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Abstract. This paper introduces a kind of partial-order algorithm of model-checking in finite-

control mobile ambients against μ-predicate ambient logic(Ambient logic based on first-order μ-

calculus). Based on Tarski’s fixpoint theorem, nested predicate equations and Block 

Dependency Graph, a group of partial ordering relation between inter-mediate results in the 

process of model checking is given, and thus a kind of local model-checking algorithm is 

proposed. To our knowledge, this is the first algorithm which exponent of time complexity is 

d/2+2, the exponent of space complexity is d/2 (d is the alternate nesting depth of fixpoint 

operator in the formula) and this is the third model-checking algorithm for predicate ambient 

logic with recursion. This paper’s contributions are: (1) getting a group of partial ordering 

relation between intermediate results in the computing process of model checking for µ- 

calculus first-order predicate ambient logic based on Tarski’s fixpoint theorem; (2) using the 

partial ordering relation to design an algorithm for model checking in mobile ambients; (3) 

analyzing the complexity of the algorithm.  

Keywords: algorithms and complexity, mobile ambients, model checking, predicate ambient 

logic  

1 Background 

Model checking technique is widely applied in the design and verification of a finite-control concurrent 

system. Model checking algorithm can be divided into two categories: global checking algorithm and 

local checking algorithm. The former, by given a logic expression, gets all the states that satisfy the logic 

expression in the system, and the latter, by given a logic expression and a state in the system, judges 

whether the state satisfy the logic expression or not. 

The ambient calculus [1] is a formal model for distributed mobile computing system, which tree-like 

structure induced by ambients and nested sub-ambients may fundamentally characterize the spacial 

properties of a mobile computation environment. As the rapid growth of mobile computing environments 

in recent years, security [2] and privacy [3] in such environments are the hot spots in today’s research. 

Ambient logic is firstly proposed in [4], which can specify both temporal and spacial properties in the 

evolution of a process. Bound and fresh name quantifiers are introduced to ambient logic in [5]. Fixpoint 
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operator is introduced to some sub-fragments of ambient logic in [6-7], but these sub-logics do not 

contain bound quantifier. Ambient logic based on first-order μ-calculus (μ-predicate ambient logic) is 

defined in [8-9], which contains fresh name quantifier and fixpoint operator, and uses predicate variables 

to form fixpoint formulas, thus simplifies the semantics of logic formulas.  

On the model-checking of mobile ambients, several kinds of fragments for finite ambient calculus are 

discussed in reference [4, 10]. The complexity of checking algorithm is analyzed in [11]. The finite-

control ambient calculus is proposed in [12] which provides the model checking algorithm against the 

finite-control ambient calculus. But ambient-based logics used in [4, 10, 12] are finite and has no 

recursion.  

Actually, the model checking algorithm for the finite-control mobile ambients against μ-predicate 

ambient logic belongs to local model checking algorithm. The first algorithm is provided in reference [8], 

which points out that the algorithm is decidable if the logic formula excludes the operator “�”, but does 

not consider the efficiency of the algorithm too much. The second algorithm following reference [8] is 

studied in reference [13] which exponent of time complexity is relation to the formula alternate nesting 

depth of fixpoint operator.  

On the other hand, in recent years, Fabio and Giacoma [14], Brodo [15], Aman and Ciobanu [16], Ali 

et al. [17], Unal and Caglayan [18], Bodei et al. [19], Bogdan and Gabriel [20] and Siewe [21] extends 

mobile ambients from different aspects, improve their expressing capability and mobile computing 

capability, but do not study the algorithm of model checking too much. 

In this paper the author, based on Tarski’s fixpoint theorem, studies the partial ordering relation among 

the intermediate results in the computation process of model checking of μ-predicate ambient logic, and 

designs a kind of high performance algorithm, and further algorithm complexity analyzing presents that it 

is close to the demand of practical application. 

2 Ambient Calculus 

In this session, concepts and terminologies of Ambient Calculus [1] closely related to this paper are given. 

Let N  be the countable set of names, using n, m, ... to express the elements, W  be the countable set of 

process variables, using , , ,...X Y Z  to express, BNF of ambient calculus grammar is defined as follows: 

 

::               capabilities

      can enter |        can exit |        can open  |      null path |   .      composite path

, ::             processes

0       inactivity |  |       compos

M

in n n out n n open n n M M

P Q

P Q

ε

=

=

ition |  ( )        name restriction |   [ ]        ambient |  

.       capability action |  ( ).      input |       output |          variable |   fix .       recursion

n P n P

M P n P n X X P

ν

  

Free names, bound names, free variables and bound variables in process P are labelled as fn(P), bn(P), 

fv(P) and bv(P), the process that fv(P) is null is called closed process, the set of all closed processes is 

labelled as P . If only the bound names and bound variables of both processes are different, then both 

processes are called α −
equivalent, the semantics of process with α −

equivalent are the same, P[m/n] is 

labelled as the result of substitution of m for free occurrence of n in process P. This paper only considers 

model checking of the finite-control process. 

The semantics of ambient calculus is defined by the following structural congruence relation (≡ ) and 

reduction relation (→ ). 

Structural congruence relation (≡ ) of ambient calculus is defined as follows: 

 

| 0 ,

| | | (

StrRefl     P P                                      StrSymm   P Q Q P

StrParZero    P P                             StrTrans      P Q Q R P R

StrparComm     P Q Q P                   StrParAss   P Q

≡ ≡ ⇒ ≡

≡ ≡ ≡ ⇒ ≡

≡ | ) ( | ) |

( )0 0 ( )( | ) | ( ) ( )

( )( ) ( )( ) ( )( [ ]) [( ) ]

. 0

R P Q R

StrResZero     n                          StrResPar  n P Q P n Q  if  n fn P

StrResRes     n m P m n P    StrResAmb  n m P m n P   if  n m

StrFixSelf     fixX X    

ν ν ν

ν ν ν ν ν ν

≡

≡ ≡ ∉

≡ ≡ ≠

≡ . [ . / ]                       StrRec    fixX P P fixX P X≡

  

Reduction relation (→ ) of ambient calculus is defined as follows: 
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[ . | ] | [ ] [ [ | ] | ] [ [ . | ] | ] [ | ] | [ ]

. | [ ] | ( ). | { / }

( ) ( )

n in m P Q m R m n P Q R          Red Out     m n out m P Q R n P Q m R

Red Open     open n P n Q P Q                          Red I/O     n P q P q n

Red Res     P Q n P n Q   

Red In    

ν ν

→ →

→ →

→ ⇒ → | |

[ ] [ ] ', ' ', '

                     Red Par     P Q P R Q R

Red Amb     P Q n P n Q                            Red       P P p Q Q Q P Q

→ ⇒ →

→ ⇒ → ≡ ≡ → ≡ ⇒ →

  

Considering the decidability of model checking algorithm, this paper only considers model checking 

of the finite-control process. 

3 Ambient Logic 

Ambient logic considered in this paper is first-order µ-calculus logic for mobile ambients put forward in 

reference [9]. Let V  as countable infinite set of name variables, using x, y,... to express the elements, 

then ,V N xφ∩ =  is countable infinite set of predicate variables, using X, Y,... to express the elements. 

The BNF of ambient logic is defined as follows ( n V N∈ ∪ ): 

 

, ::

T | | 0 | ^ | | | | | [ ] | @ |

® | | | | . | . | И . | ( )

::

| . | . | ( )

A B propositions

A B A B A B A B n A A n

n A A n A A x A x A x A F n

F predicates

X vX F X F x Aµ

=

⊥ ∨

∀ ∃

=

�

　　

　　

 

( )F n  is predicate application, ( )x A  is proposition abstraction. 

Ambient logic formula can be divided into two categories: proposition and predicate. Each predicate 

variable has a certain arity to express the numbers of formal parameter for predicate variable. The arity of 

predicate is defined as: if the form of F  is X  or . 'X Fσ , then the arity of F equals to that of X ; if the 

form of F  is ( )x A , then the arity of F  equals to the length of x . For the abstraction of proposition or 

the application of predicate, matching arities are needed. In ambient logic, proposition is explained as the 

element in 2
P , the predicate whose arity is k is explained as the function of 2

k P
N → . 

The value space of predicate variable of arity k is { | : 2 , }k Pf f N kΩ = → ∈� , inclusion relation ⊆  

in sets of 2
P  extends to the space of function k point by point.  

The definition of partial ordering relation ⊆  of Ω  is ( ) ( ) ( ) ( )( ) ( ).k k k k kf g if f u N f u g u⊆ ∀ ∈ ⇒ ⊆  

The definition of ∪  or ∩  is ( ) ( ) ( ) ( )( )( ) ( ) ( )k k k k ku N f g u f u g u∀ ∈ ⇒ =∪ ∪  or k
u N∀ ∈ ⇒  

( ) ( ) ( ) ( )( )( ) ( ) ( )k k k kf g u f u g u=∩ ∩  respectively, thus ,< Ω ⊆>  forms a complete lattice. Label ρ  as the 

valuation environment of names ( v N∪  is full map on N  and is reflexive on N ), label [ / ]u xρ  as the 

value of ρ  at x is corrected into u and others are unchanged. Label ξ  as the valuation environment of 

predicate (to assign a function to any predicate variable of arity k, ( ) : 2k P
X N → ), [ / ]f Xξ  shows 

modifying the value of ξ  at X into f, and others are unchanged. If x x′⊆  and 'ξ  is the environment of 

x′ , then [ ']ξ ξ  shows changing the value of ξ  at  x′  into the corresponding value of 'ξ  and others are 

unchanged. The definition of the partial ordering relation ⊆  between ambients is 

1 2 1 2
, ( ) ( )if f X x X Xξ ξ ξ ξ⊆ ∀ ∈ ⊆  all environments form a complete lattice under ⊆ . 

