
Journal of Computers Vol. 29 No. 5, 2018, pp. 160-176

doi:10.3966/199115992018102905013

160

A Basin Escaping Auxiliary Function Method for Global

Optimization

Haiyan Liu1, Yuping Wang1* , Liwen Liu1

1 School of Computer Science and Technology, Xidian University,

South Taibai road, Xi’an, China

hyliu83@126.com; ywang@xidian.edu.cn; 378020179@qq.com

Received 7 June 2017; Revised 7 November 2017; Accepted 7 December 2017

Abstract. In this paper, a basin escaping auxiliary function method is proposed. This method

adopts the idea of the filled function to move from a local minimum to better ones successively.

The main advantages of the new proposed basin escaping auxiliary function are: (1) it is easy to

construct, (2) it has no parameters to adjust, and (3) the formula expression of the new auxiliary

function is quite simple which can result in less computation and hence can improve the

efficiency. The properties of the auxiliary function is studied and discussed theoretically. And an

evolutionary algorithm with a new crossover operator was proposed based on the basin escaping

auxiliary function. The experiments are conducted on 8 often used benchmarks in the field and

the results show that the proposed algorithm is more efficient.

Keywords: auxiliary function, basin escaping, global optimization, local minima escaping

1 Introduction

Many problems in science, economics and engineering involve global optimization [1, 2, 7]. Scientists

have already proposed many useful ways to solve the global optimization problems. The classical

gradient descent methods, Newton and quasi-Newton method are very efficient for problems with known

or easy to get gradients. The population based evolutionary algorithm (EA) is another kind of

optimization method inspired by the idea of Darwin’s theory of evolution. In EA algorithms, points in the

search space are called individuals or solutions and multiple individuals form the population which

provide a parallel searching mechanism.

EA has developed very fast and a large number of different variants is proposed such as Particle

Swarm Optimization (PSO) [10], Artificial Bee Colony Algorithm (ABC) [8] and Differential Evolution

(DE) [21]. EAs are efficient and helpful especially when little knowledge of the optimization problem is

known since they use the function value or transformed function value as the fitness instead of gradients.

Also, the randomness mechanism in EA can help the algorithm to escape from local optima. However,

EA may suffer from the premature convergence due to the lack of diversity of the population and may

have slow convergence speed. Many efforts have been devoted to improve the efficiency of EA in variety

ways such as using better initialization technique [9, 11, 29], auto enhancing the population diversity [26],

making the evolutionary operator self-adaptive [20, 27], using elitism strategy [32-34].

Other efficient way to escape local optima is the filled function method first proposed by Ge [3-5].

Because of the prevalence of local minima, algorithms may often be trapped in local minima, or may

enter other local minima worse than the former ones. So, a major problem is how to escape from local

minima to find better ones successively till the global minima is found. The filled function method is an

effective way to tackle this kind of problem.

Consider the following global optimization problem:

* Corresponding Author

Journal of Computers Vol. 29, No. 5, 2018

161

()

. . n

MinF x

s t x R∈

 (1)

where () : Rn

F x R→ is a continuously differentiable function.

In practice, it is often assumed that ()F x is coercive, that is:

 ()F x →+∞ when x →+∞� �

So that all minima are in a closed bounded box n

RΩ⊂ and there is only a finite number of minima in

Ω . Usually, Ω is known or can be estimated before the optimization. So the above optimization problem

is equivalent to the following one:

()

. . [,] { | , , }n

MinF x

s t x l u x l x u l u R∈Ω = = ≤ ≤ ∈
 (2)

We will consider problem (2) in this paper and we use the following symbols for convenience:

n : The dimension of the problem.
*

x : The global optimal solution of the problem.

k : The iteration counter.
*

k
x : The local minimum of the problem in the kth iteration.

*

ki
x : The ith element of *

k
x where i=1,2, � n.

*

k
B : The basins of the objective function at an isolated local minimum *

k
x .

()F x : The objective function.

The remainder of this article is organized as follows: Section 2 gives a brief overview of related work.

Section 3 presents the basin escaping auxiliary function method and its properties. Based on it, a new

basin escaping auxiliary function algorithm is proposed in section 4. Numerical experiments are carried

out in section 5. Section 6 is the conclusions.

2 Related Work

In this section, we give an overview of the related work manly about the auxiliary function method and

the elitism based evolutionary algorithm.

2.1 Auxiliary Function Method

Auxiliary function method is widely used in many field and in various ways. Some authors define

functions for the fitness evaluation instead of the original function in evolutionary algorithms in order to

make the algorithm more efficient [35]. More information about the transformed fitness functions for EA

can be found in the survey paper [36]. Authors in [37-38] used transformed function in to help the

algorithm to locate the global minimum potential energy of a Lennerd Joins cluster easily. Another two

widely used auxiliary function method is the smooth function method and the filled function method.

The smoothing function method. The smoothing function method is first proposed by Wei and Wang

[39] as follows:

� � �{ } �

1
(,) () 1 () () () ()

2

1 0
()

1 0

F x x f x sign f x f x f x f x

if y
sign y

if y

⎡ ⎤ ⎡ ⎤= + − − • −⎣ ⎦ ⎣ ⎦

− <⎧
= ⎨

≥⎩

 (3)

where (x)f is the objective function to be optimized and �

x is the current best point obtained by the

algorithm. The smoothing function has two good properties:

(1) �(,)F x x will keep (x)f unchanged at any point x better than �x , i.e., for x D∀ ∈ , if �(x) ()f f x< ,

A Basin Escaping Auxiliary Function Method for Global Optimization

162

then �(,) ()F x x f x= .

(2) �(,)F x x will flatten the landscape at any point no better than �x , i.e., for x D∀ ∈ , if �(x) ()f f x≥ ,

then � �(,) ()F x x f x= .

The main idea of the smoothing function is to smooth the landscape of the objective function, that is,

to reduce the number of local minima that are definitely won’t be the global minima. Fig. 1 and Fig. 2

from [41] show the effect to function landscape before and after the use of smoothing filled function.

