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Abstract. In this paper, a basin escaping auxiliary function method is proposed. This method 

adopts the idea of the filled function to move from a local minimum to better ones successively. 

The main advantages of the new proposed basin escaping auxiliary function are: (1) it is easy to 

construct, (2) it has no parameters to adjust, and (3) the formula expression of the new auxiliary 

function is quite simple which can result in less computation and hence can improve the 

efficiency. The properties of the auxiliary function is studied and discussed theoretically. And an 

evolutionary algorithm with a new crossover operator was proposed based on the basin escaping 

auxiliary function. The experiments are conducted on 8 often used benchmarks in the field and 

the results show that the proposed algorithm is more efficient. 

Keywords: auxiliary function, basin escaping, global optimization, local minima escaping 

1 Introduction 

Many problems in science, economics and engineering involve global optimization [1, 2, 7]. Scientists 

have already proposed many useful ways to solve the global optimization problems. The classical 

gradient descent methods, Newton and quasi-Newton method are very efficient for problems with known 

or easy to get gradients. The population based evolutionary algorithm (EA) is another kind of 

optimization method inspired by the idea of Darwin’s theory of evolution. In EA algorithms, points in the 

search space are called individuals or solutions and multiple individuals form the population which 

provide a parallel searching mechanism. 

EA has developed very fast and a large number of different variants is proposed such as Particle 

Swarm Optimization (PSO) [10], Artificial Bee Colony Algorithm (ABC) [8] and Differential Evolution 

(DE) [21]. EAs are efficient and helpful especially when little knowledge of the optimization problem is 

known since they use the function value or transformed function value as the fitness instead of gradients. 

Also, the randomness mechanism in EA can help the algorithm to escape from local optima. However, 

EA may suffer from the premature convergence due to the lack of diversity of the population and may 

have slow convergence speed. Many efforts have been devoted to improve the efficiency of EA in variety 

ways such as using better initialization technique [9, 11, 29], auto enhancing the population diversity [26], 

making the evolutionary operator self-adaptive [20, 27], using elitism strategy [32-34]. 

Other efficient way to escape local optima is the filled function method first proposed by Ge [3-5]. 

Because of the prevalence of local minima, algorithms may often be trapped in local minima, or may 

enter other local minima worse than the former ones. So, a major problem is how to escape from local 

minima to find better ones successively till the global minima is found. The filled function method is an 

effective way to tackle this kind of problem. 

Consider the following global optimization problem: 
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( )

. . n

MinF x

s t x R∈

 (1) 

where ( ) : Rn

F x R→ is a continuously differentiable function. 

In practice, it is often assumed that ( )F x is coercive, that is: 

 ( )F x →+∞  when x →+∞� �  

So that all minima are in a closed bounded box n

RΩ⊂  and there is only a finite number of minima in 

Ω . Usually, Ω  is known or can be estimated before the optimization. So the above optimization problem 

is equivalent to the following one: 

 
( )

. . [ , ] { | , , }n

MinF x

s t x l u x l x u l u R∈Ω = = ≤ ≤ ∈
 (2) 

We will consider problem (2) in this paper and we use the following symbols for convenience: 

n : The dimension of the problem.  
*

x : The global optimal solution of the problem.  

k : The iteration counter.  
*

k
x : The local minimum of the problem in the kth iteration.  

*

ki
x : The ith element of *

k
x  where i=1,2, �  n.  

*

k
B : The basins of the objective function at an isolated local minimum *

k
x .  

( )F x : The objective function. 

The remainder of this article is organized as follows: Section 2 gives a brief overview of related work. 

Section 3 presents the basin escaping auxiliary function method and its properties. Based on it, a new 

basin escaping auxiliary function algorithm is proposed in section 4. Numerical experiments are carried 

out in section 5. Section 6 is the conclusions. 

2 Related Work 

In this section, we give an overview of the related work manly about the auxiliary function method and 

the elitism based evolutionary algorithm. 

2.1 Auxiliary Function Method 

Auxiliary function method is widely used in many field and in various ways. Some authors define 

functions for the fitness evaluation instead of the original function in evolutionary algorithms in order to 

make the algorithm more efficient [35]. More information about the transformed fitness functions for EA 

can be found in the survey paper [36]. Authors in [37-38] used transformed function in to help the 

algorithm to locate the global minimum potential energy of a Lennerd Joins cluster easily. Another two 

widely used auxiliary function method is the smooth function method and the filled function method. 

The smoothing function method. The smoothing function method is first proposed by Wei and Wang 

[39] as follows: 

 

� � �{ } �

1
( , ) ( ) 1 ( ) ( ) ( ) ( )

2

1 0
( )

1 0

F x x f x sign f x f x f x f x

if y
sign y

if y

⎡ ⎤ ⎡ ⎤= + − − • −⎣ ⎦ ⎣ ⎦

− <⎧
= ⎨

≥⎩

 (3) 

where (x)f  is the objective function to be optimized and �

x  is the current best point obtained by the 

algorithm. The smoothing function has two good properties: 

(1) �( , )F x x  will keep (x)f  unchanged at any point x better than �x , i.e., for x D∀ ∈ , if �(x) ( )f f x< , 
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then �( , ) ( )F x x f x= . 