The semantic of ambient logic formula is defined as below: 

T Pξρ =� �  

ξρ φ⊥ =� �  

0 { | 0}P Pξρ = ≡� �  

A B A Bξρ ξρ ξρ∧ =� � � � ∩� �  

A B A Bξρ ξρ ξρ∨ =� � � � ∪� �  

| { | | , }A B P P Q R and Q A R Bξρ ξρ ξρ= ≡ ∈ ∈� � � � � �  

{ | | }A B P if Q A then P Q Bξρ ξρ ξρ= ∈ ∈� � � � � � �  
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[ ] { | ( )[ ] }n A P P n Q for some Q Aξρ ρ ξρ= = ∈� � � �  

@ { | ( )[ ] }A n P n P f Aξρ ρ ξρ= ∈� � � �  

® { | ( ( )) }n A P P v n Q for someQ Aξρ ρ ξρ= ≡ ∈� � � �  

A� ⊘ { | ( ( )) }n P v n P Aξρ ρ ξρ= ∈� � �  

�⊡ { | ( , }A P Q P Q Q Aξρ ξρ= ∀ → ⇒ ∈� � �  

�⟐ { | , }A P Q P Q Q Aξρ ξρ= ∃ → ∧ ∈� � �  

. ( / )
x

n

A A n xξρ ξρ∀ =� � ∩ � �  

. ( / )
x

n

A A n xξρ ξρ∃ =� � ∪ � �  

( )

И . { | ( / ) ( )}
n fn A

x A P P A n x and n fn Pξρ ξρ
∉

= ∈ ∉� � ∪ � �  

( ) ( )F n F nξρ ξρ=� � � �  

( )X Xξρ ξ=� �  

. { | [ / ] }vX F f f F f Xξρ ξ ρ= ⊆� � ∪ � �  

. { | [ / ] }X F f f F f Xμ ξρ ξ ρ= ⊇� � ∩ � �  

( ) . [ / ]x A n A n xξρ λ ξρ=� � � �  

Considering the decidability of model checking algorithm, formula A  discussed in this paper satisfies 

(1) A  excludes operator “� ”; (2) A  excludes free name variable and free predicate variable. 

4 Nested Predicate Equation Systems 

The Nested Predicate Equation Systems and the equivalent of denotation semantics between Ambient 

logic formula and nested predicate equation systems are studied in [13], which shows that nested 

predicate equation system is more general expressive than ambient logic formula [13]. In this session, 

after introducing the grammar and semantics of Nested Predicate Equation System closely related to this 

paper, the algorithm translating Ambient logic formula into Nested Predicate Equation Systems is given. 

And then a kind of Automata Composed with Nested Predicate Equation Systems and mobile ambients 

process, namely Block Dependency Graph (BDG) is proposed, and BDG constructing algorithm and 

BDG computing algorithm are presented as well. 

4.1 Grammar of Nested Predicate Equation System  

Predicate equation with fixpoint is ( )X x
σ
φ= , X is predicate variable, x  is vector of name variables 

and ( ) { }fnv xφ = , { , }vσ μ= , φ  is the proposition without fixpoint.  

Nested predicate equation system BNF is defined as below: 

 :: | ( ) ) |X x
σ

ε φ ε=∈ =  

∈ is empty sequence. In nested predicate equation system ε , predicate variables appeared from the 

left of each equation are different from each other. Predicate variable set appeared from the left of each 

equation in ε  is labelled as ( )lhs ε , the predicate variable is bounded in ε . Predicate variable set 

appeared from the right of each equation in ε  is labelled as ( )rhs ε , the variable in ( ) ( )rhs lhsε ε−  is 

free predicate variable in ε . For equation system ,ε ε ′ , if ( ) ( ) , ::lhs lhsε ε ε ε′ ′= ∅∩  is a new equation 

system formed by connecting two equation systems. 

4.2 Semantics of Nested Predicate Equation System 

Let ε  be a nested predicate equation system, ξ  is environment, ( ) { }fnv xφ = , the semantics || ||ε ξ  of ε  

in ξ  is defined as below:  

If ε ≡∈ , then || ||ε ξ ξ= ; 
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If ( ( ) )
v

X xε φ ε ′≡ = , then || || { | ( ) || || [ / ]}f f x f Xε ξ φ ε ξ′= ⊆∪ � �   

If ( ( ) )X x
σ

ε φ ε ′≡ = , then || || { | ( ) || || [ / ]}f f x f Xε ξ φ ε ξ′= ⊇∩ � �  

According to semantics of nested predicate equation system, it’s easy to prove that the following 

lemma 1, lemma 2 and lemma 3 are correct.  

Lemma 1: Let 
1
ε , 

2
ε be nested predicate equation system, satisfy 

1 2
( ) ( ) ,lhs lhsε ε φ=∩  

1 2
( ) ( )lhs rhsε ε∩  

,φ=  and 
1 2

( ) ( ) ,rhs lhsε ε φ=∩  then 
1 2 1 2

|| ||| | || || :: || ,ε ε ξ ε ε ξ= for any 
1

( ),X lhs ε∈  there is 

1 2 1
(|| :: || )( ) (|| || )( ),X Xε ε ξ ε ξ=  and for any 

2
( ),X lhs ε∈  there is 

1 2 2
(|| :: || )( ) (|| || )( ).X Xε ε ξ ε ξ=  

Lemma 2: If 1 21 1 1 1 2 2 2
|| :: ( ( ) ) :: ( ( ) ) :: ||X x X x

σ σ
ξ ε φ φ ε ξ= = =  

                  2 12 1 2 2 1 1 2
|| :: ( ( ) ) :: ( ( ) ) :: ||X x X x

σ σ
ξ ε φ φ ε ξ= = =  

              then 
1 2
ξ ξ=  

Lemma 3: If 
1 2

( )X Dep X∉  or 
2 1

( )X Dep X∉ ,  

                  1 21 1 1 1 1 2 2 2 2
|| :: ( ( ) ) :: ( ( ) ) :: ||X x X x

σ σ
ξ ε φ φ ε ξ= = =  

                  2 12 1 2 2 2 1 1 1 2
|| :: ( ( ) ) :: ( ( ) ) :: ||X x X x

σ σ
ξ ε φ φ ε ξ= = =  

              then  
1 2
ξ ξ=  

4.3 Translating Ambient Logic Formula into Nested Predicate Equation System 

For given an ambient logic formula 
.X Aσ , the fixpoint type of predicate variable X  is labelled as .X σ , 

and the definition of dependency relationship between predicates is: if ' ( )X fpv A∈ , then X  depends on 

'X , labelled as , 'X X .  

The nesting depth ( )ad X of predicate variable X  is defined as: 

 ( ) 1 max{ ( ') | , ' . '. }ad X ad X X X X Xσ σ= + ∧ ≠ , max 0∅ =｛ ｝ . 

if ( ) { }fpv A X= , then ( ) 1ad X = . 

Label d as the alternative nesting depth of fixpoint operators in ambient logic formula: 

 max ( ) |d ad X X= ∈｛ ｝X  

Let {T, , 0},p∈ ⊥  ⊛ { , , |},∈ ∧ ∨  ⊖ {∈ ⊡, ⟐, , , И },x x x∀ ∃  ⊚ { [],@ , ,n n n∈ ® ⊘ },n  then ⊚ ( ) { [ ],B n B∈  

@ , ,B n n B B® ⊘ }n  

In the following algorithm 1, function formulaToequation(A) translates proposition A into nested 

predicate equation system ε . This translation is carried out by nesting function ftoe(), which has four 

parameters : φ  is the proposition or sub-proposition, σ  is the fixpoint type of current predicate variable, 

i is the usable subscript for next predicate variable, and k is the nesting depth of current predicate variable. 

The return value of ftoe() is a triple ( ( ), , )X x jε  explained as below: ( )X x  is left part of the equation in 

equation system corresponding with proposition φ , ε  is the equation system (each equation has four 

parameters: left part of the equation, type of equation’s fixpoint, right part of the equation and nesting 

layer of the equation), and j is the available subscript for next predicate variable. 
1

X is the first predicate 

variable in the equation system. 
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Algorithm 1. Translating proposition into nested predicate equation system 

( )formula Toequatio A      // A ε→  

 { By α -conversion, let all bound variable’s name of A  are different from each other; 

  Calculate nesting depth of each predicate variable in A . 

