
Journal of Computers Vol. 29 No. 5, 2018, pp. 177-189

doi:10.3966/199115992018102905014

177

Reliability Prediction and QoS Selection for Web Service

Composition

Weitao Ha1*, Wei Zhao2

1 School of network security and information, Weinan Normal University, Weinan 714099, Shaanxi, China

wnchlp@126.com

2 School of Mathematics and Physics, Weinan Normal University, Weinan 714099, Shaanxi, China

wnhwt@126.com

Received 7 June 2017; Revised 7 November 2017; Accepted 7 December 2017

Abstract. The key issues in the development of Web service composition are the dynamic and

efficient reliability prediction and the selecting component services appropriately. In this paper,

we discuss Web service composition in two ways: reliability prediction and QoS optimal

selection. Firstly, we propose a reliability prediction model based on Petri net. To address the

complex connecting relationship among subservices, places of basic Petri net for Input and

Output are extended to some subtypes for multi-source input place and multiuse output place.

Secondly, we use a new skyline algorithm based on a R-tree index. The index tree is traversed to

judge whether it is dominated by the candidate Skyline sets. Experimental evaluation on real and

synthetic data shows the effectiveness and efficiency of the proposed approach.

Keywords: atomic services, effectiveness and efficiency, QoS, reliability, service selection,

skyline, utility function, Web service composition, workflow relationship

1 Introduction

A new business opportunity is created by the possibility of providing value-added Web services. Such

value-added Web services can be built through the integration and composition of basic Web services

available on the Web. Generally, after the user submits requests that the composite service achieves,

along with some constraints and preferences that need to be satisfied, Web services composition will be

implemented through four steps:

(1) abstract component services discovery;

(2) selections of the component Web services;

(3) consistence verification of composite Web service;

(4) execution of the composite Web service;

At the first step, automatic services composition system finds multi-group potential services from

abstract service layer of network which satisfy user’s function requests. During the second step, the

component Web services are selected to fulfill the user’s goal. As a tremendous amount of available web

services with identical function attributes but different QoS are spread all over the Internet, it is

intractable to find the appropriate web services satisfying the given goal quickly. Besides, the composite

Web service will not guarantee reliable execution and consistency if the component services are chosen

only according to QoS attributes. Therefore, it is necessary to predict component Web services reliability

before composition. The third step of the composition process finds failure and conflict of some specific

component services by consistence verification. At the final step, reliable and QoS optimal composite

Web service is implemented.

The task of building Web service compositions is much more difficult because service components

may be developed, operated, and evolved by independent organizations. Each organization has its own

* Corresponding Author

Reliability Prediction and QoS Selection for Web Service Composition

178

business rules, Web services must be treated as strictly autonomous units. Heterogeneity manifests itself

through structural and semantic differences that may occur between semantically equivalent Web

services. Thus, there is no guarantee that some components will not deviate from the specification, once a

system is under operation. Furthermore, Quality of Service (QoS) parameters play a major role in

determining the success or failure of the composed application. Different users may have different

requirements and preferences regarding the QoS. QoS properties are important factors which determine

whether users satisfy execution result of Web composite service. A QoS-aware approach to service

composition is therefore needed, which maximizes the QoS of composite service executions by taking

into account the constraints and preferences set by the users. As a tremendous amount of available web

services with identical function attributes but different QoS is spread all over the Internet, when selecting

web services for composition through the repository UDDI (Universal Description, Discovery and

Integration), it is intractable to find the appropriate web services satisfying the given goal quickly

The research goal of this paper is to build a composite Web service which can ensure not only correct

and reliable execution but also optimal QoS. We find that the Petri net model allows describing a static

vision of a system and its dynamic behavior, and it is expressive enough to capture the semantics of

complex Web services combinations and their respective interactions. In this paper, we propose a

reliability prediction model based on Petri net. For atomic services, a staged reliability model is provided

which predict reliability from network environment availability, service availability of hermit equipment,

discovery reliability, and binding reliability. To address the complex connecting relationship among

component Web services, places of basic Petri net for Input and Output are extended to some subtypes

for multi-source input place and multi-use output place. Moreover, we use skyline computation to select

services for composition effectively and efficiently, reducing the number of candidate services to be

considered. We also define aggregation functions, and use a Multiple Attribute Decision Making

approach for the utility function to achieve QoS-based optimal service selection. Experimental evaluation

on real and synthetic data shows the effectiveness and efficiency of the proposed approach.

2 Related Works

One notable research topic that has attracted much attention recently is automatic Web service

composition which ensures not only reliable execution but also optimal QoS. Indeed, these two aspects of

selection always are implemented separately.

A service composition is formed as follows:

(1) Web service providers publish their web service and invocation interfaces with WSDL;

(2) Register the web services to UDDI;

(3) The user submits the goal which the composite service achieves, along with some constraints and

preferences that need to be satisfied;

(4) Application programs discover the needed web services;

(5) Send the requests via invocation interfaces.