Fig. 1. The objective function to be optimized

Fig. 2. The effect of the smoothing function

The smoothing function method is efficient in finding the global optimal solution by means of

reducing the number of local minima. However, from Fig. 2 we can see that there are large flat areas that

the gradient keeps unchanged in these areas. Gradient based algorithms may fail in such area. Authors in

[40] proposed a spherical search method in which the searching radius is adjust to make attempt to walk

out of the flat area. In [41], the authors use uniform design method to distribute points in these flat areas

in order to get out of the flat areas.

The filled function method. Filled function method is another kind of auxiliary function aimed at

escaping local minima successively to get the global optimal solutions. The definition of a filled function

and the related concepts are first proposed by Ge [3] as follows:

Definition 1: The basin *

k
B of F(x) at an isolated minimum *

k
x defined in [3] is a connected domain

which contains *

k
x , and in this domain the steepest descent trajectory of F(x) will converge to *

k
x by

starting from any initial point.

A basin *

1
B at *

1
x is lower (or higher) than basin *

2
B at *

2
x iff:

* *

1 2
() (or)F(x)F x ≤ > (4)

The definition of a filled function is first proposed by Ge [3] as follows:

Journal of Computers Vol. 29, No. 5, 2018

163

Definition 2: A function *

1
(,)P x x is called a filled function of F(x) at a local minimum *

1
x if it satisfies

the following properties:

(1) *

1
x is a strictly local maximum of *

1
(,)P x x , and the whole basin *

1
B of F(x) becomes a part of a hill

of *

1
(,)P x x .

(2) *

1
(,)P x x has no minima or stable points in any basin of F(x) higher than *

1
B .

(3) If F(x) has a lower basin than *

1
B , then there is a point x' in such a basin that minimizes *

1
(,)P x x

on the line through x and *

1
x .

From property (1) we can see that it is easy to escape from the local minimum *

1
x by minimizing the

filled function *

1
(,)P x x . property (2) ensures the filled function will not find a worse local minimum by

minimizing the filled function *

1
(,)P x x , and property (3) means that if a better local minimum than *

1
x

exists, the filled function is able to enter a lower basin of F(x) in theory, thus it is possible to get a better

local minimum by minimizing the filled function *

1
(,)P x x along a line from x to *

1
x .

The first filled function method proposed by Ge [3] is:

2
*

1

2

1
(, ,) ()

()
P x r e

x x
xp

r F x
ρ

ρ
=

+

−

−

� �
 (5)

Where r and ρ are two parameters need to be carefully chosen and adjusted to make (, ,)P x r ρ satisfy

the above mentioned three properties of the filled function. Another disadvantage is that (, ,)P x r ρ will

approach to zero very fast and its values change slowly when * 2

1
x x−‖ ‖ becomes larger and larger

because of the term * 2 2

1
[(/)]exp x x ρ− −‖ ‖ . So, when the value of (, ,)P x r ρ changes too slowly to

distinguish, worse local minima(such as pseudo-minima or saddle points) could be located. To reduce

the possibility of locating worse local minimum, the author use *

1x x−� � instead of * 2
1x x−� � as shown

in equation (6)

*

1

2

1
(, ,) ()

()
P x r ex

x

x
p

x

r F
ρ

ρ
=

−

−

+

� ��
 (6)

Afterwards, many other filled function had been proposed to overcome these drawbacks [6, 13-18, 22,

24-25, 28, 30-31]. In [16] a filled function with only one parameter is proposed.

* 2

1*

1

1
()

ln(1 () ())
H x a x x

F x F x
= − −

+ −

� � (7)

However, the logistic operation will still make the filled function prone to ill conditioning. Liu [17] a

filled function without exponential or logistic forms to eliminate this effect.

* 2

* 1/

1

1
(,) 1

() () m

M x a a x x
F x F x

= − −

−

� � (8)

Then in [15] a class of continuously differentiable filled function was first proposed:

() () () ()1 1

0

(0) 0 (0) 1/ 0

'() 0 '() 0, [0,)

() '()
lim 0

'() ()

,

t

a p

u a

u t

C X a u f X f X w X X

t t

u t t

u t t

ω

ω

ω

ω→

= − ⎡

= = >

> > ∀ ∈

⎤ −

∞

=

−⎣ ⎦ � �

 (9)

A Basin Escaping Auxiliary Function Method for Global Optimization

164

And some other continuous differentiable filled functions have also been proposed [13-14, 24-25]. In

[19], the authors proposed a parameter free filled function to overcome the disadvantage of tuning

parameters.

()

()

* * * 2

1 1
, 1 (F(x) F(x))arctan()

1, 0

1, 0

P x x sign x x

t
sign t

t

= − − −

≥⎧
= ⎨

− <⎩

� �

 (10)

However, it is still liable to getting trapped in local minima because of the *()arctan x x−� � term. Also,

the computation of * 2

1
x x−‖ ‖ is expensive as it needs n times of addition operation and n times of

multiplication operation each time.

From the above introduction, we can get the conclusion that the existing filled functions are either

prone to ill conditioning or have parameters not easy to tune. Also, these filled functions have complex in

formula expression and need considerable computation resources. So, design a filled function with

relatively easier formula expression and without any adjusting parameter to make is necessary. Also, it is

not easy to construct filled functions satisfying property (3) of the definition of the filled function

because it is not clear what is point x in property (3) of the filled function definition (definition 2)? Is it

any point or a fixed point? It is confusing and not clear, so how to construct filled function satisfying

property (3) is difficult. So, in this paper, we modify the definition of the filled function to make it easier

to design functions that helps the algorithm to find optimal solutions. And we designed a parameter free

auxiliary function method based on the new definition to solve global optimization problems.

Note that we call the new proposed function an basin escaping auxiliary function instead of filled

function to make the distinguish between them.

2.2 Elitism Based Evolutionary Algorithm

EAs are seen as population based stochastic search algorithms inspired by the process of Biological

evolution.

Because of the stochastic characteristic, there is no guarantee that the new generation after the

population selection, crossover and mutation will be better than their parents generation. As an

operational characteristic of GAs, elitism provides a way to reduce genetic drift [46]. The main idea is

that the best individual(s) will be selected in any case and will pass to the next generation. Elitism has

been shown to improve the performance and convergence of the genetic algorithms [47]. Elitism based

evolutionary algorithms is widely used [32-34, 42-44]. In literature [32], a genetic algorithm with elitism

is proposed to solve the transit network design problem. Authors in [33] proposed a immune genetic

algorithm with the elitist selection and elitist crossover operator. Authors in [34] proposed two Elitism-

Based Compact Genetic Algorithms to solve difficult optimization problems. The elitism mechanism is

also adopted in multi objective optimization problems [42-44]. In this paper, we also use elitism

mechanism and an elitism based crossover operator is designed to help the algorithm for optimization.