  ( ( ), , ) ( , ,1, 0)X x j ftoe Aε σ=  

  ( ( ), )return X x ε  

 } 
( , , , )ftoe i kφ σ  

 { case φ  of 

  :p              ( ( ), { ( ), , , }, 1)i i
i i

return X x X x p k iσ +  

  

1
|φ ⊛

2 1 1 1 2 2 2 1
: ( ( ), , ) ( , , 1, ), ( ( ), , ) ( , , , )Y y i ftoe i k Z z i ftoe i kφ ε φ σ ε φ σ= + =  

                                        ( ( ),{ ( ), , ( )i i
i i

return X x X x Y yσ ⊛
1 2 1

( ), ) :: :: , )Z z k iε ε  

  |⊝ :φ ′         
1 1

( ( ), , ) ( , , 1, )Y y i ftoe i kε φ σ′= +  

                                              ( ( ), { ( ), ,i i
i i

return X x X x σ ⊝
1 1

( ), ) :: , )Y y k iε  

  |⊚ :φ ′         
1 1

( ( ), , ) ( , , 1, )Y y i ftoe i kε φ σ′= +  

                                              ( ( ), { ( ), ,i i
i i

return X x X x σ ⊚
1 1

( ), ) :: , )Y y k iε  

  | ( ) :Y e       ( ), { } ( )jj j
if Y is X j i let x fnv Xα < =  

                                   ( ( ),{ ( ), , (( )( ( )))( ), }, 1)i i j ji i j
return X x X x x X x e k iσ +  

                         ( ( ),{ ( ), , (( )( ( )))( ), }, 1)i i j ji i j
else return X x X x x X x e k iσ +  

  | (( ) ( ) :x eφ ′             
1 1

( ( ), , ) ( , , 1, )Y y i ftoe i kε φ σ′= +  

                                    ( ( ),{ ( ), , (( )( ( )))( ), }, 1)i i
i i

return X x X x y Y y e k iσ +  

  | ( .(( ) ))( )X x eσ φ′ ′             
1 1 1

( ( ), , ) ( [ / ], , 2, ( ))
i

Y y i ftoe X X i ad Xε φ σ
+

′ ′= +  

   
1 1 1 1

( ( ), { ( ), , (( )( ( )))( ), }::{ ( ), , ( ), ( )}:: , )i i
i i i i

return X x X x y X y e k X y Y y ad X iσ σ ε
+ +

′  

} 

 

Theorem 1: Let φ  be a proposition, ξ  be an environment, ε  is the nested predicate equation system of 

φ  translated by algorithm 1, 1 , ( ) ( ) ,
k

i k X fpv φ φ≤ ≤ =∩  if ( ( ), , ) ( , ,1, 0),X x j ftoe Aε σ=  then 

( ) || || ( ).x Xφ ξ ε ξ=� �  

Proof: refers to Appendix. 

Theorem 1 shows that proposition φ  and its nested predicate equation systems ε  are equal with 

semantics. 

4.4 Block Dependency Graph and Computation Algorithm 

Block Dependency Graph (BDG) is an Automata Composed with nested predicate equation system and 

mobile ambients process. The data structure of node in BDG is described as ( , ( , ', , ), )P X x k valφ σ , which 

P is process, ( ) 'X x
σ
φ=

 
is nested predicate equation, k is nesting layer of the fixpoint operator, and val 

is the current node’s state value. If vσ =  the initial value of val is val true= , and if σ μ=  the initial 

value is val false= .  

Function ( )new V  is producing a fresh name that does not exist in name set V. 

Algorithm 2 is the algorithm that constructs BDG.  
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Algorithm 2.  

0
_ (( , ( , , , )))//cons Btructs DG  saves the node, 

k
Install Set P X x k Sφ σ  

//whose  nesting layer of fixpoint is  , node value is initial value k  

{ 

0
 {( , ( , , , ), ), ( , ( , , , ), )}    

          //does not deal with repeated nodes

k
if P X x k false P X x k true S thenφ σ φ σ ∩ = ∅

 

0
( )  ( , ( , ( , , , ), ));

k
if add S P X x k falseσ μ φ σ=  

0
  ( , ( , ( , , , ), ));

k
else add S P X x k trueφ σ

 
//the set formed by the following produced nodes is the direct dependecy set   
//  of node( , ( , , , ), ), node ( , ( , , , ), ) belongs toDDS P X x k val P X x k valφ σ φ σ  
//the direct active set  of the following produced nodesDAS  
case    of φ

 

1 2
( ) ( ) : _ (( , ( , , , )));    _ (( , ( , , , )));Y y Z z Install Set P Y y k Install Set P Z z kφ σ φ σ∧

 

1 2
| ( ) ( ) : _ (( , ( , , , )));   _ (( , ( , , , )));Y y Z z Install Set P Y y k Install Set P Z z kφ σ φ σ∨

 

1 2 1 1 2 2
| ( ) | ( ) : | , _ (( , ( , , , )));  _ (( , ( , , , )));Y y Z z P P P Install Set P Y y k Install Set P Z z kφ σ φ σ∀ ≡

 
| [ ( )] :  [ ']   _ (( ', ( , ', , )));n Y y if P n P then Install Set P Y y kφ σ≡  
| ( ) :  ( )   ; // on the basis of lemma1

                       _ (( , ( , ', , )));

            ( )   ( ) ( )   _ (( [ / ], ( , ', , )));

n Y y if n fn P then return

Install Set P Y y k

if bn P then m bn P P vm Q Install Set Q n m Y y k

φ σ

φ σ

® ∈

≠ ∅ ∀ ∈ ∧ ≡

 

| ( )@ : _ (( [ ], ( , ', , )));Y y n Install Set n P Y y kφ σ  
| ( )Y y ⊘ : _ ((( ) , ( , ', , )));n Install Set vn P Y y kφ σ  

| ( ) :  :    _ (( , ( , ', , )));Y y Q if P Q then Install Set Q Y y kφ σ∀ →�  
| ( ) :  :    _ (( , ( , ', , )));Y y Q if P Q then Install Set Q Y y kφ σ∀ →�  
| . ( ) : ( , ) { ( ( , )} _ (( , ( , '[ / ], , )));x Y y n fn P new fn P Install Set P Y y n x kφ φ φ σ∀ ∀ ∈ ∪  
| . ( ) : ( , ) { ( ( , )} _ (( , ( , '[ / ], , )));x Y y n fn P new fn P Install Set P Y y n x kφ φ φ σ∃ ∀ ∈ ∪  
| И . ( ) :  _ (( , ( , '[ ( ( , )) / ], , )));x Y y Install Set P Y y new fn P x kφ φ σ  
| (( )( ( )))( ) :  _ (( , ( , '[ / ], , )));y Y y e Install Set P Y y e y kφ σ  

}} 

 

The function Install_Set() produces BDG is structurally complied with mobile ambients semantics and 

ambient logic semantics, thus the correctness of Algorithm 2is obvious.  

The node set corresponding with the ith nesting layer of fixpoint operator in BDG is labelled as 
i

R , 

{( , ( , ', , ), ) |1 }φ σ= ≤ ≤
i

R P X x i val i d . 

The number of all operators in formula A is labelled as op(A), the definition of op(A) is as below: 

( ) :: 0op p =                             
1

(op A ⊛
2 1 2
) :: 1 ( ) ( )A op A op A= + +  

(op ⊖ ) :: 1 ( )A op A′ ′= + +     (op ⊚ ) :: 1 ( )A op A′ ′= +  

( ( )) :: 0op Y n =                        ((( ) ))( )) :: ( )op x A n op A′ ′=  

(( .(( ) ))( )) :: 1 ( )op X x A n op Aσ ′ ′= + +  

The degree of parallelism of process P is labelled as par(P), par(P)is defined as: 
0P ≡                               : ( ) :: 0par P =  

1 1
[ ] | ... | [ ]

k k
P a P a P≡        

1
: ( ) :: max{ , ( ), , ( )}

K
par P k par P par P= …  

.P M P′≡             : ( ) :: max{ , ( )}par P k par P′=  

P P′→                  : ( ) :: max{ ( ), ( )}par P par P par P′=  

The number of operators ‘®’ in formula A is labelled as ( )op A
®

, the number of quantifiers ' , '∀ ∃  is 

labelled as 
,

( )op A
∀ ∃

, the number of operators ' | '  is labelled as 
|( )op A , the number of operators ' , '��  is 
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labelled as 
,
( )op A

� �
, the number of operators ' , ,| '∧ ∨  is labelled as 

, ,|( )op A
∧ ∨

. The size of bound names 

set in process P is labelled as |bn(P)|; the size of names set and free names set in process P and formula A 

is labelled as |N(P, A)| and |fn(P, A)| respectively; label ( )
LTS

V P  as the total number of nodes in the label 

transition system corresponded with process P. Label the size of nodes produced by function Install_Set() 

in algorithm 2 as Μ , then:  

 

| ,( ) ( ) ( )( )

, ,|( ) [ ( ) ( )] 2 [| ( ) | 1] | ( , ) |
par P op A op Aop A

LTS
V P op A op A bn P N P φ ∀ ∃®

×

∧ ∨
= × + × × + ×Μ

 

Lemma 4: The number of nodes produced by function Install_Set()in algorithm 2 is less than Μ . 

The proof of lemma 4 refers to Appendix. 

In BDG, a node’s value can be computed from its direct dependency set’s nodes, see algorithm 3. 

 

Algorithm 3. 