(2) �( , )F x x  will flatten the landscape at any point no better than �x , i.e., for x D∀ ∈ , if �(x) ( )f f x≥ , 

then � �( , ) ( )F x x f x= . 

The main idea of the smoothing function is to smooth the landscape of the objective function, that is, 

to reduce the number of local minima that are definitely won’t be the global minima. Fig. 1 and Fig. 2 

from [41] show the effect to function landscape before and after the use of smoothing filled function. 

 

Fig. 1. The objective function to be optimized 

 

Fig. 2. The effect of the smoothing function 

The smoothing function method is efficient in finding the global optimal solution by means of 

reducing the number of local minima. However, from Fig. 2 we can see that there are large flat areas that 

the gradient keeps unchanged in these areas. Gradient based algorithms may fail in such area. Authors in 

[40] proposed a spherical search method in which the searching radius is adjust to make attempt to walk 

out of the flat area. In [41], the authors use uniform design method to distribute points in these flat areas 

in order to get out of the flat areas. 

The filled function method. Filled function method is another kind of auxiliary function aimed at 

escaping local minima successively to get the global optimal solutions. The definition of a filled function 

and the related concepts are first proposed by Ge [3] as follows: 

Definition 1: The basin *

k
B  of F(x) at an isolated minimum *

k
x  defined in [3] is a connected domain 

which contains *

k
x , and in this domain the steepest descent trajectory of F(x) will converge to *

k
x  by 

starting from any initial point. 

A basin *

1
B  at *

1
x  is lower (or higher) than basin *

2
B  at *

2
x  iff: 

 

* *

1 2
( ) (or )F(x )F x ≤ >  (4) 

The definition of a filled function is first proposed by Ge [3] as follows: 
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Definition 2: A function *

1
( , )P x x  is called a filled function of F(x) at a local minimum *

1
x  if it satisfies 

the following properties:  

(1) *

1
x  is a strictly local maximum of *

1
( , )P x x , and the whole basin *

1
B  of F(x) becomes a part of a hill 

of *

1
( , )P x x .  

(2) *

1
( , )P x x  has no minima or stable points in any basin of F(x) higher than *

1
B .  

(3) If F(x) has a lower basin than *

1
B , then there is a point x' in such a basin that minimizes *

1
( , )P x x  

on the line through x and *

1
x . 

From property (1) we can see that it is easy to escape from the local minimum *

1
x  by minimizing the 

filled function *

1
( , )P x x . property (2) ensures the filled function will not find a worse local minimum by 

minimizing the filled function *

1
( , )P x x , and property (3) means that if a better local minimum than *

1
x  

exists, the filled function is able to enter a lower basin of F(x) in theory, thus it is possible to get a better 

local minimum by minimizing the filled function *

1
( , )P x x  along a line from x to *

1
x . 

The first filled function method proposed by Ge [3] is: 

 

2
*

1

2

1
( , , ) ( )

( )
P x r e

x x
xp

r F x
ρ

ρ
=

+

−

−

� �
 (5) 

Where r and ρ  are two parameters need to be carefully chosen and adjusted to make ( , , )P x r ρ  satisfy 

the above mentioned three properties of the filled function. Another disadvantage is that ( , , )P x r ρ  will 

approach to zero very fast and its values change slowly when * 2

1
x x−‖ ‖  becomes larger and larger 

because of the term * 2 2

1
[ ( / )]exp x x ρ− −‖ ‖ . So, when the value of ( , , )P x r ρ  changes too slowly to 

distinguish, worse local minima( such as pseudo-minima or saddle points) could be located. To reduce 

the possibility of locating worse local minimum, the author use *

1x x−� � instead of * 2
1x x−� �  as shown 

in equation (6) 

 

*

1

2

1
( , , ) ( )

( )
P x r ex

x

x
p

x

r F
ρ

ρ
=

−

−

+

� ��
 (6) 

Afterwards, many other filled function had been proposed to overcome these drawbacks [6, 13-18, 22, 

24-25, 28, 30-31]. In [16] a filled function with only one parameter is proposed. 

 

* 2

1*

1

1
( )

ln(1 ( ) ( ))
H x a x x

F x F x
= − −

+ −

� �  (7) 

However, the logistic operation will still make the filled function prone to ill conditioning. Liu [17] a 

filled function without exponential or logistic forms to eliminate this effect. 

 

* 2

* 1/

1

1
( , ) 1

( ) ( ) m

M x a a x x
F x F x

= − −

−

� �  (8) 

Then in [15] a class of continuously differentiable filled function was first proposed: 

 

( ) ( ) ( ) ( )1 1

0

(0) 0 (0) 1/ 0

'( ) 0 '( ) 0, [0, )

( ) '( )
lim 0

'( ) ( )

,

t

a p

u a

u t

C X a u f X f X w X X

t t

u t t

u t t

ω

ω

ω

ω→

= − ⎡

= = >

> > ∀ ∈

⎤ −

∞

=

−⎣ ⎦ � �

 (9) 
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And some other continuous differentiable filled functions have also been proposed [13-14, 24-25]. In 

[19], the authors proposed a parameter free filled function to overcome the disadvantage of tuning 

parameters.  