3 The Basin Escaping Auxiliary Function and Its Properties

The filled function method offers the insight of escaping from local minima which is the key problem of

some optimization algorithms. It can help the algorithm gradually move from a local minimum to better

ones using the following mechanism:

(1) First, from a local minimum *

1
x of the original function F(x) a filled function *

1
(,)P x x is

constructed at *

1
x .

(2) Then a minimization process is executed on the filled function *

1
(,)P x x to get its local minimum x'

from an initial point
1
y near *

1
x .

From property (1), we can see that *

1
(,)P x x at

1
y has a descent direction and thus the minimization of

*

1
(,)P x x can be easily executed by any descent direction method such as the steepest descent method.

Journal of Computers Vol. 29, No. 5, 2018

165

Furthermore, x' will not be in a basin higher (worse) than *

1
B which is guaranteed by property (2).

(3) Finally, by minimizing F(x) from the initial point x' we can get a better local minimum *

2
x of F(x)

by property (3).

Repeat this process until no better minimum of F(x) can be found.

Property (3) ensures that the filled function will enter the basin contains a better local minimum in

theory, however, property (3) is not clear and confusing. Also, in practice with the limit of computation

resources and the ability of the search method, this will not fulfill every time. That may be one of the

reasons that the filled function method can’t get the global minima in a 100% success rate.

To overcome the drawbacks of the definition of the filled function and make it easier to construct

functions to assist the optimization algorithm, we use the evolutionary algorithm with uniformly

distributed population and multiple elite mechanism to replace property (3) which has the similar

functionality. We will call this kind of function basin escaping auxiliary function because it adopts the

main concept of the filled function to escape local minima.

Accordingly, we propose a new parameter free basin escaping auxiliary function (PF_AF briefly) as

follows:

* * *_ (,) ()T T

k k k
PF AF x x A x F x A x= + − (11)

where
1 2

(, , ,)T
n

A A A A= � is a column vector with the same dimension as x, and T
A is the transpose of

A.

A is defined as follows:

* *

* *

1 ()[() ()] 0

1 ()[() ()] 0

k

i i k

i
k

i i k

x x F x F x
A

x x F x F x

⎧− − − ≥⎪
= ⎨

− − <⎪⎩
 (12)

In the following, we will prove that the PF_AF proposed above has the following good properties.

Theorem 1: Suppose *

k
x is a local minimum of F(x) and *_ (,)

k
PF AF x x is a auxiliary function at *

k
x ,

then *

k
x is a strictly local maximum of *_ (,)

k
PF AF x x .

Proof: Let *

k
B be the basin of F(x) at *

k
x . For * *

,
k k

x B x x∀ ∈ ≠ , we need to prove that

* * *_ (,) (,)
k k k

PF AF x x PFF x x> , that is * * *_ (,) (,) 0
k k k

PF AF x x PFF x x− < .

Since * * *_ (,) ()
k k k

PF AF x x F x= ,

and * * * * *_ (,) () () ()T T T

k k k k k
PF AF x x A x F x A x F x A x x= + − = + − ,

We only need to prove that *() 0T

k
A x x− < .

Note that * *

1

() ()
n

T T

k i i ki

i

A x x A x x

=

− = −∑ , and Since *

k
x is a strictly local minimum of F(x), we have

*() ()
k

F x F x> for any x in *

k
B with *

k
x x≠ .

From equation (12), we know that:

When *

0
i ki
x x− < , we get 1

i
A = . In this case *() 0T

i i ki
A x x− < .

When *

0
i ki
x x− > , we get 1

i
A = − . In this case *() 0T

i i ki
A x x− < .

When *

0
i ki
x x− = , we get 1

i
A = − . In this case, *() 0T

i i ki
A x x− = .

Thus each term *() 0T

i i ki
A x x− ≤ in * *

1

() ()
n

T T

k i i ki

i

A x x A x x

=

− = −∑ .

Note that *

k
x x≠ , we know that there exists at least one i such that *

0
i ki
x x− > or *

0
i ki
x x− < .

Thus there exists at least one i such that *() 0T

i i ki
A x x− < .

Therefore * *

1

() () 0
n

T T

k i i ki

i

A x x A x x

=

− = − <∑ .

A Basin Escaping Auxiliary Function Method for Global Optimization

166

That is *

k
x is a strictly local maximum of *_ (,)

k
PF AF x x .

Theorem 2: Suppose *

k
x is a local minimum of ()F x , * *

1
{ | () (), }

k k
x F x F x x xΩ = ∈Ω ≥ ≠ , then

*_ (,)
k

PF AF x x has no stationary points or saddle points in
1

Ω .

Proof: there are two classes of points in
1

Ω :

Class 1: * *

1
{ | ()[() ()] 0, }

i ki k
x x x F x F x x− − = ∈Ω

Class 2: * *

1
{ | ()[() ()] 0, }

i ki k
x x x F x F x x− − ≠ ∈Ω

Obviously, *_ (,)
k

PF AF x x is not differentiable on the points in class 1. Except points in class 1,

*_ (,)
k

PF AF x x is continuous differentiable, and *_ (,) 0
k

PF AF x x A∇ = ≠ .

From the above property, we can see that the basin escaping auxiliary function has the main advantage

of the filled function which can help the algorithm to escape local minima easily. Also, the new auxiliary

function has no parameter to tune which overcome the disadvantage of the adjustment of parameters on

different kind of problems which is not an easy task. In the following section, we propose an

evolutionary algorithm based on the basin escaping auxiliary function to solve global optimization

problem.

4 The New Basin Escaping Auxiliary Function Algorithm

In this section, we proposed an elitism-based evolutionary algorithm using the basin escaping auxiliary

function.

4.1 A New Elitism-based Crossover Operator

Elitism selection is the mechanism to keep the best individual(s) in the current generation to the next

generation in order to ensure the solution quality will not degrade. In this paper, we adopt the idea of

elitism, and propose a elitism-based crossover operator. The main idea is: from the best individual of one

generation may not generate the best solution in the next generation because it may be a local minimum.