_ Re (( , ( , , , ), ))// computes  node's valueValue cord P X x i valφ σ  

{ 
case    ofφ  
: ( )T return true  

| :   ( );return false⊥  

| 0 :   { ( 0) ( );  ( );  if P return true else return false≡  

1 1 1 1 2 2 2 2

1 2

| ( ) ( ) and (( , ( , , , ), )) {( , ( , , , ), ), ( , ( , , , ), )} :

                      ( );

Y y Z z DDS P X x i val P Y y i val P Z z i val

return val val

φ σ φ σ φ σ∧ =

∧

 

1 1 1 1 2 2 2 2

1 2

| ( ) ( ) and (( , ( , , , ), )) {( , ( , , , ), ), ( , ( , , , ), )} :

                      ( );

Y y Z z DDS P X x i val P Y y i val P Z z i val

return val val

φ σ φ σ φ σ∨ =

∨

 

1 2

1 2

1 1 1 1 1 2 2 2 2 2

|

|
1 2

| ( ) | ( ) and (( , ( , , , ), )) {( , ( , , , ), ), ( , ( , , , ), )} :

                      ( );

P P P

P P P

Y y Z z DDS P X x i val P Y y i val P Z z i val

return val val

φ σ φ σ φ σ
≡

≡

=

∧∨

∪

 

1 1 1 1 1 1
| [ ( )] (( , ( , , , ), )) {( , ( , , , ), )} : ( );

                  ( , ( , , )) : ( );

n Y y if DDS P X x i val P Y y i val return val

else if DDS P X x return false

φ σ φ σ

φ σ

=

= ∅

:  

 
| ( ) : (( , ( , , , ), )) {( , ( , , , ), )} :  ( );

                  (( , ( , , , ), )) : ( );

j
j j j j j j j j

j

n Y y if DDS P X x i val P Y y i val return val

else if DDS P X x i val return false

φ σ φ σ

φ σ

® =

= ∅

∨∪ 

 

1 1 1 1 1 1
| ( ) @ :  and (( , ( , , , ), )) {( , ( , , , ), )} : ( );Y y n DDS P X x i val P Y y i val return valφ σ φ σ=

 
| ( )Y y ⊘

1 1 1 1 1 1
:  and (( , ( , , , ), )) {( , ( , , , ), )} : ( );n DDS P X x i val P Y y i val return valφ σ φ σ=  

| ( ) (( , ( , , , ), )) )   ( );

               ( (( , ( , , , ), )) {( , ( , , , ), )}) ( );j
j j j j j j j j

j

Y y if DDS P X x i val then return true

else if DDS P X x i val P Y y i val return val

φ σ

φ σ φ σ

= ∅

= ∧∪

 (�

 
| ( ) : (( , ( , , , ), )) )   ( );

               ( (( , ( , , , ), )) {( , ( , , , ), )}) ( );i
j j j j j j j j

j

Y y if DDS P X x i val then return false

else if DDS P X x i val P Y y i val return val

φ σ

φ σ φ σ

= ∅

= ∨∪

(�

 
| . ( ) and (( , ( , , , ), )) {( , ( , , , ), )} :  ( );j

j j j j j j j j

j

x Y y DDS P X x i val P Y y i val return valφ σ φ σ∀ = ∧∪
 

| . ( ) and (( , ( , , , ), )) {( , ( , , , ), )} :  ( );j
j j j j j j j j

j

x Y y DDS P X x i val P Y y i val return valφ σ φ σ∃ = ∨∪
 

1 1 1 1 1 1
| И . ( ) and (( , ( , , , ), )) {( , ( , , , ), )} : ( );x Y y DDS P X x i val P Y y i val return valφ σ φ σ=

 

1 1 1 1 1 1
| (( )( ( )))( ) and (( , ( , , , ), )) {( , ( , , , ), )} : ( );y Y y n DDS P X x i val P Y y i val return valφ σ φ σ=

 
}
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Function Value_Record() complies with mobile ambients’ semantics and ambient logic’s semantics, 

the correctness is obvious.  

Once the BDG is made, the model checking is translated into the computation of BDG. Ifa logic 

formula contains fixpoint operator and its alternate nesting depth is d, according to Tarski’s fixpoint 

theorem [22], the computation of BDG firstly start from the node set which the alternate nesting depth isd 

(hereinafter referred to as 
d

R ). After all nodes in 
d

R  reach the current fixpoint, start to compute 
1−d

R . if 

the value of any node in 
1−d

R  is changed, then 
d

R  needs to recompute the current fixpoint from the initial 

value. After all nodes in 
1−d

R  reach the current fixpoint, compute 
2−d

R ..., and so on. Furthemore, if any 

node’s value in 
i

R  is changed, then the current fixpoint values for all ( )< ≤
k

R i k d  need to be 

recomputed from the initial value. 

Let
0i

R  denotesthe node subset waiting for computation, the initial value is 
0i

S , 
1i

R denotesthe node 

subsetwith determinate values under current environment ξ , 
2i

R  denotes the nodesetwithundetermined 

values, i indicates nesting layer, 
0 1 2

= ∪ ∪
i i i i

R R R R . 

To compute values of nodes in 
i

R , Algorithm 3 may begin from any node in 
0i

R , which lemma 2 can 

ensure the correctness of entire results. During the process of computing, if the val of a node is changed 

under current environment ξ , according to the principle of monotonicity function, this change is non-

retrievable, so the algorithm may move this node into set 
1i

R  which needs not to be recomputedunder 

current environment ξ . On the other hand, if the val of a node is not changed, move this node into set 

2i
R , and it needsreturn

0i
R  to be recomputed afterthe valueof its direct dependency set is changed. Finally 

when
0
= ∅

i
R , all nodes of 

i
R  are in 

1i
R  (the valunder current environment ξ  is impossible to change any 

more), or in 
2i

R (the val keeps unchanged in the process of computing), 
i

R  reaches the current fixpoint 

state. 

5 Partial-order Relation in BDG and New Algorithm of Model Checking 

In this section, it firstly presents a kind of partial-order relation between inter-media results during BDG 

computation. Next, a new BDG computation algorithm, model checking algorithm, and as well as, its 

compliexity analyzing are given. 

First of all, some symbols are defined as below: 

Let J and K are the node sets in BDG, and satisfy: (1) |J|=|K|; (2) the value valof each node in the set is 

unique, meaning ( , ( , , , ), )P X x i falseφ σ  and ( , ( , , , ), )P X x i trueφ σ  cannot appear in the same set at the same 

time. 

Definition 1: Define operator ⋐ in J and K: if J ⋐ ,K  then  

 

( , ( , , , ), ) ( , ( , , , ), ) ( , ( , , , ), ) ;

( , ( , , , ), ) ( , ( , , , ), )

P X x i false J P X x i false K P X x i true K

P X x i true J P X x i true K

φ σ φ σ φ σ

φ σ φ σ

∀ ∈ ⇒ ∈ ∨ ∈

∀ ∈ ⇒ ∈
 

Obviously, ⋐ is reflexive, antisymmetrical and transitive. It is a partial ordering relation in computing 

node set. 

Algorithm 3 shows that, during the computing of 
1

R , there exists a computation sequence denoted 

as 0 1 2

1 1 1 1
, , , ,R R R R

ω

⋅⋅⋅
 (when 

1
R  reaches fixpoint state, it is labelled as 

1
R

ω ). 

Let 1

1

j
R denotes the value of 

1
R , the computation sequence of computing 

2
R  is denoted as 

1 1 1 1
0 1 2

2 2 2 2
, , , ,

j j j j
R R R R

ω

⋅ ⋅ ⋅
. Similarly, let 1

1

j
R  and 1 2

2

j j
R  denote the value of 

1
R  and 

2
R  respectively, the 

computation sequence of computing 
3

R  is denoted as 1 2 1 2 1 2 1 2
0 1 2

3 3 3 3
, , , ,

j j j j j j j j
R R R R

ω

⋅ ⋅ ⋅
. 

Summarily, let 1

1

j
R 、

1 2

2

j j
R …, and 1 2 1

...

1

d
j j j

dR
−

−

 denote the value of 
1

R 、

2
R …, and 

1d
R

−

respectively, the 

computation sequence of computing 
d

R  is denoted as 1 2 1 1 2 1 1 2 1 1 2 1
... 0 ... 1 ... 2 ...

, , , ,
d d d d

j j j j j j j j j j j j

d d d dR R R R
ω

− − − −

⋅ ⋅ ⋅
. 

Among it, 1 2 1 1 2 1 1 2 1 1 2 1

0 1 2

... ... ... ...

::
i i i i

i i i

j j j k j j j k j j j k j j j k

i
R R R R

− − − −

= ∪ ∪  

According to Tarski’s fixpoint theorem, the computation sequence of nodes in BDG is: 
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00...00 00...01 00...02 00...0 00...1 00...10 00...11 00...12 00...1

1

00...2 00... 01 01...00 01...01 01...02 01...0 01...1 01...10

1 1 2 1

, , , , , , , , , , ,

,..., ,..., , , , , , , , ,

d d d d d d d d d

d d d d d d d d

R R R R R R R R R

R R R R R R R R R

ω ω

ω ω

−

− − −

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅

  

 

01...11 01...12 01...1 01...1 01... 02 0 1 10...00

1 1 2 2 1

10...01 10...02 10...0 10...1 10...10 10...11 10...12 10...1 10...2

1 1

1

, , , , ,..., ,..., ,..., , , ,

, , , , , , , , , , ,

...,

d d d d d d

d d d d d d d d d

d

R R R R R R R R R

R R R R R R R R R

R

ω ω ω

ω ω

− −

− −

−

⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

10... 11 11...00 11...01 11...02 11...0 11...1 11...10 11...11

2 1

11...12 11...1 11...2 11... 12 1 2

1 1 2 2 1 1

,..., , , , , , , , , ,

, , , ,..., ,..., ,..., , ,...

d d d d d d d

d d d d

R R R R R R R R

R R R R R R R R

ω ω

ω ω ω ω

−

− −

⋅ ⋅ ⋅

⋅ ⋅ ⋅

 

The initial value of 
i

R  comes from _ (( , ( , , , )))Install Set P X x kφ σ in algorithm 2, 1 2 1
... 0

0

i
j j j

i i
R S−

= . If 
i

vσ = , 

the initial value of each node val in 1 2 1
... 0

i
j j j

i
R −  is true, and if

i
σ μ= , the initial value of each node val in 

1 2 1
... 0

i
j j j

i
R − is false. 

