objective functions of these problems indeed exist, and CCPA is suitable

for solving these kinds of large-scale problems.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. U1404622), and the

Fund of Education Department of Shaanxi Provincial Government (No. 18JK0505), and the Cultivation

Fund of Xi’an University of Science and Technology (No. 201644).

References

[1] M. Potter, K. Jong, A cooperative coevolutionary approach to function optimization, in: Proc. International Conference on

Parallel Problem Solving from Nature, 1994.

[2] X. Li, X. Yao, Cooperatively coevolving particle swarms for large scale optimization, IEEE Transactions on Evolutionary

Computation 16(2012) 210-224.

Cooperative Co-evolution Algorithm with Problem Adaptive Variable Grouping for Large Scale Global Optimization

140

[3] Z. Yang, K. Tang, X. Yao, Large scale evolutionary optimization using cooperative coevolution, Information Sciences

178(2008) 2986-2999.

[4] Z. Yang, K. Tang, X. Yao, Multilevel cooperative coevolution for large scale optimization, in: Proc. IEEE Congress on

Evolutionary Computation, 2008.

[5] W. Chen, T. Weise, Z. Yang, K. Tang, Large-scale global optimization using cooperative coevolution with variable

interaction learning, PPSN 2(2010) 300-309.

[6] Y. Mei, X. Li, X. Yao, Cooperative co-evolution with route distance grouping for large-scale capacitated arc routing

problems, IEEE Transactions on Evolutionary Computation 3(2014) 435-449.

[7] M. Omidvar, X. Li, Y. Mei, X. Yao, Cooperative co-evolution with differential grouping for large scale optimization, IEEE

Transactions on Evolutionary Computation 3(2014) 378-393.

[8] M. Omidvar, X. Li, X. Yao, Cooperative co-evolution with delta grouping for large scale non-separable function

optimization, in: Proc. IEEE Congress on Evolutionary Computation, 2010.

[9] B. Kazimipour, X. Li, A. Qin, Initialization methods for large scale global optimization, in: Proc. IEEE Congress on

Evolutionary Computation, 2013.

[10] N. Dong, C. Wu, W. Ip, Z. Chen, C. Chan, K. Yung, An opposition-based chaotic GA/PSO hybrid algorithm and its

application in circle detection, Computers & Mathematics with Applications 64(2012) 1886-1902.

[11] Y. Leung, Y. Wang, An orthogonal genetic algorithm with quantization for global numerical optimization, IEEE

Transactions on Evolutionary Computation 5(1)(2001) 41-53.

[12] Z. Wu, N. Huang, A study of the characteristics of white noise using the empirical mode decomposition method, in: Proc.

the Royal Society A: Mathematical, Physical & Engineering Sciences, 2004.

[13] R. Rach, J. Duan, Near-field and far-field approximations by the adomian and asymptotic decomposition methods, Applied

Mathematics and Computation 217(2011) 5910-5922.

[14] S. Valdez, A. Hernández, S. Botello, A Boltzmann based estimation of distribution algorithm, Information Sciences

236(2013) 126-137.

[15] C. Ahn, J. An, J. Yoo, Estimation of particle swarm distribution algorithms: combining the benefits of PSO and EDAs,

Information Sciences 192(2012) 109-119.

[16] G. Iacca, F. Neri, E. Mininno, Y. Ong, M. Lim, Ockham’s Razor in memetic computing: three stage optimal memetic

exploration, Information Sciences 188(2012) 17-43.

[17] F. Caraffini, F. Neri, G. Iacca, A. Mol, Parallel memetic structures, Information Sciences 227(2013) 60-82.

[18] K. Tang, X. Li, P.N. Suganthan, Z. Yang, T. Weise, Benchmark functions for the CEC’2010 special session and

competition on large-scale global optimization, in: Proc. Nature Inspired Computation and Applications Laboratory, 2009.

[19] X. Li, K. Tang, M. Omidvar, Z. Yang, K. Qin, Benchmark functions for the CEC’2013 special session and competition on

large scale global optimization, Technical Report, January 2013.

[20] P.N. Suganthan, N. Hansen, J.J. Liang, K. Deb, Y.-P. Chen, A. Auger, S. Tiwari, Problem definitions and evaluation

criteria for the CEC 2005 special session on real-parameter optimization, KanGAL Report Number 2005005, May 2005.

[21] J.J. Liang, B.Y. Qu, Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter

optimization, Technical Report 201311, December 2013.

[22] J. Vesterstrom, R. Thomsen, A comparative study of differential evolution, particle swarm optimization, and evolutionary

algorithms on numerical, in: Proc. the 2004 Congress on Evolutionary Computation, 2004.

Journal of Computers Vol. 29, No. 5, 2018

141

[23] R. Gamperle, S. Muller, P. Koumoutsakos, A parameter study for differential evolution, in: Proc. WSEAS International

Conference on Advances in Intelligent Systems, Fuzzy Systems, Evolutionary Computation, 2002.

[24] Z. Yang, K. Tang, X. Yao, Self-adaptive differential evolution with neighborhood search, in: Proc. IEEE World Congress

on Computational Intelligence, 2008.

[25] J. Nocedal, S.J. Wright, Numerical Optimization, Springer-Verlag, New York, 1999.

[26] D. Molina, M. Lozano, F. Herrera, MA-SW-chains: Memetic algorithm based on local search chains for large scale

continuous global optimization, in: Proc. WCCI 2010 IEEE World Congress on Computational Intelligence, 2010.

[27] F. Wei, Y.P. Wang, Y.L. Huo, Smoothing and auxiliary functions based cooperative coevolution for global optimization, in:

Proc. IEEE Congress on Evolutionary Computation, 2013.

[28] A. LaTorre, S. Muelas, J.M. Pena, Large scale global optimization: experimental results with MOS-based hybrid algorithms,

in: Proc. IEEE Congress on Evolutionary Computation, 2013.

[29] Preliminary result on DECC-G (a baselind model). <http://titan.csit.rmit.edu.au/~e46507/cec13-lsgo/competition/lsgo2013-

decc-g.html>, 2013.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