So we keep multiple best individuals in the hope that they will converge to different basins containing

better minima so as to increase the chance of getting better solution in the next generation.

To further ensure the possibility of getting better solution when the algorithm stagnate with the

improvement less than a pre-set threshold, we generate the next generation using the following way:

First, we set a neighborhood in the right hand (with higher value) of the elite solution:

 () [() ()]/(n*10)u elite i ubound i lbound i= + − (13)

where 1,2,...,i n= is the dimension of the problem, ubound and lbound is the upper and lower

boundary of the problem respectively.

Then we generate a vector for crossover:

 (_)* rand(n,1)vector u best x= − (14)

The new individual will be generated using the following equation:

1:

() ;

for j popsize

newIndividule j elite vector

end

=

= + (15)

If the solution is still not improved, then we will set a neighborhood in the left hand (with smaller

value) of the elite solution in the similar way:

 () [() lbound(i)]/(n*10)l elite i ubound i= − − (16)

where 1,2,...,i n= is the dimension of the problem, ubound and lbound is the upper and lower

boundary of the problem respectively.

Journal of Computers Vol. 29, No. 5, 2018

167

Then we generate a vector for crossover:

 (_)* rand(n,1)vector best x l= − (17)

Similarly, the new individual will be generate using the equation (9).

Then we choose the best individual from the crossover operator as the initial point for the basin

escaping auxiliary function method in the next subsection.

4.2 The Basin Escaping Auxiliary Function Algorithm

Based on the above discussion, a new basin escaping auxiliary function algorithm is proposed as follows:

Step 1. (initialization). Randomly and uniformly distribute NP points in Ω , set 1.0 10e= −ε as the

stopping criteria. We use best_x and best_val to record the best point and its function value we found so

far. Initially we set best_val to infinity and best_x to null.

Step 2. Evaluate the function values of the initial points and put the best m points that have the smallest

function values into a set S.

For example when m=3, suppose
0 1 2

{ , , }S x x x= in which
0
x is the best point and followed by the

second-best
1
x and third-best

2
x .

For small scale problems (10)n < , we recommend 1m = , and for problems with dimension 10n > ,

we recommend 3m = .

Step 3. Minimize ()F x starting from the points in S respectively, we get the corresponding local minima

of ()F x and their function values, we choose the point with the best(lowest) function value as *

k
x , Then

go to step 6.

Step 4. Construct the basin escaping auxiliary function at *

k
x

* * *_ (,) ()T T

K k k
PF AF x x A x F x A x= + −

Where A is a coefficient column vector as shown above in equation (12).

Step 5. Make a tiny disturbance on *
k
x and then minimize *_ (,)

k
PF AF x x using the disturbed point.

We put m best points of *_ (,)
k

PF AF x x into set S. Then go to step 3.

Step 6. (termination). If *() _
k

F x best val− < −ε then update best_x to *

k
x and best_val to *()

k
F x . Go to

step 4. Otherwise set *

_x best x= as the global minimum and the algorithm will stop.

Note that we always record the best point and its function value we have found so far in each cycle and

will update them if a better point appears, for example we use best_x and best_val to record them.

The reason we use uniformly distributed points other than randomly given points in some literature is

that, for an unknown problem, it has more opportunity to get closer to the local or even global minimum

and have a better diversity of points which can help the algorithm to obtain good results. For detailed

information about uniform design, the readers can refer to [12, 23].

5 Numerical Experiment

In this section, the proposed algorithm is implemented in Matlab R2013b and is tested on some widely

used benchmark problems. The result is compared with that of literature [13, 28]. The reason why the

new basin escaping auxiliary function can save computational resources is analyzed.

5.1 The Benchmark Functions

The benchmark functions taken from literature [13, 28] are listed below:

Two-dimensional function.

2 2

2 2 1 2 1

1 2

min () [1 2 sin(4)] [0.5sin(2)]

. . 0 10, 10 0

F x x c x x x x

s t x x

π π= − + − + −

≤ ≤ − ≤ ≤

 (18)

A Basin Escaping Auxiliary Function Method for Global Optimization

168

where c=0.2, 0.5 and 0.05. The global minimum value is F(x*)=0 for all c.

Three-hump back camel function.

2 4 6 2

1 1 1 1 2 2

1 2

1
min F(x) 2 1.05

6

. . 3 3, 3 3

x x x x x x

s t x x

= − + − +

− ≤ ≤ − ≤ ≤

 (19)

The global minimum solution is x*= (0, 0)T and F(x*)=0.

Six-hump back camel function.

2 4 6 2 4

1 1 1 1 2 2

1 2

2

1
min (4 2.

. . 3 3,

1

3

3

3

4 4

s

F x x x x x x

t x x

x

− ≤

= − + +

− ≤

−

≤

+

≤

x)
 (20)

The global minimum solution is x*=(-0.0898, -0.7127)T or x*=(0.0898, 0.7127)T and F(x*)=-1.0316.

Treccani function.

4 3 2 2

1 1 1 2

1 2

min () 4 4

. . 3 3, 3 3

F x x x x x

s t x x

= + + +

− ≤ ≤ − ≤ ≤

 (21)

The global minimum solution is x*=(-2, 0)T and F(x*)=0.

Goldstein-Price function.

() ()

() ()

2 2 2

1 2 1 1 2 1 2 2

2 2 2

1 2 1 1 2 1 2

2

2

1

min () 1 1 19 14 3 14 6 3

30 2 3

. . 3 3

18 32 12 48 36 27

, 3 3

F x x x x x x x x x

x x x x x x

t

x

s x

x

x

⎡ ⎤= + + + − + − + +
⎣ ⎦

⎡ ⎤× + − − + + −

− ≤ ≤ − ≤

⎣ ⎦

≤

+ (22)

The global minimum solutions are x*=(0, -1)T and F(x*)=3.

Shubert function.

[] []
5 5

1 2

1 1

1 2

min () cos (1) cos (1) 1

. . 0 10, 0 10

i i

F x i i x i i i x

s t x x

= =

⎧ ⎫⎧ ⎫
= + + + +⎨ ⎬⎨ ⎬
⎩ ⎭⎩ ⎭

≤ ≤ ≤ ≤

∑ ∑
 (23)

This function has 760 minima in total. The global minimum value is F(x*)=-186.7309. The illustration

of this function for n=2 is shown in Fig. 3.