 

( )

( )

* * * 2

1 1
, 1 (F(x) F(x ))arctan( )

1, 0

1, 0

P x x sign x x

t
sign t

t

= − − −

≥⎧
= ⎨

− <⎩

� �

 (10) 

However, it is still liable to getting trapped in local minima because of the *( )arctan x x−� �  term. Also, 

the computation of * 2

1
x x−‖ ‖  is expensive as it needs n times of addition operation and n times of 

multiplication operation each time. 

From the above introduction, we can get the conclusion that the existing filled functions are either 

prone to ill conditioning or have parameters not easy to tune. Also, these filled functions have complex in 

formula expression and need considerable computation resources. So, design a filled function with 

relatively easier formula expression and without any adjusting parameter to make is necessary. Also, it is 

not easy to construct filled functions satisfying property (3) of the definition of the filled function 

because it is not clear what is point x in property (3) of the filled function definition (definition 2)? Is it 

any point or a fixed point? It is confusing and not clear, so how to construct filled function satisfying 

property (3) is difficult. So, in this paper, we modify the definition of the filled function to make it easier 

to design functions that helps the algorithm to find optimal solutions. And we designed a parameter free 

auxiliary function method based on the new definition to solve global optimization problems. 

Note that we call the new proposed function an basin escaping auxiliary function instead of filled 

function to make the distinguish between them.  

2.2 Elitism Based Evolutionary Algorithm 

EAs are seen as population based stochastic search algorithms inspired by the process of Biological 

evolution.  

Because of the stochastic characteristic, there is no guarantee that the new generation after the 

population selection, crossover and mutation will be better than their parents generation. As an 

operational characteristic of GAs, elitism provides a way to reduce genetic drift [46]. The main idea is 

that the best individual(s) will be selected in any case and will pass to the next generation. Elitism has 

been shown to improve the performance and convergence of the genetic algorithms [47]. Elitism based 

evolutionary algorithms is widely used [32-34, 42-44]. In literature [32], a genetic algorithm with elitism 

is proposed to solve the transit network design problem. Authors in [33] proposed a immune genetic 

algorithm with the elitist selection and elitist crossover operator. Authors in [34] proposed two Elitism-

Based Compact Genetic Algorithms to solve difficult optimization problems. The elitism mechanism is 

also adopted in multi objective optimization problems [42-44]. In this paper, we also use elitism 

mechanism and an elitism based crossover operator is designed to help the algorithm for optimization. 

3 The Basin Escaping Auxiliary Function and Its Properties 

The filled function method offers the insight of escaping from local minima which is the key problem of 

some optimization algorithms. It can help the algorithm gradually move from a local minimum to better 

ones using the following mechanism:  

(1) First, from a local minimum *

1
x  of the original function F(x) a filled function *

1
( , )P x x  is 

constructed at *

1
x .  

(2) Then a minimization process is executed on the filled function *

1
( , )P x x  to get its local minimum x' 

from an initial point 
1
y  near *

1
x .  

From property (1), we can see that *

1
( , )P x x  at 

1
y  has a descent direction and thus the minimization of 

*

1
( , )P x x  can be easily executed by any descent direction method such as the steepest descent method. 
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Furthermore, x' will not be in a basin higher (worse) than *

1
B  which is guaranteed by property (2).  

(3) Finally, by minimizing F(x) from the initial point x' we can get a better local minimum *

2
x  of F(x) 

by property (3).  

Repeat this process until no better minimum of F(x) can be found. 

Property (3) ensures that the filled function will enter the basin contains a better local minimum in 

theory, however, property (3) is not clear and confusing. Also, in practice with the limit of computation 

resources and the ability of the search method, this will not fulfill every time. That may be one of the 

reasons that the filled function method can’t get the global minima in a 100% success rate. 

To overcome the drawbacks of the definition of the filled function and make it easier to construct 

functions to assist the optimization algorithm, we use the evolutionary algorithm with uniformly 

distributed population and multiple elite mechanism to replace property (3) which has the similar 

functionality. We will call this kind of function basin escaping auxiliary function because it adopts the 

main concept of the filled function to escape local minima.  

Accordingly, we propose a new parameter free basin escaping auxiliary function (PF_AF briefly) as 

follows: 

 

* * *_ ( , ) ( )T T

k k k
PF AF x x A x F x A x= + −  (11) 

where 
1 2

( , , , )T
n

A A A A= �  is a column vector with the same dimension as x, and T
A  is the transpose of 

A.  

A is defined as follows: 

 

* *

* *

1 ( )[ ( ) ( )] 0

1 ( )[ ( ) ( )] 0

k

i i k

i
k

i i k
   

x x F x F x
A

x x F x F x   

⎧− − − ≥⎪
= ⎨

− − <⎪⎩
 (12) 

In the following, we will prove that the PF_AF proposed above has the following good properties. 

Theorem 1: Suppose *

k
x  is a local minimum of F(x) and *_ ( , )

k
PF AF x x  is a auxiliary function at *

k
x , 

then *

k
x  is a strictly local maximum of *_ ( , )

k
PF AF x x . 