Assume the corresponding functions of computing nodes in 
1 2 1
, , ..., ,

d d
R R R R

−

 are 
1 2 1
, ,..., ,

d d
f f f f

−

, then:  

 

1 1 1 1 1

1 2 1 1 2 1 2 1 2

1 2 1 1 2 1 1 2 11 1 2

1 2 1

1 ... ...

1 1 1 2 1

( 1) ... ...

2 2 1 2 1

...( 1) ... ...

1 1 1 2 1

... ( 1)

( , ,..., , )

( , ,..., , )

...

( , ,..., , )d d d

d d

j j j j j

d d

j j j j j j j j j

d d

j j j j j j j j jj j j

d d d d

j j j j

d d

R f R R R R

R f R R R R

R f R R R R

R f

ω ω ω ω ωω

ω ωω

ω
− − −

−

+

−

+

−

+

− − −

+

=

=

=

=

1 2 1 1 2 11 1 2
... ...

1 2 1( , ,..., , )d d d
j j j j j j jj j j

d dR R R R− −

−
  

1 2 1
, ,..., ,

d d
f f f f

−  
are monotonic functions. 

Let 1

1

j
R , 1 2

2

j j
R …, and 1 2 1

1

...

k
j j j

k
R

−

−

 denote the value of 
1

R ,
2

R …, and 
1k

R
−

 respectively, the computation 

sequence of computing 
k

R  is denoted as 1 2 1 1 2 1 1 2 1 1 2 1
... 0 ... 1 ... 2 ...

, , , ,

k k k k
j j j j j j j j j j j j

k k k k
R R R R

ω
− − − −

⋅ ⋅ ⋅ . If 
k

vσ = , in the process of 

computing, the value val of each node in 
k

R  either keeps initial value true or changes into false. Once the 

value of node val is changed into false, the node is moved into set 
1k

R , the node in sequence 

1 2 1 1 2 1 1 2 1 1 2 1
... 0 ... 1 ... 2 ...

, , , ,

k k k k
j j j j j j j j j j j j

k k k k
R R R R

ω
− − − −

⋅ ⋅ ⋅  does not change any more, and each intermediate result satisfies 

1 2 1
...

k
j j j

k
R

ω
−

⋐ … ⋐
1 2 1

... 2
k

j j j

k
R

−

⋐
1 2 1

... 1
k

j j j

k
R

−

⋐
1 2 1

... 0

.

k
j j j

k
R

−

 If ,
k

σ μ=  each intermediate result satisfies 

1 2 1
... 0

k
j j j

k
R

−

⋐
1 2 1

... 1
k

j j j

k
R

−

⋐
1 2 1

... 2
k

j j j

k
R

−

⋐…⋐
1 2 1

...

.

k
j j j

k
R

ω
−  

Definition 2:  

Assume digital sequence 
1 2 3

...

k
j j j j and 

1 2 3
...

k
l l l l  have the same length k, the value of each digit is non-

negative integer, and satisfies 

 

(1 ( )%2 0 (1
i i

i i k k i j l x x k x i∃ ≤ ≤ ∧ − == ∧ > ∧∀ < ≤ ∧ ≠ ∧ ))
x x
j l=

 

Then it is labelled as 
1 2 3 1 2 3

( ... ) ...
k k

P j j j j l l l l= . That’s to say, only one digit is different in both sequences, 

and other digits are the same. In the process of computing, ...1 2 3j j j jk

k
R  appears after 1 2 3

...

k
l l l l

k
R . Let label 

1 2 3
...( )

k
j j j jEven denotes the consequence extracted from all even digits in sequence 

1 2 3
...

k
j j j j , and label 

1 2 3
...( )

k
j j j jOdd denotes the consequence extracted from all odd digits in sequence

1 2 3
...

k
j j j j , and 

1 2 3
...( , )

k
j j j jh i denotes the consequence 

1 2
...

i
j j j extracted from the first idigits in 

1 2 3
...

k
j j j j . If all digits in the 

sequence are zero, label it as 0 . 

Lemma 5: If 
k

σ μ= , then 1 2
( ... )

k
P j j j

k
R ⋐

1 2
( ... )

k
j j j

k
R . 

The proof of lemma 5 refers to Appendix.  

Lemma 6: If σ =
k

v , then 1 2
...

k
j j j

k
R ⋐

1 2
...

k
j j j

k
R . 

The proof of lemma 6 is similar to lemma 5. 

From lemma 5, it is known that if 
k

σ μ= , then 1 2 1
( ... )

k
P j j j

k
R

ω
−

⋐
1 2 1

...

k
j j j

k
R

ω
− . When computing 1 2 3 1

...

k
j j j j

kR
ω

− , we 

can start to compute from 1 2 3 1
)( ...

k
P j j j j

kR
ω

−  directly, not from the node’s initial value 
0k

S , that means the 
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computing times is diminished. From lemma 6, similarly, if σ =
k

v , when computing 1 2 3 1
...

k
j j j j

kR
ω

− , we can 

start computation from 1 2 3 1
)( ...

k
P j j j j

kR
ω

−  directly, need not start from the node’s initial value 
0k

S .  

Summarily, if the current calculation sequence is l  and d%2==0(d is a even number), according to 

lemma 5 and lemma 6, the solution to the BDG is algorithm 4 as below. 

 

Algorithm 4. 

()//computes  BDG ValueSet { 

 

2 2 2 2
( 0; ; ) //saves the variable initialization of intermediate resultsfor i i m i= < + +  

 { 

  

2 2

30 30 31
, ;

i i

G S G= = ∅  

   

4 4 4 4
( 0; ; )for i i m i= < + + { 

   

2 4 2 4

50 50 51
, ;

i i i i

G S G= = ∅  

   ......  

   

2 4 2 2 4 2
... ...

2 2 2 2 ( 1) 0 ( 1) 0 ( 1)1
( 0; ; ){ , ;} 

d d
i i i i i i

d d d d d d d
for i i m i G S G− −

− − − − − − −

= < + + = = ∅  

   } 

} 

; //computing from 
d

i d R=  

( 0)while i >  

 {
0

( )
i

while R ≠ ∅  

  {
0

 ( , ( , , , ), ) ( );
i

P X x i val readrecord Rφ σ =  

  

0 0
{( , ( , , , ), ))

i i
R R P X x i valφ σ= −  

  }
0

; //extracts a node from 
i

R  

   '  ( , ( , , , ), ). ; //saves the  ancient valueval P X x i val valφ σ=  

  ( , ( , , , ), ). _ Re (( , ( , , , ), ));P X x i val val Value cord P X x i valφ σ φ σ=  

  //computes and updates  of the nodeval  

    ( ' ( , ( , , , ), ). ) ;if val P X x i val val breakφ σ≠  

  

2 2
 {( , ( , , , ), ))

i i
R R P X x i valφ σ= +  } 

 } 

0 0 2
 ( ){ ;          //reaches the current fixpoint

i i i
if R R R= ∅ =

 

 

( ( , )) ( ( , ))

1 1 0 0 1 0
 ( %2 1 3) , ; //saves  and 

Even h l i Even h l i

i i i i i i
if i i G R G R R R== ∧ ≥ = =  

  ;i −− } 

1 1 0 0 2
  { {( , ( , , , ), ))}; ;

i i i i i
else R R P X x i val R R Rφ σ= + = +

 
 ( ) { ( 1; ; )if i d for j i j d j< = + ≤ + +  
   //recovers the initial state of the inner nodes  in workspace  
   

{ ( %2 1 ( ( , )) )if j Odd h l j== ∧ ≠ 0  

    

( ( ( , ))) ( ( ( , )))

0 0 1 1 2
, , ;

Even P h l j Even P h l j

j j j j i
R G R G R= = = ∅  

   

0 0 1 2
 , , ;

j j j i
else R S R R= =∅ =∅  

   } 

 ; //recomputes from 
d

i d R=  

}}}} 

 

Example 1: According to algorithm 4, if d=3, the computation sequences for the node of each layer in 

BDG are:  
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000 001 002 00 01 010 011 012 01

3 30 3 3 3 2 3 30 3 3 3

02 020 021 022 02 03 0 1 100 00

2 3 30 3 3 3 2 2 1 3 3

101 102 10 11 110 01 111 112 11 1

3 3 3 2 3 3 3 3 3 2

, , , , , , , , , , ,

, , , , , , ,..., , , ,

, , , , , , , , , ,

R S R R R R R S R R R

R R S R R R R R R R R

R R R R R R R R R R

ω ω

ω ω ω

ω ω ω

= ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ =

⋅ ⋅ ⋅ = ⋅ ⋅ ⋅

2

120 02 121 12 13 1 2

3 3 3 3 2 2 1 1

,

, , , ,..., ,..., ,...,R R R R R R R R
ω ω ω ω

= ⋅ ⋅⋅

 

Example 2: According to algorithm 4, initial value is 2 4 2 4

50 50 51
, = ∅=

i i i i

G S G , the data accessed through 2 4

50

i i

G and 

2 4

51

i i

G  is as below:  

 