Shekel function.

()

1
5

2

1 1

min ()

. . 0 10, 1,2, 4.

n

j ij i

i j

i

F x x a c

s t x i

−

= =

⎡ ⎤
= − − +⎢ ⎥

⎢ ⎥⎣ ⎦

≤ ≤ =

∑ ∑

�

 (24)

Where c= (0.1, 0.2, 0.3, 0.4, 0.5) and

 a=

4.0 1.0 8.0 6.0 3.0

4.0 1.0 8.0 6.0 7.0

4.0 1.0 8.0 6.0 3.0

4.0 1.0 8.0 6.0 7.0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

The global minimum solutions are x* = (4, 4, 4, 4) T, and F(x*) is -10.1532.

Journal of Computers Vol. 29, No. 5, 2018

169

10
5

00246810

0

100

150

200

250

-150

-200

-50

-100

50

Fig. 3. Shubert function

n-dimensional function.

2 2

1
min () [10sin x g(x) (x x)]

s.t . 10 10, 1,2,... .

n

i

F x
n

x i n

π

π= + + −

− ≤ ≤ =

 (25)

Where
1

2 2

1

1

() [(x 1) (1 10sin x)]
n

i i

i

g x π

−

+

=

= − +∑

The global minimum solution is x*=(1, 1, …1)T for all n. The illustration of the function for n=2 is

shown in Fig. 4.

Fig. 4. Sine square function

5.2 Experimental Results

The proposed basin escaping auxiliary function method is tested on the above 8 problems, and the

performance is compared with the two algorithms in literature [13, 28]. The results are listed in Table 1

to Table 11. In these tables, the following symbols are used:

K: The iteration number in finding the kth local minimum of the objective function.

A Basin Escaping Auxiliary Function Method for Global Optimization

170

*

k
x : The kth local minimum of the objective function.

*

k
f : The function value at *

k
x

PF_AF: The proposed algorithm in this paper.

CDFA: The algorithm proposed in [13]

NFA: The algorithm proposed in [28]

From Table 1 to Table 11, we can see that all the three algorithms can find the global optimum

solutions for all the 8 test problems but with different iteration numbers. The proposed PF_AF algorithm

outperforms both CDFA and NFA in problem 1 with c=0.2 and 0.05, problem 2, problem 4, problem 5

and problem 6. Note that for problem 4, PF_AF uses 2 iterations to find one optimum solution which is

the same as the iteration of CDFA and NFA, But PF_AF continues to find another different optimum

solution * (2,0)Tx = − . So we can say that PF_AF performs better than CDFA and NFA on problem 4. For

problem 3 and problem 7, PF_AF performed equally well as CDFA and NFA. For problem 1 with c=0.5,

PF_AF is as good as CDFA but better than NFA. For problem 8 with n=7 and n=10, PF_AF is as good as

NFA but takes one more iteration to find the global optimum solution than CDFA. So, we can get a

conclusion that the proposed PF_AF algorithm is more efficient than CDFA in [13] and NFA in [28]. The

reason partially lies in that, the auxiliary function designed in the proposed PF_AF algorithm is simpler

and saved some computational resources. The complexity of the auxiliary function is further animalized

in section 5.3.

Table 1. Results of benchmark function 1 with c=0.2.

 PF_AF CDFA NFA

k
*

k
x

*

k
f

*

k
x

*

k
f

*

k
x

*

k
f

1 (2.1086,-0.1611)T 1.1603 (5.7221,-1.8806)T 2.5070 (5.7221,-1.8806)T 2.5070

2 (1.8784,-0.3459)T 2.3602e-14 (3.7387,-1.2649)T 0.6165 (4.7387,-1.7417)T 1.6212

3 (1.5909,-0.2703)T 2.8126e-9 (4.7096,-1.3985)T 1.3566

4 (3.7387,-1.2649)T 0.61647

5 (2.7380,-0.78836)T 0.088673

6 (1.8784,-0.34585)T 0

Table 2. Results of benchmark function 1 with c=0.5

 PF_AF CDFA NFA

k *

k
x

*

k
f

*

k
x

*

k
f

*

k
x

*

k
f

1 (1.4527,-0.2833)T 0.2851 (0.0420,-0.0948)T 0.5175 (0.042023,-0.094772)T 0.51745

2 (1.8974,-0.3005)T 4.8219e-15 (1.0000,0)T 5.7949e-016 (0.99991e-4,-1.2524e-4)T 2.2389e-7

3 (1.0000e-14,-2.2205e-14)T 0

Table 3. Results of benchmark function 1 with c=0.05

 PF_AF CDFA NFA

k *

k
x

*

k
f

*

k
x

*

k
f

*

k
x

*

k
f

1 (4.7978,-1.2792)T 2.1343 (8.7299,-3.2965)T 9.0733 (8.7299,-3.2965)T 9.0733

2 (4.7129,-1.4891)T 1.5351 (7.7280,-0.4022)T 6.5031 (7.7280,-2.8347)T 6.5031

3 (1.8513,-0.4021)T 1.3220e-14 (1.8513,-0.4021)T 4.3885e-011 (6.7248,-2.3724)T 4.3943