Proof: Let *

k
B  be the basin of F(x) at *

k
x . For * *

,
k k

x B x x∀ ∈ ≠ , we need to prove that  

* * *_ ( , ) ( , )
k k k

PF AF x x PFF x x> , that is * * *_ ( , ) ( , ) 0
k k k

PF AF x x PFF x x− < .  

Since * * *_ ( , ) ( )
k k k

PF AF x x F x= ,  

and * * * * *_ ( , ) ( ) ( ) ( )T T T

k k k k k
PF AF x x A x F x A x F x A x x= + − = + − ,  

We only need to prove that *( ) 0T

k
A x x− < .  

Note that * *

1

( ) ( )
n

T T

k i i ki

i

A x x A x x

=

− = −∑ , and Since *

k
x  is a strictly local minimum of F(x), we have 

*( ) ( )
k

F x F x>  for any x in *

k
B  with *

k
x x≠ .  

From equation (12), we know that:  

When *

0
i ki
x x− < , we get 1

i
A = . In this case *( ) 0T

i i ki
A x x− < .  

When *

0
i ki
x x− > , we get 1

i
A = − . In this case *( ) 0T

i i ki
A x x− < .  

When *

0
i ki
x x− = , we get 1

i
A = − . In this case, *( ) 0T

i i ki
A x x− = .  

Thus each term *( ) 0T

i i ki
A x x− ≤  in * *

1

( ) ( )
n

T T

k i i ki

i

A x x A x x

=

− = −∑ .  

Note that *

k
x x≠ , we know that there exists at least one i such that *

0
i ki
x x− >  or *

0
i ki
x x− < .  

Thus there exists at least one i such that *( ) 0T

i i ki
A x x− < .  

Therefore * *

1

( ) ( ) 0
n

T T

k i i ki

i

A x x A x x

=

− = − <∑ .  
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That is *

k
x  is a strictly local maximum of *_ ( , )

k
PF AF x x . 

Theorem 2: Suppose *

k
x  is a local minimum of ( )F x , * *

1
{ | ( ) ( ), }

k k
x F x F x x xΩ = ∈Ω ≥ ≠ , then 

*_ ( , )
k

PF AF x x  has no stationary points or saddle points in 
1

Ω . 

Proof: there are two classes of points in 
1

Ω :  

Class 1: * *

1
{ | ( )[ ( ) ( )] 0, }

i ki k
x x x F x F x x− − = ∈Ω   

Class 2: * *

1
{ | ( )[ ( ) ( )] 0, }

i ki k
x x x F x F x x− − ≠ ∈Ω   

Obviously, *_ ( , )
k

PF AF x x  is not differentiable on the points in class 1. Except points in class 1, 

*_ ( , )
k

PF AF x x  is continuous differentiable, and *_ ( , ) 0
k

PF AF x x A∇ = ≠ . 

From the above property, we can see that the basin escaping auxiliary function has the main advantage 

of the filled function which can help the algorithm to escape local minima easily. Also, the new auxiliary 

function has no parameter to tune which overcome the disadvantage of the adjustment of parameters on 

different kind of problems which is not an easy task. In the following section, we propose an 

evolutionary algorithm based on the basin escaping auxiliary function to solve global optimization 

problem.  

4 The New Basin Escaping Auxiliary Function Algorithm 

In this section, we proposed an elitism-based evolutionary algorithm using the basin escaping auxiliary 

function. 

4.1 A New Elitism-based Crossover Operator 

Elitism selection is the mechanism to keep the best individual(s) in the current generation to the next 

generation in order to ensure the solution quality will not degrade. In this paper, we adopt the idea of 

elitism, and propose a elitism-based crossover operator. The main idea is: from the best individual of one 

generation may not generate the best solution in the next generation because it may be a local minimum. 

So we keep multiple best individuals in the hope that they will converge to different basins containing 

better minima so as to increase the chance of getting better solution in the next generation. 

To further ensure the possibility of getting better solution when the algorithm stagnate with the 

improvement less than a pre-set threshold, we generate the next generation using the following way:  

First, we set a neighborhood in the right hand (with higher value) of the elite solution:  

 ( ) [ ( ) ( )]/(n*10)u elite i ubound i lbound i= + −  (13) 

where 1,2,...,i n=  is the dimension of the problem, ubound  and lbound  is the upper and lower 

boundary of the problem respectively. 

Then we generate a vector for crossover:  

 ( _ )* rand(n,1)vector u best x= −  (14) 

The new individual will be generated using the following equation:  

 

1:

( ) ;

for j popsize

newIndividule j elite vector

end

=

= +  (15) 

If the solution is still not improved, then we will set a neighborhood in the left hand (with smaller 

value) of the elite solution in the similar way: 
 

 ( ) [ ( ) lbound(i)]/(n*10)l elite i ubound i= − −  (16) 

where 1,2,...,i n=  is the dimension of the problem, ubound  and lbound  is the upper and lower 

boundary of the problem respectively. 
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Then we generate a vector for crossover: 

 ( _ )* rand(n,1)vector best x l= −  (17) 

Similarly, the new individual will be generate using the equation (9).  

Then we choose the best individual from the crossover operator as the initial point for the basin 

escaping auxiliary function method in the next subsection. 