2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4

2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4

2 4 2 4 2 4 2 4

0 0 0 0 0 1 0 0 1 0

50 50 51 51 50 50 51 51

0 1 0 1 0 2 0 0 2 0

50 50 51 51 50 50 51 51

0 2 0 2

50 50 51 51

{ , } { , }

{ , } { , }

{ , }

i i i i i i i i i i i i i i i i

i i i i i i i i i i i i i i i i

i i i i i i i i

G R G R R G R G

G R G R R G R G

G R G R

ω ω

ω ω

ω ω

→

→ →

→ →

= = = =

= = = =

= =

2 4 2 4 2 4 2 4

2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4

2 4 2 4 2 4 2 4 2 4 2 4 2 4 2

0 3 0 0 3 0

50 50 51 51

0 0 1 0 0 1 0 0

50 50 51 51 50 50 51 51

1 0 1 0 1 1 0 1 1 0

50 50 51 51 50 50 51 51

{ , }

... { , } { , }

{ , } { ,

i i i i i i i i

i i i i i i i i i i i i i i i i

i i i i i i i i i i i i i i i

R G R G

G R G R R G R G

G R G R R G R G

ω ω ω ω

ω ω

→ → →

→ →

= =

= = = =

= = = =

4

2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4

2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4

1 1 1 1 1 2 0 1 2 0

50 50 51 51 50 50 51 51

1 2 1 2 1 3 0 1 3 0

50 50 51 51 50 50 51 51

}

{ , } { , }

{ , } { , }

i

i i i i i i i i i i i i i i i i

i i i i i i i i i i i i i i i i

G R G R R G R G

G R G R R G R G

ω ω

ω ω

→ →

→ →

= = = =

= = = =

 

 

2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4

2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4

2 4 2 4 2 4 2

1 1 2 0 0 2 0 0

50 50 51 51 50 50 51 51

2 0 2 0 2 1 0 2 1 0

50 50 51 51 50 50 51 51

2 1 2 1

50 50 51 51

... { , } { , }

{ , } { , }

{ ,

i i i i i i i i i i i i i i i i

i i i i i i i i i i i i i i i i

i i i i i i i

G R G R R G R G

G R G R R G R G

G R G R

ω ω ω ω

ω ω

ω

→ → →

→ →

→

= = = =

= = = =

= =

4 2 4 2 4 2 4 2 4

2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4

2 4 2 4 2 4 2 4 2 4 2 4 2 4

2 2 0 2 2 0

50 50 51 51

2 2 2 2 2 3 0 2 3 0

50 50 51 51 50 50 51 51

2 2 2 0 0 2 0 0

50 50 51 51 50 50 51

} { , }

{ , } { , }

... { , } { ,

i i i i i i i i i

i i i i i i i i i i i i i i i i

i i i i i i i i i i i i i i

R G R G

G R G R R G R G

G R G R R G R

ω

ω ω

ω ω ω ω

→

→ →

→ → →

= =

= = = =

= = = =

2 4

2 4 2 4 2 4 2 4

51

50 50 51 51

}

... { , }

i i

i i i i i i i i

G

G R G R
ω ω ω ω ω ω

→ → = =

 

Algorithm 4 can significantly improve the efficiency of BDG computing, thus a high performance 

model checking algorithm is presented as Algorithm 5. 

 

Algorithm 5. The Model Checking Algorithm for Mobile Ambients 

0 1 2

0

_ ( , )

{

( ( ), ) ( );

( 1; ; ) , , ;

        // saves node waiting for computing

i i i

i

Model Check P A

X x formulaToequation A

for i i d i S S S

S

=

= ≤ + + = ∅ = ∅ = ∅ 

 

E
 

0 0 1 1 2 2

_ (( , ( , , , ))); //produces all computing nodes

( 1; ; ) , , ; //copies nodes to workspace

(); //computes BDG

(( , ( , , , ), ). ); //returns the  

i i i i i i

Install Set P X x k

for i i d i R S R S R S

ValueSet

return P X x k val val val

φ σ

φ σ

= ≤ + + = = = 

of  node ( , ( , , , ), )

}

P X x k valφ σ

 

 

In rest of this session, Theorem 2 proves the correctness of Algorithm 5, Theorem 3 and Theorem 4 

present the time and space complexity of Algorithm 5 respectively. 

Theorem 2: According to Algorithm 5, if the last computing result of _ ( , )Model Check P A  is 

( , ( , , , ), ).P X x k val val trueφ σ = , then P⊨ A , otherwise P⊭ A . 

Proof: 

For the correctness of function ()formulaToequation , see the proof of theorem 1. The computing of 

_ (( , ( , , )))Install Set P X n φ σ  and _Re (( , ( , , )))Value cord P X x φ σ  completely comply with mobile ambients 

semantics and ambient logic semantics, the correctness is obvious. 

Function ()ValueSet  in algorithm 4 starts to compute from the node in 
d

R , the innermost layer of BDG. 
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Use variable i  to denote the current computing number of layer. There are two scenarios some steps may 

be skip during BDG computing. One is when computation meets one node’s value is changed, because 

each nodes of its nesting layer depth is deeper than the current layer should be recomputed, so the 

computing can skip to node set 
d

R  directly, which is the deepest layer. Two is when node sets in the 

current layer reach their fixpoint states, the computing can skip to (i-1)th layer. These two kind skips of 

computing steps are carried out by the computing order of the nested fixpoint block, it is accordant with 

Tarski’s fixpoint theorem and the correctness is obvious.  

As Algorithm 4 shows, once the value of a node in 
0i

R
 
is changed, then it is moved into 

1i
R . In case 

when the node’s value in the outer layer is unchanged, according to monotonicity, the node’s value 

cannot be changed again, obviously this processing is correct. After the node’s value is changed in the 

outer layer, and 3 %2 1 ( ( , )) 0i i Odd h l i≥ ∧ == ∧ ≠ , then ( ( ( , ))) ( ( ( , )))

0 0 1 1 2, ,= = = ∅
Even P h l i Even P h l i

i i i i i
R G R G R , not 

0 0 1 2
, ,= = ∅ = ∅

i i i i
R S R R . From algorithm 4, when  %2 1 3== ∧ ≥i i  and 

i
R

 
reaches the current fixpoint, 

then ( ( , ))

1 1 =
Even h l i

i i
G R , ( ( , ))

0 0=

Even h l i

i i
G R , according to lemma 5 and lemma 6, this processing is correct and 

can reduce the computing times of the algorithm to improve the performance of the algorithm. When the 

nodes in 
1

R
 
reach fixpoint state, it shows that the whole computation is over. If 

1
.X trueσ =  

in
1

( , ( , , ))P X x φ σ , then P⊨φ , otherwise P⊭φ . □ 

Theorem 3: The time complexity of algorithm 5 is 2 / 2 2( (2 / ) )d

O d M d
+

⋅ . 

Proof (brief): 

The key operating in algorithm 5 is ValueSet() which comes from algorithm 4. Assume 

| |  (1 )= ≤ ≤
i i

m R i d is the size of corresponding node set in 
i

R , then 
1

d

i
i

M m
=

= ∑ . The calling times of 

function 
i
f

 
are computing times of the corresponding nodes in 

i
R , label it as | |

i
f . 

According to algorithm 4, the computation sequence of the corresponding nodes in 
1

R  is 

0 1 2

1 1 1 1
, , , ,R R R R

ω

⋅⋅⋅ , the total number of computing nodes is 
1

m . If 
1

vσ = , the initial value of each node’s 

val in 
10

R  is true. In the process of computing, once the value of val turns into false, the node enters into 

11
R . The value of val in the node does not change again in the process of the whole computing from the 

monotonicity of 
1
f . At worst, the node is found out whose valischanged into false from true after 

computing all nodes in 
10

R . If 
1

σ μ= , the analysis process is similar. So at worst, the computing times of 

the corresponding nodes in 
1

R  are 
1 1

| | 1 2 ...f m= + + + =
2

1 1 1
( 1) / 2m m m+ ≤ . 

When the value of 
1

R  is 1

1

i
R , the computation sequence of the corresponding nodes in 

2
R

 
is 

1 1 1 1
0 1 2

2 2 2 2
, , , ,

ω

⋅⋅⋅

i i i i
R R R R , the computing times of the corresponding nodes in 

2
R

 
are 

2
1 2 ...+ + +m , the 

numbers of different values of 
1

R
 
are 

1
m

 
at most, so 2

2 1 2 1 2
| | (1 2 ... )= + + + ≤ ⋅f m m m m .

 
According to algorithm 4, only when 

1 3
00=i i , 

3
R  starts to compute from 

30
S . The times of this case 

are 
2

m  at most. The times of changing corresponding node’s value in block 
3

R  are 
2 3
⋅m m  and the 

computing times are not greater than 2

2 3
⋅m m . When a node’s value in 

2
R

 
has be changed, 

3
R

 
needs to be 

recomputed the fixpoint once, the times of this case are 
1 2
⋅m m  at most, the computing times are not 

greater than 
1 2 3
⋅ ⋅m m m  at most, so 2

3 2 3 1 2 3
| |≤ ⋅ + ⋅ ⋅f m m m m m . 