4 (5.7198,-1.9162)T 2.7434

5 (4.7129,-1.4891)T 1.5351

6 (3.7305,-1.2306)T 0.61844

7 (2.7300,-0.79341)T 0.10216

8 (1.8513,-0.40209)T 0

Journal of Computers Vol. 29, No. 5, 2018

171

Table 4. Results of benchmark function 2

 PF_AF CDFA NFA

k *

k
x

*

k
f

*

k
x

*

k
f

*

k
x

*

k
f

1 (-0.3922,-0.1359)T 0.2486 (-1.7476,-0.8738)T 0.2986 (-1.7476,-0.87378)T 0.29864

2 (0.1299e-6,0.1336e-6)T 3.4245e-14 (-0.0000,-0.0000)T 4.0157e-010 (0,0)T 0

Table 5. Results of benchmark function 3

 PF_AF CDFA NFA

k *

k
x

*

k
f

*

k
x

*

k
f

*

k
x

*

k
f

1 (-0.6700,-0.7126)T -0.0747 (1.6071,-0.5687)T 2.1043 (1.6071,-0.56865)T 2.1043

2 (-0.0898,-0.7127)T -1.0316 (-0.0898,-0.7127)T
-1.0316 (-0.089842,-0.71266)T

-1.0316

Table 6 Results of benchmark function 4

 PF_AF CDFA NFA

k
*

k
x

*

k
f

*

k
x

*

k
f

*

k
x

*

k
f

1 (0.0051,-0.0791)T 0.0064 (-1.0000,0)T 1.0000 (-1.0000,0)T 1.0000

2 (0.7307e-8,-0.7343e-8)T 2.6748e-16 (-0.0000,-0.0000)T 2.4048e-017 (0,0)T 0

3 (0.0109e-7,-0.1147e-7)T 1.3639e-16

4 (-2.0000,0.0000)T 1.1740e-18

Table 7. Results of benchmark function 5

 PF_AF CDFA NFA

k
*

k
x

*

k
f

*

k
x

*

k
f

*

k
x

*

k
f

1 (0.1083,-0.9229)T 6.3570 (-0.6000,-0.4000)T 30.000 (-0.60000,-0.40000)T 30.000

2 (0.0000,-1.0000)T 3.0000 (0.0000,-1.0000)T 3.0000 (0,-1.0000)T 3.0000

Table 8. Results of benchmark function 6

 PF_AF CDFA NFA

k *

k
x

*

k
f

*

k
x

*

k
f

*

k
x

*

k
f

1 (-0.8940,-1.4518)T -166.0075 (2.0467,2.0467)T 0 (1.0865,1.0865)T 2.8841e-17

2 (-0.8003,-1.4251)T -186.7309 (3.2800,4.8581)T -46.511 (1.3200e-12,1.8703e-12)T -13.052

3 (4.2760,4.8581)T -79.411 (1.3200,4.8581)T -37.681

4 (5.4892,4.8581)T -186.739 (3.2800,4.8581)T -46.511

5 (4.2760,4.8581)T -79.411

6 (5.4892,4.8581)T -186.73

Table 9. Results of benchmark function 7

 PF_AF CDFA NFA

k
*

k
x

*

k
f

*

k
x

*

k
f

*

k
x

*

k
f

1
(3.5672,4.1449

3.2483,3.9304)T
-1.2859

(1.0001,.0002

1.0001,1.0002)T
-5.0552

(1.0001,.0002

1.0001,1.0002)T
-5.0552

2
(4.0000,4.0001

4.0000,4.0001)T
-10.1532

(4.0000,4.0000

4.0000,4.0000)T
-10.1529

(4.0000,4.0001

4.0000,.0001)T
-10.153

A Basin Escaping Auxiliary Function Method for Global Optimization

172

Table 10. Results of benchmark function 8 with n=7

 PF_AF CDFA NFA

k
*

k
x

*

k
f

*

k
x

*

k
f

*

k
x

*

k
f

1

(6.0000,1.0060,

0.7933,-1.9449,

-1.5355,2.0160,

8.0848)T

79.8858

(1.0000,1.0000,

1.0000,1.0000,

1.0000,1.0000,

1.0000)T

2.3538e-013

(1.9899,1.9897,

1.9896,1.9896,

1.9896,1.9896,

1.9898)T

-3.1095

2

(1.0000,1.0000,

1.0000,1.0000,

1.0000,1.0000,

1.0000)T

3.9121e-13

(1.0000,1.0000,

1.0000,1.0000,

1.0000,1.0000,

1.0000)T

0

Table 11. Results of benchmark function 8 with n=10

 PF_AF CDFA NFA

k *

k
x

*

k
f

*

k
x

*

k
f

*

k
x

*

k
f

1

(-8.5205,2.9287

3.5550,-3.0893

2.0085,1.5289

-2.9035,3.2940

-3.4533,-4.4657)T

200.9943

(0.0101,0.0103,

0.0103,0.0104

0.0103,0.0102,

1.0000,6.0000

6.0000,6.0000)T

2.6653

(5.9490,5.9979,

5.9980,5.9980

5.9980,5.9980,

5.9980,5.9980

5.9980,5.9980)T

78.432

2

(-6.9159,9.9985

7.9991,0.0002

0.0110,3.9690

0.0019,-6.9156

0.0002,-0.9799)T

85.9293

(1.1615,0.1651,

0.4418,0.9258

0.9638,-0.4809,

0.9926,6.0000

6.0000,6.0000)T

2.4443

(-1.9696,0.9943,

5.9980,5.9980

5.9980,5.9980,

5.9980,5.9980

5.9980,5.9980)T

73.450

3

(1.0145,-0.7174

0.9612,1.5399

1.1809,0.9754

1.0759,1.1073

1.2214,8.8954)T

21.0815

(1.9900,0.0000,

1.0000,1.0000

1.0000,1.0000,

1.0000,6.0000

6.0000,6.0000)T

0.4443

(-0.97956,5.9871,

5.9980,5.9980,

5.9980,5.9980,

5.9980,5.9980

5.9980,5.9980)T

71.884

4

(0.9985,0.6487

1.9483,1.9937

-1.9745,0.9985

1.1498,-0.8454

1.0115,2.8191)T

5.5888

1.0000,1.0000,

1.0000,1.0000

1.0000,1.0000,

1.0000,1.0000

1.0000,1.0000

0

(0.012709,5.9476,

5.9979,5.9980

5.9980,5.9980,

5.9980,5.9980

5.9980,5.9980)T

70.890

5

(1.0000,1.0000,

1.0000,1.0000,

1.0000,1.0000,

1.0000,1.0000,

1.0000,1.0000)T

3.7571e-13

(1.0000,1.0000,

1.0000,1.0000

1.0000,1.0000,

1.0000,1.0000

1.0000,1.0000)T

0

Note that there is a slight difference between PF_AF and the other two algorithms: CDFA and NFA.

The result of CDFA and NFA is based on a given initial point as shown in Table 12, while PF_AF uses

the best point out of uniformly random distributed points which is more flexible. To compare with CDFA

and NFA, PF_AF use m=1 in the algorithm which means only one point is calculated in the set S each

time. But setting a larger m value can get better performance for some problems.