4.2 The Basin Escaping Auxiliary Function Algorithm 

Based on the above discussion, a new basin escaping auxiliary function algorithm is proposed as follows: 

Step 1. (initialization). Randomly and uniformly distribute NP points in Ω , set 1.0 10e= −ε  as the 

stopping criteria. We use best_x and best_val to record the best point and its function value we found so 

far. Initially we set best_val to infinity and best_x to null. 

Step 2. Evaluate the function values of the initial points and put the best m points that have the smallest 

function values into a set S. 

For example when m=3, suppose 
0 1 2

{ , , }S x x x=  in which 
0
x  is the best point and followed by the 

second-best 
1
x  and third-best 

2
x .  

For small scale problems ( 10)n < , we recommend 1m = , and for problems with dimension 10n > , 

we recommend 3m = .  

Step 3. Minimize ( )F x  starting from the points in S respectively, we get the corresponding local minima 

of ( )F x  and their function values, we choose the point with the best(lowest) function value as *

k
x , Then 

go to step 6.  

Step 4. Construct the basin escaping auxiliary function at *

k
x   

 

* * *_ ( , ) ( )T T

K k k
PF AF x x A x F x A x= + −  

Where A is a coefficient column vector as shown above in equation (12).  

Step 5. Make a tiny disturbance on *
k
x  and then minimize *_ ( , )

k
PF AF x x  using the disturbed point. 

We put m best points of *_ ( , )
k

PF AF x x  into set S. Then go to step 3.  

Step 6. (termination). If *( ) _
k

F x best val− < −ε  then update best_x to *

k
x  and best_val to *( )

k
F x . Go to 

step 4. Otherwise set *

_x best x=  as the global minimum and the algorithm will stop. 

Note that we always record the best point and its function value we have found so far in each cycle and 

will update them if a better point appears, for example we use best_x and best_val to record them.  

The reason we use uniformly distributed points other than randomly given points in some literature is 

that, for an unknown problem, it has more opportunity to get closer to the local or even global minimum 

and have a better diversity of points which can help the algorithm to obtain good results. For detailed 

information about uniform design, the readers can refer to [12, 23]. 

5 Numerical Experiment 

In this section, the proposed algorithm is implemented in Matlab R2013b and is tested on some widely 

used benchmark problems. The result is compared with that of literature [13, 28]. The reason why the 

new basin escaping auxiliary function can save computational resources is analyzed. 

5.1 The Benchmark Functions 

The benchmark functions taken from literature [13, 28] are listed below: 

Two-dimensional function. 

 

2 2

2 2 1 2 1

1 2

min ( ) [1 2 sin(4 ) ] [ 0.5sin(2 )]

. . 0 10, 10 0

F x x c x x x x

s t x x

π π= − + − + −

≤ ≤ − ≤ ≤

 (18) 
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where c=0.2, 0.5 and 0.05. The global minimum value is F(x*)=0 for all c.  

Three-hump back camel function. 

 

2 4 6 2

1 1 1 1 2 2

1 2

1
min F(x) 2 1.05

6

. . 3 3, 3 3

x x x x x x

s t x x

= − + − +

− ≤ ≤ − ≤ ≤

 (19) 

The global minimum solution is x*= (0, 0)T and F(x*)=0. 

Six-hump back camel function. 

 

2 4 6 2 4

1 1 1 1 2 2

1 2

2

1
min ( 4 2.

. . 3 3,

1

3

3

3

4 4

s

F x x x x x x

t x x

x

− ≤

= − + +

− ≤

−

≤

+

≤

x)
 (20) 

The global minimum solution is x*=(-0.0898, -0.7127)T or x*=(0.0898, 0.7127)T and F(x*)=-1.0316.  

Treccani function. 

 

4 3 2 2

1 1 1 2

1 2

min ( ) 4 4

. . 3 3, 3 3

F x x x x x

s t x x

= + + +

− ≤ ≤ − ≤ ≤

 (21) 

The global minimum solution is x*=(-2, 0)T and F(x*)=0. 

Goldstein-Price function. 

 

( ) ( )

( ) ( )

2 2 2

1 2 1 1 2 1 2 2

2 2 2

1 2 1 1 2 1 2

2

2

1

min ( ) 1 1 19 14 3 14 6 3
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≤

+  (22) 

The global minimum solutions are x*=(0, -1)T and F(x*)=3. 

Shubert function. 

 

[ ] [ ]
5 5

1 2

1 1

1 2
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i i
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≤ ≤ ≤ ≤

∑ ∑
 (23) 

This function has 760 minima in total. The global minimum value is F(x*)=-186.7309. The illustration 

of this function for n=2 is shown in Fig. 3. 

Shekel function. 

 
( )

1
5

2
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min ( )
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∑ ∑

�

 (24) 

Where c= (0.1, 0.2, 0.3, 0.4, 0.5) and 

 a=

4.0 1.0 8.0 6.0 3.0

4.0 1.0 8.0 6.0 7.0

4.0 1.0 8.0 6.0 3.0

4.0 1.0 8.0 6.0 7.0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

The global minimum solutions are x* = (4, 4, 4, 4) T, and F(x*) is -10.1532. 
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Fig. 3. Shubert function 

n-dimensional function. 