According to algorithm 4, only when 
3

R  is changed, 
4

R needs to compute from 
40

S . The times of 

changing corresponding node’s value in 
3

R
 
are not greater than 

2 3
⋅m m , so 2

4 2 3 4
| |≤ ⋅ ⋅f m m m  

When 
1 3 5

000i i i = , 
5

R  starts to compute from 
50

S . The times of this case are 
2 4

m m⋅  at most. The times of 

changing corresponding node’s value in 
5

R  are 
2 4 5

m m m⋅ ⋅  and the computing times are not greater than 
2

2 4 5
m m m⋅ ⋅ . When a node’s value in 

4
R  has be changed, 

5
R  needs to be recomputed the fixpoint once, 

the times of this case are
2 3 4

m m m⋅ ⋅
at most, the computing times are 

2 3 4 5
m m m m⋅ ⋅ ⋅

 at most, so 
2

5 2 4 5 2 3 4 5
| |f m m m m m m m≤ ⋅ ⋅ + ⋅ ⋅ ⋅ . 

After changing any corresponding node’s value of 
5

R , the node in 
6

R
 
needs to compute from 

60
S . At 

worst, the times of this case are not greater than 
2 4 5
⋅ ⋅m m m , so the computing times of the corresponding 
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node in equality block 
6

R  are 2

6 2 4 5 6
| |≤ ⋅ ⋅ ⋅f m m m m . 

…… 

When 3i ≥ , 2

2 2 4 2 2 2 1 2
| | ...

i i i i

f m m m m m
− −

≤ ⋅ ⋅ ⋅ ⋅ ⋅  

 

2

2 1 2 4 2 2 1 2 4 2 2 2 1 2 2 1

2 4 2 2 1 2 1 2 1

| | ... ...

       ( ... ) ( )

i i i i i i i

i i i i

f m m m m m m m m m m

m m m m m m

+ + − − +

+ − +

≤ ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅ ⋅ +

  

When the alternate nesting depth is d and mod2 0d = , the total computing times of algorithm 4 are: 

 

2 2 2 2 2

1 1 2 2 3 1 2 3 2 3 4 2 4 5

1

2

2 3 4 5 2 4 5 6 2 4 2 1 3 1

2

2 4 2 1

2 2 2

2 4 2 1 3 1

| |

        ... ( ... ) ( )

        ...

( ... ) ( ...

d

i

i

d d d d

d d d

d d d

f m m m m m m m m m m m m m m

m m m m m m m m m m m m m m

m m m m m

m m m m m m m m

=

− − − −

− −

− −

≤ + ⋅ + ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅∑

+ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ + + ⋅ ⋅ ⋅ ⋅ ⋅ +

+ ⋅ ⋅ ⋅ ⋅ ⋅

< ⋅ ⋅ ⋅ ⋅ ⋅ + + + +
1 2 1 3 3 4 3 5

5 6 3 1 1

2

2 4 2

2 / 2 2

        ... )

( ... )

( (2 / ) )

d d d d

d d

d

m m m m m m m

m m m m m m

m m m m M

O d M d

− − −

−

+

⋅ + ⋅ + ⋅ + ⋅

+ ⋅ + + ⋅ + ⋅

< ⋅ ⋅ ⋅ ⋅ ⋅

= ⋅

 

When mod2 1d = , the total computing times of algorithm 4 are: 

 

2 2 2 2 2

1 1 2 2 3 1 2 3 2 3 4 2 4 5
1

2

2 3 4 5 2 4 5 6 2 4 1 2

2 2 2

2 4 1 1 3 1 2 1 3 3 4 3 5

5 6

| |

        ... ( ... ) ( )

( ... ) ( ...

        ...

d

i
i

d d d d

d d

f m m m m m m m m m m m m m m

m m m m m m m m m m m m m m

m m m m m m m m m m m m m m

m m

=

− −

−

≤ + ⋅ + ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅∑

+ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ + + ⋅ ⋅ ⋅ ⋅ ⋅ +

< ⋅ ⋅ ⋅ ⋅ + + + + ⋅ + ⋅ + ⋅ + ⋅

+ ⋅ + +

⎣ ⎦

2

2

2 4 1

2 / 2 2

)

( ... )

( (2 / ) )                                                                                    

d d

d

d

m m

m m m M

O d M d

−

−

+

⋅

< ⋅ ⋅ ⋅ ⋅

= ⋅

 �  

Theorem 4: The space complexity of algorithm 5 is /2

(2 / )
d

O M d  

Proof (brief): 

The main quantity demanded of memory is ValueSet() which comes from algorithm 4. In the process 

of computing of algorithm 4, 
0i

R
 
and 

1
(1 )

i
R i d≤ ≤

 
needs a storage unit respectively, the total numbers of 

storage units are 2d, execute statement ( ( , )) ( ( , ))

1 1 0 0
( %2 1 3) , ;

Even h l i Even h l i

i i i i
f i i G R G Ri == ∧ ≥ = =  when 3=i , it needs 

2
2m  storage units to save intermediate results. When 5=i , it needs 

2 4
2 ⋅m m  storage units, …. When 

1= −i d , it needs 
2 4 6 2

2 ...
−

⋅ ⋅ ⋅ ⋅

d
m m m m  storage units. So the total numbers of space in algorithm 4 are:  

 
/ 2

2 2 4 2 4 6 2
2 2 2 ... 2 ... (2 / )

d

d
d m m m m m m m O M d

−

+ + ⋅ + + ⋅ ⋅ ⋅ ⋅ <  □ 

6 Conclusion 

This paper deeply analyzes and studies the model checking algorithm of finite-control mobile ambients 

for µ- calculus first-order predicate ambient logic. Based on Tarski’s fixpoint theorem, a group of partial 

ordering relation in the process of computing is found, and comes up with an algorithm whose time 

complexity has exponent relation to d/2+2 (d is the alternating nesting depth of the formula). To the 

author’s knowledge, this is the third model checking algorithm of finite-control mobile ambients for µ-

calculus predicate ambient logic based on first-order, and has the best performance at present. The 

improvement of the algorithm performance makes it possible to solve ambient logic formula with more 

alternating nesting depth of fixpoint operators. The research findings in this paper are significant in both 

theory study and practical application in model checking of mobile ambients. At the same time, the 

research method in this paper also applies to the design of local model checking algorithm in π-calculus 

and CCS calculus. The best results of the current model checking of µ-calculus is that: time complexity 

has exponent relation to half of the alternative nesting depth of the formula while space complexity has 
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linear relation to the alternative nesting depth of the formula, next work is considering whether we can 

further reduce space complexity of the model checking algorithm of finite-control mobile ambients for µ-

calculus predicate ambient logic based on first-order, and develop the tool of model checking for finite-

control mobile ambients. 
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Appendix  

Theorem 1: Let φ  be a proposition, ξ  be an environment, φ  is translated into nested predicate equation 

system ε  by algorithm 1, 1 ,{ } ( ) ,
k

i k X fpv φ≤ ≤ ∩ = ∅  if ( ( ), , ) ( , ,1, 0),X x j ftoe Aε σ=  then ( )x φ ξ =� �  

|| || ( )Xε ξ  

Proof: Without loss of generality, let vσ = (for the case of σ μ= , the proof is similar). 

(1) pφ ≡  

|| || ( ) || ( ) || ( )i
i i

X X x p X
σ

ε ξ ξ≡ =  

                  { | [ / ]}
i

f f p f Xξ= ⊆∪ � � // the semantics of nested predicate equation system 

                  .

i
vX p ξ= � �  // the semantics of logic formula 

                  p ξ= � � // 
i

X  does not appear in p  

Other cases for φ  are structural induction as below. Induction hypothesis: let 'φ  be any proposition 

whose length is less than φ , ξ  be an environment, 1≤ ≤i k , 
k

X does not appear freely in 'φ , if 

( ( ), , ) ( , , , ),X x j ftoe i kε φ σ′ ′=  there is ( ) || || ( ).x Xφ ξ ε ξ′ ′=� �  

(2) ( )Y eφ ≡ , if there is ( ),
j

X j i<  and ,
j

Y X≡  label it as ( ) { }jj
fnv X x=  

|| || ( ) || ( ) (( )( ( )))( ) || ( )i i ji v j i
X X x x X x e Xε ξ ξ≡ =  

                  || ( ) (( )( ( )) || ( )i ii v j i
X x x X e Xξ= =  

                  { | ( )( )( ) [ / ]}i j i
f f x X e f Xξ= ⊆∪ � �  

                  .( )( ( ))ii j
vX x X e ξ= � �  

                  ( )( ( )) //i j i j
x X e X Xξ= ≠� �  

                  ( )ix φ ξ= � �  

If there is not 
j

X , there is || || ( ) ( )( )) ( )i iX x Yn xε ξ ξ φ ξ= =� � � �  in a similar way.  

(3) φ φ≡ ⊛φ  

Let 
1 1 1 2 2 2 1

( ( ), , ) ( , , 1, ), ( ( ), , ) ( , , , )Y y i fote i k Z z i fote i kε φ σ ε φ σ= + =  

From induction hypothesis there is 
1 1 2 2

( ) || || ( ), ( ) || || ( )y Y z Zφ ξ ε ξ φ ξ ε ξ= =� � � �  

Because 
1 2 1 2

( ) ( ) , ( ) ( )lhs lhs lhs rhsε ε φ ε ε φ= =∩ ∩  and 
1 2

( ) ( ) ,rhs lhsε ε φ=∩ , according to lemma 1, 

there is 
1 1 2 2 1 2

( ) || :: || ( ), ( ) || :: || ( ),y y z zφ ξ ε ε ξ φ ξ ε ε ξ= =� � � �  and ( ) ( )( ( ))i ix x Y yφ ξ =� � � ⊛ ( ( ))Z z �  

1 2
|| :: ||ε ε ξ  is easily to get from the semantics of ambient logic.  

|| || ( ) || ( ) ( )i
i

X X x Y yε ξ ≡ = ⊛
1 2

( )}:: :: || ( )
i

Z z Xε ε ξ  

                 { | ( )( ( )if f x Y y= ⊆∪ � ⊛
1 2

( ))) || :: || [ / ]
i

Z z f Xε ε ξ�  

                 
1

{ | ( )(if f x φ= ⊆∪ � ⊛
2

[ / ]}
i

f Xφ ξ�  

                 
1

.( )(i
i

vX x φ= � ⊛
2

φ ξ�  

                 
1

( )(ix φ= � ⊛
2

φ ξ�  
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(4) The proof of ≡⊖ ,φ ′  φ ≡⊚φ ′  and (( ) )( )x nφ φ ′≡  resembles the above case and are omitted here.  