Table 12. The initial points used in CDFA and NFA

Problem number x0 Problem number x0

problem 1 with c=0.2 x0=(6,-2)T problem 1 with c=0.5 x0=(0, 0)T

problem 1 with c=0.05 x0=(10, -10)T problem 2 x0=(-2, -1)T

problem 3 x0=(-2, 1)T problem 4 x0=(-1, 0)T

problem 5 x0=(-1, -1)T problem 6 x0=(1, 1)T

problem 7 x0=(1, 1, 1, 1)T problem 8 with n=7 x0=(2, 2, 2, 2, 2, 2, 2)T

problem 8 with n=10 x0=(6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6)T

Journal of Computers Vol. 29, No. 5, 2018

173

5.3 The Complexity Analysis of the Basin Escaping Auxiliary Function

In this subsection, we analyze and explain why PF_AF is easier and less computationally expensive than

NFA and CDFA. As is well known, in computers multiplication operation is implemented by repeatedly

adding and shifting bits. So the cost of multiplication operation is much higher than addition. Take

Pentium for example, an addition operation takes one clock cycle while a multiplication operation takes

10 clock cycles.

Table 13 shows the three filled functions’ number of operations in one function evaluation. We can see

that for one function evaluation, PF_AF needs 3+2n operations in total which is less than NFA’s 9+2n

and CDFA’s 8+2n. Moreover, PF_AF does not need any multiplication operation while both NFA and

CDFA needs 3+n times for each function evaluation. For one function evaluation, the differences among

the three function is not significant at all. However, Note that whenever a local minimum x*k of the

objective function is found, the filled function will be constructed and then many function evaluations

(usually more than 103) of the filled function will be calculated to find the local minimum in this

iteration. The accumulation of many iterations will greatly enlarge the differences.

Note that the calculation of * 2

1
x x−� � needs n times of addition and n times of multiplication. The

opposite operation is not counted. And for piecewise function, we count the worst situation.

Table 13. number of operations in one function evaluation

function + or - × ÷ total

NFA 6+n 3+n 0 9+2n

CDFA 3+n 3+n 2 8+2n

PF_AF 3+2n 0 0 3+2n

The proposed algorithm is run on a desktop computer with Intel (R) Core (TM) i7-3770 CPU

@3.4GHZ. Figure 5 shows the convergence curve on function 8 with dimension 10. The x axis is the

time used in seconds and the y axis is the function value. From this figure, we can see that the proposed

algorithm takes very little time to get the global optimal solution.

Time
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

F
itn

es
s

0

50

100

150

200

250

Fig. 5. Convergence curve on function 8

6 Conclusions

In this paper, a basin escaping auxiliary function method is proposed to solve multimodal global

optimization problems. We adopt the idea of the filled function method of moving from local minima to

better ones and proposed a basin escaping auxiliary function that overcome the disadvantage of the filled

function: not easy to construct, with relatively complex forms and sensitive to parameters which are not

so easy to tune. The new basin escaping auxiliary function is parameter free and with quite simple

formula expression which can result in less computation and hence can improve the efficiency. The

reason why it is less computational expensive is analyzed. Also, the new auxiliary function does not

A Basin Escaping Auxiliary Function Method for Global Optimization

174

contain exponential or logistic forms which are prone to ill-conditioning. Based on it, a new evolutionary

algorithm with a new crossover operator is proposed. Numerical experiments are carried out on some

widely used benchmark functions. The results show that the new proposed algorithm is effective and can

save time because of its simplicity.

The proposed algorithm is designed for differentiable functions and it is only effective for small scale

(low dimension) problems as other filled function algorithm. So our future work is to extend it to larger

scale problems.

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 61472297 and No.

61402350) and the Fundamental Research Funds for the Central Universities (BDZ021430).

References

[1] E.F. Campana, G. Liuzzi, S. Lucidi, D. Peri, V. Piccialli, A. Pinto, New global optimization methods for ship design

problems, Optimization and Engineering 10(4)(2009) 533-555.

[2] C. Dang, W. Ma, J. Liang, A deterministic annealing algorithm for approximating a solution of the min-bisection problem,

Neural Networks 22(1)(2009) 58-66.

[3] R.P. Ge, A filled function method for finding a global minimizer of a function of several variables, Mathematical

Programming 46(1-3)(1990) 191-204.

[4] R.P. Ge, The theory of filled function method for finding global minimizers of nonlinearly constrained minimization

problems, Journal of Computational Mathematics 5(1987) 1-9.

[5] R.P. Ge, Y.F. Qin, A class of filled functions for finding global minimizers of a function of several variables, Journal of

Optimization Theory and Applications 54(2)(1987) 241-252.

[6] S. He, W. Chen, H. Wang, A new filled function algorithm for constrained global optimization problems, Applied

Mathematics and Computation 217(12)(2011) 5853-5859.

[7] R. Qing-dao-er-ji, Y. Wang, A new hybrid genetic algorithm for job shop scheduling problem, Computers & Operations

Research 39(10)(2012) 2291-2299.

[8] D. Karaboga, An idea based on honey bee swarm for numerical optimization, Vol. 200. Technical Report-tr06, 2005.

[9] B. Kazimipour, X. Li, A.K. Qin, Initialization methods for large scale global optimization, in: Proc. Evolutionary

Computation (CEC), 2013.

[10] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proc. IEEE International Conference on Neural Networks, 1995.

[11] Y.-W. Leung, Y. Wang, An orthogonal genetic algorithm with quantization for global numerical optimization, IEEE

Transactions on Evolutionary Computation 5.1(2001) 41-53.

[12] Y.W. Leung, Y. Wang, Multiobjective programming using uniform design and genetic algorithm, IEEE Transactions on

System, Man, and Cybernetics- Part C: Application and Reviews 30(3)(2000) 293-304.

[13] H. Lin, Y. Gao, Y. Wang, A continuously differentiable filled function method for global optimization, Numerical

Algorithms 66(3)(2014) 511-523.

[14] H. Lin, Y. Wang, L. Fan, A filled function method with one parameter for unconstrained global optimization, Applied

Mathematics and Computation 218(7)(2011) 3776-3785.