 

2 2

1
min ( ) [10sin x g(x) (x x) ]

s.t . 10 10, 1,2,... .

n

i

F x
n

x i n

π

π= + + −
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 (25) 

Where 
1

2 2

1

1

( ) [(x 1) (1 10sin x )]
n

i i

i

g x π

−

+

=

= − +∑  

The global minimum solution is x*=(1, 1, …1)T for all n. The illustration of the function for n=2 is 

shown in Fig. 4. 

 

Fig. 4. Sine square function 

5.2 Experimental Results 

The proposed basin escaping auxiliary function method is tested on the above 8 problems, and the 

performance is compared with the two algorithms in literature [13, 28]. The results are listed in Table 1 

to Table 11. In these tables, the following symbols are used: 

K: The iteration number in finding the kth local minimum of the objective function. 
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*

k
x : The kth local minimum of the objective function. 

*

k
f : The function value at *

k
x  

PF_AF: The proposed algorithm in this paper. 

CDFA: The algorithm proposed in [13] 

NFA: The algorithm proposed in [28] 

From Table 1 to Table 11, we can see that all the three algorithms can find the global optimum 

solutions for all the 8 test problems but with different iteration numbers. The proposed PF_AF algorithm 

outperforms both CDFA and NFA in problem 1 with c=0.2 and 0.05, problem 2, problem 4, problem 5 

and problem 6. Note that for problem 4, PF_AF uses 2 iterations to find one optimum solution which is 

the same as the iteration of CDFA and NFA, But PF_AF continues to find another different optimum 

solution * ( 2,0)Tx = − . So we can say that PF_AF performs better than CDFA and NFA on problem 4. For 

problem 3 and problem 7, PF_AF performed equally well as CDFA and NFA. For problem 1 with c=0.5, 

PF_AF is as good as CDFA but better than NFA. For problem 8 with n=7 and n=10, PF_AF is as good as 

NFA but takes one more iteration to find the global optimum solution than CDFA. So, we can get a 

conclusion that the proposed PF_AF algorithm is more efficient than CDFA in [13] and NFA in [28]. The 

reason partially lies in that, the auxiliary function designed in the proposed PF_AF algorithm is simpler 

and saved some computational resources. The complexity of the auxiliary function is further animalized 

in section 5.3. 

Table 1. Results of benchmark function 1 with c=0.2. 

 PF_AF CDFA NFA 

k
*

k
x  

*

k
f  

*

k
x  

*

k
f  

*

k
x  

*

k
f  

1 (2.1086,-0.1611)T 1.1603 (5.7221,-1.8806)T 2.5070 (5.7221,-1.8806)T 2.5070 

2 (1.8784,-0.3459)T 2.3602e-14 (3.7387,-1.2649)T 0.6165 (4.7387,-1.7417)T 1.6212 

3   (1.5909,-0.2703)T 2.8126e-9 (4.7096,-1.3985)T 1.3566 

4     (3.7387,-1.2649)T 0.61647 

5     (2.7380,-0.78836)T 0.088673 

6     (1.8784,-0.34585)T 0 

Table 2. Results of benchmark function 1 with c=0.5 

 PF_AF CDFA NFA 

k  *

k
x  

*

k
f  

*

k
x  

*

k
f  

*

k
x  

*

k
f  

1 (1.4527,-0.2833)T 0.2851 (0.0420,-0.0948)T 0.5175 (0.042023,-0.094772)T 0.51745 

2 (1.8974,-0.3005)T 4.8219e-15 (1.0000,0)T 5.7949e-016 (0.99991e-4,-1.2524e-4)T 2.2389e-7

3     (1.0000e-14,-2.2205e-14)T 0 

Table 3. Results of benchmark function 1 with c=0.05 

 PF_AF CDFA NFA 

k  *

k
x  

*

k
f  

*

k
x  

*

k
f  

*

k
x  

*

k
f  

1 (4.7978,-1.2792)T 2.1343 (8.7299,-3.2965)T 9.0733 (8.7299,-3.2965)T 9.0733 

2 (4.7129,-1.4891)T 1.5351 (7.7280,-0.4022)T 6.5031 (7.7280,-2.8347)T 6.5031 

3 (1.8513,-0.4021)T 1.3220e-14 (1.8513,-0.4021)T 4.3885e-011 (6.7248,-2.3724)T 4.3943 

4     (5.7198,-1.9162)T 2.7434 

5     (4.7129,-1.4891)T 1.5351 

6     (3.7305,-1.2306)T 0.61844 

7     (2.7300,-0.79341)T 0.10216 

8     (1.8513,-0.40209)T 0 
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Table 4. Results of benchmark function 2 