(5) ( ' .(( ') '))( )X x eφ σ φ≡  

Without loss of generality, let σ μ′ = (for the case of ,vσ ′ =  the proof is similar). Let 
1 1

( ( ), , )Y y iε =  

1 1
( [ / ], , 2, ( )),

i
ftoe X X i ad Xφ σ

+
′ ′ +

1 1
{ ( ) ( )}:: ,

i
X y Y y

σ
ε ε

′+
′ = =

1
{ ( ) (( ) ( )))( )}:: ,i

i i
X x y X y e

σ
ε ε

+
′= =  there 

is { '} { }x y= .  

Induction hypothesis: 
1 1

( ) [ / ] || || ( )
i

y X X Yφ ξ ε ξ
+

′ =� �   

1 1 1 1
|| || ( ) || ( ) ( )}:: || ( )

i i i
X X y Y y X

σ
ε ξ ε ξ

′+ + +
′ ≡ =  

                      
1 1

{ | || || [ / ]}
i

f f Y f Xε ξ
+

= ⊇∩ � �  

                      
1 1

{ | ( )[ / ] [ / ]}
i i

f f y X X f Xφ ξ
+ +

′= ⊇∩ � �  

                      
1 1
( ) [ / ]

i i
X y X Xμ φ ξ

+ +
′= ⋅� �   

1
|| || ( ) || ( ) (( )( ( )))( )}:: || ( )i

i i i
X X x y X y e X

σ
ε ξ ε ξ

+
′≡ =  

                  
1

.( )( ( )) || ||i
i i

vX x X e ε ξ
+

′= � �  

                  
1 1

( )(( .( ) )[ / ]( )i
i i

x vX y X X eφ ξ
+ +

′= � �  

                  ( )(( .( ) )( )ix vX x eφ ξ′ ′= � �  

                  ( )ix φ ξ= � �  

Lemma 4: The number of nodes produced by function Install_Set()in algorithm 2 is less than Μ . 

Proof (brief): 

First of all, because the nested predicate equation systems E  translated by function ()formulaToequation is 

semantically correspond with the formula A, then the size of E is correspond with the size of predicate 

variable set exists in the left of each equation, that is 
, ,|

| ( ) | ( ) ( )lhs op A op A
∧ ∨

= +E . And if the effectiveness 

of operator ' |, , , '® ∀ ∃ , is not taken into account, the number of computing nodes produced by function 

_ ()Install Set  in algorithm 2 is less than 
, ,|

( ) [ ( ) ( )]
LTS

V P op A op A
∧ ∨

× + .  

A single ' | ' , 
|
( )op A , ' '®  and ( )op A

®  
operator in the formula may increase the number of computing 

nodes to ( )
2
par P , |( ) ( )

2
par P op A×

, | ( ) | 1bn P +  and ( )
[| ( ) | 1]

op A
bn P ®

+  times at most respectively.  

For any process P and any formula A, there are | ( , ) | | ( , ) |fn P A N P A≤ .  

After some steps of transition, P is reduced into P', A' is sub-formula of A, and there 

is | ( ', ') | | ( , ) |fn P A N P A≤ . And given a formula A, one ' '∀  or ' '∃  can only increase the number of 

computing nodes to | ( , ) |N P A  times at most. So if the number of ' '∀  and ' '∃  is 
,

( )op A
∀ ∃

, then it can cause 

the number of computing nodes increase to ,

( )
| ( , ) |

op A
N P A

∀ ∃  times at most.  

In conclusion, the number of computing nodes produced by function _ ()Install Set  in algorithm 2 is 

less than: 

 

|( ) ( ) ( )

, ,|
( ) [ ( ) ( )] 2 [| ( ) | 1]

par P op A op A

LTS
V P op A op A bn P ®

×

∧ ∨
× + × × +

,

( )
| ( , ) |

op A
N P φ ∀ ∃

×  □ 

Lemma 5: If 
k

σ μ= , then 1 2
( ... )

k
P j j j

kR ⋐
1 2

...

k
j j j

kR . 

Proof: 

(1) case: k d=  

Let 
1 2 3 1 2 3

( ... ) ...
k k

P j j j j l l l l=  and 1
i i
j l= + . 

(a) Only the dth bit are different in both sequences, then
1 2 3 1 2 3

( ...( 1)) ...
d d

P j j j j j j j j+ =  and  

 

1 2 3 1 2 1 1 2 11 1 2
...( 1) ... ...

1 2 1
( , ,..., , )d d d dj j j j j j j j j j jj j j

d d d d
R f R R R R− −

+

−
= , 

d
σ μ=  

1 2 1
...

d d
j j j j

dR
−

⋐
1 2 1

...

d
j j j

dR
+  is correct obviously.  

(b) Only the (d-2)th bit is different in both sequences, then 
1 2 3 2 1 1 2 3 2 1

( ...( 1) ) ...
d d d d d d

P j j j j j j j j j j j j
− − − −

+ = . 

According to Tarski’s fixpoint theorem, there are 
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0...0001 0 00 0...0 0...00 0...000 0...0000

1 2 3 2 1

0...0101 0 00 0...0 0...01 0...010 0...0100

1 2 3 2 1

( , , ..., , , , )

( , , ..., , , , )

d d d d d d

d d d d d d

R f R R R R R R

R f R R R R R R

− − −

− − −

=

=

 

Because 
0...000 0...010

1 1d d
R R

− −

= , 
0...0000 0...0100

d d
R R= , 

2d
σ μ

−

= ⇒
0...00

2d
R

−

⋐
0...01

2
,

d
R

−

 
d
f is a monotonic function, there is 

0...0001

d
R ⋐

0...0101

.

d
R  Analogously, there are 0...000 k

d
R ⋐

0...010

,

k

d
R

0...000

d
R

ω

⋐
0...010

.

d
R

ω  And according to Tarski’s fixpoint 

theorem, there are 

 

0...001 0 00 0...0 0...00 0...000 0...000

1 1 1 2 3 2 1

0...011 0 00 0...0 0...01 0...010 0...010

1 1 1 2 3 2 1

( , ,..., , , , )

( , ,..., , , , )

d d d d d d

d d d d d d

R f R R R R R R

R f R R R R R R

ω

ω

− − − − −

− − − − −

=

=

 

Similarily, because 0...00

2d
R

−

⋐
0...01

2
,

d
R

−

 0...000

1d
R

−

⋐
0...010

1
,

d
R

−

 0...000

d
R

ω

⋐
0...010

,
d

R
ω  

1d
f

−

 is a monotonic function, there is 
0...000

1d
R

−

⋐
0...011

1d
R

−

. So there are 1
0...00

1

dj

d
R

−

−

⋐
1

0...01

1

dj

d
R

−

−

, 0...00

1d
R

ω

−

⋐
0...01

1d
R

ω

−

, and there are 

 

1 1 1

1 1 1

0...00 1 0...00 0...00 00 00 0...0 0...00

1 2 3 2 1

0...01 1 0...01 0...01 00 00 0...0 0...01

1 2 3 2 1

( , , ..., , , , )

( , , ..., , , , )

d d d

d d d

j j j

d d d d d d

j j j

d d d d d d

R f R R R R R R

R f R R R R R R

− − −

− − −

− − −

− − −

=

=

 

Finally, because 0...00

2d
R

−

⋐
0...01

2
,

d
R

−

, 1
0...00

1

dj

d
R

−

−

⋐
1

0...01

1

dj

d
R

−

−

, 1
0...00 0dj

d
R

−

⋐
1

0...01 0dj

d
R

− , there is 1
0...00 1dj

d
R

−

⋐
1

0...01 1dj

d
R

− . On the analogy of 

this, there are 1
0...00 d dj j

d
R

−

⋐
1

0...01 d dj j

d
R

− , 1
0...00

d
j

d
R

ω
−

⋐
1

0...01
d
j

d
R

ω
−

.
 

Repeat above analysis, there is 2 1
0...0 d d dj j j

d
R

− −

⋐
2 1

0...0 ( 1)d d dj j j

d
R

− −

+

⋐
2 1

0...0 ( 2)d d dj j j

d
R

− −

+

⋐…⋐
2 1

0...0 ( )d d dj j j

d

k

R
− −

+

, so 1 2
( ... )

k
P j j j

kR ⋐
1 2

...

k
j j j

kR   

(c) Only the 2 (2 / 2)d i i d− < <  th bit are different in sequence 
1 2 3

( ... )
k

P j j j j  and sequence 
1 2 3

...

k
j j j j . 

By similar analyzing to (b), lemma 5 is correct. 

(2) When 1 k d≤ < , the analysis is similar to the case of k d= . □ 
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