[15] X. Liu, A class of continuously differentiable filled functions for global optimization, IEEE Transactions on Systems, Man,

Journal of Computers Vol. 29, No. 5, 2018

175

and Cybernetics-Part A: Systems and Humans 38(1)(2008) 38-47.

[16] X. Liu, Finding global minima with a computable filled function, Journal of Global Optimization 19(2)(2001) 151-161.

[17] X. Liu, W. Xu, A new filled function applied to global optimization, Computers & Operations Research 31(1)(2004) 61-80.

[18] S. Lucidi, V. Piccialli, New classes of globally convexized filled functions for global optimization, Journal of Global

Optimization 24(2)(2002) 219-236.

[19] S. Ma, Y. Yang, H. Liu, A parameter free filled function for unconstrained global optimization, Applied Mathematics and

Computation 215(10) 3610-3619.

[20] A.K. Qin, P.N. Suganthan, Self-adaptive differential evolution algorithm for numerical optimization, in: Proc. 2005 IEEE

Congress on Evolutionary Computation, 2005.

[21] R. Storn, K. Price, Differential evolution- A simple and efficient heuristic for global optimization over continuous spaces,

Journal of Global Optimization 11(4)(1997) 341-359.

[22] W. Wang, Y. Shang, L. Zhang, A filled function method with one parameter for box constrained global optimization,

Applied Mathematics and Computation 194(1)(2007) 54-66.

[23] Y. Wang, K.T. Fang, A note on uniform distribution and experimental design, Chinese Science Bulletin 6(1981) 485-489.

[24] F. Wei, Y. Wang, A new filled function method with one parameter for global optimization. <https://www.hindawi.com/

journals/mpe/2013/532325/>, 2013.

[25] F. Wei, Y. Wang, H. Lin. A new filled function method with two parameters for global optimization, Journal of

Optimization Theory Applications 163(2)(2014) 510-527.

[26] Y. Yang, Y. Gao, A new filled function method for global optimization, in: Proc. 2015 IEEE International Conference on

Digital Signal Processing (DSP), 2015.

[27] Z. Yang, K. Tang, X. Yao, Self-adaptive differential evolution with neighborhood search, in: Proc. 2008 IEEE World

Congress on Computational Intelligence, 2008.

[28] L.-S. Zhang, C.-K. Ng, D. Li, W.-W. Tian., A New Filled Function Method for Global Optimization, Journal of Global

Optimization 28(1)(2004) 17-43. doi:10.1023/B:JOGO.0000006653.60256.f6

[29] Q. Zhang, Y.W. Leung, An orthogonal genetic algorithm for multimedia multicast routing, IEEE Transactions on

Evolutionary Computation 3(1) 53-62.

[30] Y. Zhang, Y.T. Xu, A one-parameter filled function method applied to nonsmooth constrained global optimization,

Computers & Mathematics with Applications 58(6)(2009) 1230-1238.

[31] Y. Zhang, L.-S. Zhang, Y. Xu, New filled functions for non-smooth global optimization, Applied Mathematical Modelling

33(7)(2009) 3114-3129.

[32] M.A. Nayeem, M.K. Rahman, M.S. Rahman, Transit network design by genetic algorithm with elitism, Transportation

Research Part C: Emerging Technologies 46(2014) 30-45.

[33] G.-Z. Tan, D.-M. Zhou, B. Jiang, M.I. Duiybate, Elitism-based immune genetic algorithm and its application to

optimization of complex multi-modal functions, Journal of Central South University of Technology 15(6)(2008) 845-852.

[34] C.W. Ahn, R.S. Ramakrishna, Elitism-based compact genetic algorithms, IEEE Transactions on Evolutionary Computation

7(4)(2003) 367-385.

[35] Q. Chen, K. Worden, P. Peng, A.Y.T. Leung, Genetic algorithm with an improved fitness function for (N) ARX modelling,

Mechanical Systems and Signal Processing 21(2)(2007) 994-1007.

[36] L. A. Nelson, G.J. Barlow, L. Doitsidis, Fitness functions in evolutionary robotics: a survey and analysis, Robotics and

A Basin Escaping Auxiliary Function Method for Global Optimization

176

Autonomous Systems 57(4)(2009) 345-370.

[37] X. Lai, R. Xu, W. Huang, Prediction of the lowest energy configuration for Lennard-Jones clusters, Science China

Chemistry 54(6)(2011) 985-991.

[38] D.J. Wales, J.P. Doye, Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters

containing up to 110 atoms, The Journal of Physical Chemistry A 101(28)(1997) 5111-5116. doi:10.1021/jp970984n

[39] Y.P. Wang, D.L. Liu, A global optimization evolutionary algorithm and its convergence based on a smooth scheme and line

search, Chinese Journal of Computers 29(4)(2006) 670.

[40] Y. Wang, L. Fan, A smoothing evolutionary algorithm with circle search for global optimization, in: Proc. 2010 4th

International Conference on Network and System Security (NSS), 2010.

[41] F. Wei, Y. Wang, Z. Meng, A smoothing function method with uniform design for global optimization, Pacific Journal of

Optimization 10(2)(2014) 385-399.

[42] L. Costa, P. Oliveira, An adaptive sharing elitist evolution strategy for multiobjective optimization, Evolutionary

Computation 11(4)(2003) 417-438.

[43] C. Mu, L. Jiao, Y. Liu, Y. Li, Multiobjective nondominated neighbor coevolutionary algorithm with elite population, Soft

Computing 19(5)(2015) 1329-1349.

[44] Y. Xiang, Y. Zhou, H. Liu, An elitism based multi-objective artificial bee colony algorithm, European Journal of

Operational Research 245(1)(2015) 168-193.

[45] Z. Yang, K. Tang, X. Yao, Self-adaptive differential evolution with neighborhood search, in: Proc. 2008 IEEE World

Congress on Computational Intelligence, 2008.

[46] P.M. Reed, B.S. Minsker, D.E. Goldberg, The practitioner’s role in competent search and optimization using genetic

algorithms, in: Proc. Bridging the Gap: Meeting the World’s Water and Environmental Resources Challenges, 2001.

[47] E. Zitzler, K. Deb, L. Thiele, Comparison of multiobjective evolutionary algorithms: empirical results, Evolutionary

Computation 8(2)(2000) 173-195.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