 PF_AF CDFA NFA 

k  *

k
x  

*

k
f  

*

k
x  

*

k
f  

*

k
x  

*

k
f  

1 (-0.3922,-0.1359)T 0.2486 (-1.7476,-0.8738)T 0.2986 (-1.7476,-0.87378)T 0.29864 

2 (0.1299e-6,0.1336e-6)T 3.4245e-14 (-0.0000,-0.0000)T 4.0157e-010 (0,0)T 0 

Table 5. Results of benchmark function 3 

 PF_AF CDFA  NFA 

k  *

k
x  

*

k
f  

*

k
x  

*

k
f  

*

k
x  

*

k
f  

1 (-0.6700,-0.7126)T -0.0747 (1.6071,-0.5687)T 2.1043 (1.6071,-0.56865)T 2.1043 

2 (-0.0898,-0.7127)T -1.0316 (-0.0898,-0.7127)T
-1.0316 (-0.089842,-0.71266)T 

-1.0316 

Table 6 Results of benchmark function 4 

 PF_AF CDFA NFA 

k  
*

k
x

 
*

k
f

 
*

k
x

 
*

k
f

 
*

k
x

 
*

k
f

 
1 (0.0051,-0.0791)T 0.0064 (-1.0000,0)T 1.0000 (-1.0000,0)T 1.0000 

2 (0.7307e-8,-0.7343e-8)T 2.6748e-16 (-0.0000,-0.0000)T 2.4048e-017 (0,0)T 0 

3 (0.0109e-7,-0.1147e-7)T 1.3639e-16     

4 (-2.0000,0.0000)T 1.1740e-18     

Table 7. Results of benchmark function 5 

 PF_AF CDFA NFA 

k
*

k
x

 
*

k
f

 
*

k
x

 
*

k
f

 
*

k
x

 
*

k
f

 
1 (0.1083,-0.9229)T 6.3570 (-0.6000,-0.4000)T 30.000 (-0.60000,-0.40000)T 30.000 

2 (0.0000,-1.0000)T 3.0000 (0.0000,-1.0000)T 3.0000 (0,-1.0000)T 3.0000 

Table 8. Results of benchmark function 6 

 PF_AF CDFA NFA 

k  *

k
x  

*

k
f  

*

k
x  

*

k
f  

*

k
x  

*

k
f  

1 (-0.8940,-1.4518)T -166.0075 (2.0467,2.0467)T 0 (1.0865,1.0865)T 2.8841e-17 

2 (-0.8003,-1.4251)T -186.7309 (3.2800,4.8581)T -46.511 (1.3200e-12,1.8703e-12)T -13.052 

3   (4.2760,4.8581)T -79.411 (1.3200,4.8581)T -37.681 

4   (5.4892,4.8581)T -186.739 (3.2800,4.8581)T -46.511 

5     (4.2760,4.8581)T -79.411 

6     (5.4892,4.8581)T -186.73 

Table 9. Results of benchmark function 7 

 PF_AF CDFA NFA 

k
*

k
x  

*

k
f  

*

k
x  

*

k
f  

*

k
x  

*

k
f  

1 
(3.5672,4.1449 

3.2483,3.9304)T 
-1.2859 

(1.0001,.0002 

1.0001,1.0002)T 
-5.0552 

(1.0001,.0002 

1.0001,1.0002)T 
-5.0552 

2 
(4.0000,4.0001 

4.0000,4.0001)T 
-10.1532 

(4.0000,4.0000 

4.0000,4.0000)T 
-10.1529 

(4.0000,4.0001 

4.0000,.0001)T 
-10.153 
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Table 10. Results of benchmark function 8 with n=7 

 PF_AF CDFA NFA 

k
*

k
x  

*

k
f  

*

k
x  

*

k
f  

*

k
x  

*

k
f  

1 

(6.0000,1.0060, 

0.7933,-1.9449, 

-1.5355,2.0160, 

8.0848)T 

79.8858 

(1.0000,1.0000, 

1.0000,1.0000, 

1.0000,1.0000, 

1.0000)T 

2.3538e-013 

(1.9899,1.9897, 

1.9896,1.9896, 

1.9896,1.9896, 

1.9898)T 

-3.1095 

2 

(1.0000,1.0000, 

1.0000,1.0000, 

1.0000,1.0000, 

1.0000)T 

3.9121e-13   

(1.0000,1.0000, 

1.0000,1.0000, 

1.0000,1.0000, 

1.0000)T 

0 

Table 11. Results of benchmark function 8 with n=10 

 PF_AF CDFA NFA 

k  *

k
x  

*

k
f  

*

k
x  

*

k
f  

*

k
x  

*

k
f  

1 

(-8.5205,2.9287 

3.5550,-3.0893 

2.0085,1.5289 

-2.9035,3.2940 

-3.4533,-4.4657)T 

200.9943 

(0.0101,0.0103,

0.0103,0.0104 

0.0103,0.0102, 

1.0000,6.0000 

6.0000,6.0000)T

2.6653 

(5.9490,5.9979, 

5.9980,5.9980 

5.9980,5.9980, 

5.9980,5.9980 

5.9980,5.9980)T 

78.432 

2 

(-6.9159,9.9985 

7.9991,0.0002 

0.0110,3.9690 

0.0019,-6.9156 

0.0002,-0.9799)T 

85.9293 

(1.1615,0.1651,

0.4418,0.9258 

0.9638,-0.4809,

0.9926,6.0000 

6.0000,6.0000)T

2.4443 

(-1.9696,0.9943, 

5.9980,5.9980 

5.9980,5.9980, 

5.9980,5.9980 

5.9980,5.9980)T 

73.450 

3 

(1.0145,-0.7174 

0.9612,1.5399 

1.1809,0.9754 

1.0759,1.1073 

1.2214,8.8954)T 

21.0815 

(1.9900,0.0000,

1.0000,1.0000 

1.0000,1.0000, 

1.0000,6.0000 

6.0000,6.0000)T

0.4443 

(-0.97956,5.9871,

5.9980,5.9980, 

5.9980,5.9980, 

5.9980,5.9980 

5.9980,5.9980)T 

71.884 

4 

(0.9985,0.6487 

1.9483,1.9937 

-1.9745,0.9985 

1.1498,-0.8454 

1.0115,2.8191)T 

5.5888 

1.0000,1.0000, 

1.0000,1.0000 

1.0000,1.0000, 

1.0000,1.0000 

1.0000,1.0000 

0 

(0.012709,5.9476,

5.9979,5.9980 

5.9980,5.9980, 

5.9980,5.9980 

5.9980,5.9980)T 

70.890 

5 

(1.0000,1.0000, 

1.0000,1.0000, 

1.0000,1.0000, 

1.0000,1.0000, 

1.0000,1.0000)T 

3.7571e-13   

(1.0000,1.0000, 

1.0000,1.0000 

1.0000,1.0000, 

1.0000,1.0000 

1.0000,1.0000)T 

0 

 

Note that there is a slight difference between PF_AF and the other two algorithms: CDFA and NFA. 

The result of CDFA and NFA is based on a given initial point as shown in Table 12, while PF_AF uses 

the best point out of uniformly random distributed points which is more flexible. To compare with CDFA 

and NFA, PF_AF use m=1 in the algorithm which means only one point is calculated in the set S each 

time. But setting a larger m value can get better performance for some problems. 

Table 12. The initial points used in CDFA and NFA  

Problem number x0 Problem number x0 

problem 1 with c=0.2 x0=(6,-2)T problem 1 with c=0.5 x0=(0, 0)T 

problem 1 with c=0.05 x0=(10, -10)T problem 2 x0=(-2, -1)T 

problem 3 x0=(-2, 1)T problem 4 x0=(-1, 0)T 

problem 5 x0=(-1, -1)T problem 6 x0=(1, 1)T 

problem 7 x0=(1, 1, 1, 1)T problem 8 with n=7 x0=(2, 2, 2, 2, 2, 2, 2)T 

problem 8 with n=10 x0=(6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6)T 
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5.3 The Complexity Analysis of the Basin Escaping Auxiliary Function 

In this subsection, we analyze and explain why PF_AF is easier and less computationally expensive than 

NFA and CDFA. As is well known, in computers multiplication operation is implemented by repeatedly 

adding and shifting bits. So the cost of multiplication operation is much higher than addition. Take 

Pentium for example, an addition operation takes one clock cycle while a multiplication operation takes 

10 clock cycles. 

Table 13 shows the three filled functions’ number of operations in one function evaluation. We can see 

that for one function evaluation, PF_AF needs 3+2n operations in total which is less than NFA’s 9+2n 

and CDFA’s 8+2n. Moreover, PF_AF does not need any multiplication operation while both NFA and 

CDFA needs 3+n times for each function evaluation. For one function evaluation, the differences among 

the three function is not significant at all. However, Note that whenever a local minimum x*k of the 

objective function is found, the filled function will be constructed and then many function evaluations 

(usually more than 103) of the filled function will be calculated to find the local minimum in this 

iteration. The accumulation of many iterations will greatly enlarge the differences. 

Note that the calculation of * 2

1
x x−� � needs n times of addition and n times of multiplication. The 

opposite operation is not counted. And for piecewise function, we count the worst situation. 

Table 13. number of operations in one function evaluation 

function + or - × ÷ total 

NFA 6+n 3+n 0 9+2n 

CDFA 3+n 3+n 2 8+2n 

PF_AF 3+2n 0 0 3+2n 

 

The proposed algorithm is run on a desktop computer with Intel (R) Core (TM) i7-3770 CPU 

@3.4GHZ. Figure 5 shows the convergence curve on function 8 with dimension 10. The x axis is the 

time used in seconds and the y axis is the function value. From this figure, we can see that the proposed 

algorithm takes very little time to get the global optimal solution. 
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Fig. 5. Convergence curve on function 8 

6 Conclusions 

In this paper, a basin escaping auxiliary function method is proposed to solve multimodal global 

optimization problems. We adopt the idea of the filled function method of moving from local minima to 

better ones and proposed a basin escaping auxiliary function that overcome the disadvantage of the filled 

function: not easy to construct, with relatively complex forms and sensitive to parameters which are not 

so easy to tune. The new basin escaping auxiliary function is parameter free and with quite simple 

formula expression which can result in less computation and hence can improve the efficiency. The 

reason why it is less computational expensive is analyzed. Also, the new auxiliary function does not 
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contain exponential or logistic forms which are prone to ill-conditioning. Based on it, a new evolutionary 

algorithm with a new crossover operator is proposed. Numerical experiments are carried out on some 

widely used benchmark functions. The results show that the new proposed algorithm is effective and can 

save time because of its simplicity. 

The proposed algorithm is designed for differentiable functions and it is only effective for small scale 

(low dimension) problems as other filled function algorithm. So our future work is to extend it to larger 

scale problems. 
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