During this process, interfaces play an important role in service composition. Therefore, Ding et al. [1]

attempts to develop a method to compute the reliability of service based on the interface reliability. A

formal service component signature model and a language-independent dynamic behavior model were

proposed for Service Component Architecture. Rules have been developed to compute port expression

reliability. Path-based approach computes the reliability of all the possible execution paths. The

reliability of each path is computed by multiplying the reliabilities of the components on that path. The

system reliability is computed by averaging over all the paths [2]. Web services can be viewed as

component-based systems, making these findings useful in modeling reliability for web service

applications. Zo et al. [3] focuses on deriving reliability measures at the application level. It examines

reliability of an entire application created from a set of web services. It places greater emphasis on

combining reliability measures for different web services, than on determining the antecedents of

reliability for each web service. It views reliability of web services as a measure of failure-free operation,

without modeling the source and type of failure. Some researchers view reliability as a non-functional

characteristic of web services [4]. Still others characterize it as a component in setting service level

agreements with web services vendors [5].

The existing methods of reliability prediction have the following disadvantages:

(1) Reliability prediction of composite service ignores reliability evaluation for component services;

Journal of Computers Vol. 29, No. 5, 2018

179

(2) There are few effective methods to translate service composition specification into reliability

prediction model;

(3) Reliability evaluation is combined with performance evaluation.

QoS guarantee for Web services is one of the main concerns of the SLA framework. There are projects

studying QoS-empowered service selection. In [6], authors present a QoS-aware Web service

compositions which is middleware-supporting quality-driven. But the method is based on integer linear

programming and best suited for small-size problems as its complexity increases exponentially with the

increasing problem size. In [7], the authors propose an extensible QoS computation model that supports

an open and fair management of QoS data by incorporating user feedback. However, the problem of

QoS-based composition is not addressed by this work. The work of Zeng at al. [8-9] focuses on dynamic

and quality-driven selection of services. The authors use global planning to find the best service

components for the composition. They use linear programming techniques [10] to find the optimal

selection of component services. Linear programming methods are very effective when the size of the

problem is small, but suffer from poor scalability due to the exponential time complexity of the applied

search algorithms [11]. Despite the significant improvement of these algorithms compared to exact

solutions, both algorithms do not scale with respect to the number of candidate web services, and hence

are not suitable for real-time service composition. There are many available Web services with identical

function attributes but different QoS where a composite service is interested in viewing the best Web

service based on multiple QoS criteria. Skyline computation is used to select web services for

composition through the repository UDDI in [12]. It models the problem as a skyline query known as the

maximum vector problem. As web service sets used for skyline processing are often huge, computation

can be expensive, and efficient algorithms are vital for selecting web services. With the advance of multi-

core architectures and other parallel computing platforms, parallel skyline algorithms offer a new way.

The proposed skyline based algorithm in this paper is complementary to these solutions as it can be used

as a pre-processing step to prune non-interesting candidate services and hence reduce the computation

time of the applied selection algorithm.

With the above quotation, the approaches implement conventional optimal QoS composition, but

composing optimal QoS Web services does not guarantee a reliable execution of the resulting composite

Web service. Therefore, reliability prediction and QoS Optimizing should be integrated.

3 Reliability Prediction for Web Service Composition

Due to the inherent autonomy and heterogeneity of web service it is difficult to predict the overall

behavior of a composite service. Unexpected behavior or failure implement of a component service

might not only lead to its failure but also may bring negative impact on all the participants of the

composition. Web service composition process must provide reliable and consistent execution.

The service reliability can be understood as the probability of a successful execution of a Web service.

A successful service execution in this case should be understood as achieving desired result of Web

service, no execution errors appearing, and maintaining overall agreed-upon quality of service. For

composite services, there are two levels of reliability: atomic service reliability and composite service

reliability. Atomic service reliability is the reliability of the service as an independent unit. Drawing the

line and isolating the service from its surroundings for reliability analysis are still hard, since service

reliability is affected by operating process and the operating environment. The composite service

reliability is affected by the reliability of each service in the composition, the reliability of the operating

environment, and the service interactions in the form of usage profile. Usage profiles are of great concern

in the frequency of executing each service and each interaction between services. When a composite

service is composed dynamically, usage profiles will be unknown beforehand and can be observed only

during execution. Therefore, they form a complex challenge when analyzing composite service reliability

[13].

In this section we analyze network environment availability, service availability of hermit equipment,

discovery reliability, and binding reliability to find the cause of failure and present staged reliability

models for atomic services. On the foundation of atomic services reliability models, we also present

reliability computation approach of composite services.

Reliability Prediction and QoS Selection for Web Service Composition

180

3.1 Reliability Model for Atomic Web Service

An atomic service is the smallest organization unit of web service. In other words, it would be

impractical to decompose an atomic service. An atomic service has a fine-grained structure which can be

designed, implemented, and tested independently. The atomic service reliability is defined as the

probability that an atomic service invocation will be completed successfully. This means a correct

response to the atomic service invocation is successfully received under the specified conditions and time

constraints. In this case, the reliability can be determined by the following factors: network environment

availability, Service availability of hermit equipment, discovery reliability and binding reliability [14].

Network environment availability expresses how much communication links affect atomic

service reliability. This factor is more important in the wireless mobile network. So we will calculate

network environment availability
nea

R of wireless mobile network. Set
c

d to express distance between

atomic service node and master station of wireless mobile signal. 0
c

d ≥ , and
c

d obeys logarithmic

normal distribution. We can obtain average of
c

d ’s logarithm
d

μ from empirical value.
d

σ is standard

deviation of
c

d ’s logarithm. The probability density function (, ,)
d c d d
f d μ σ is (, ,)

d c d d
f d μ σ

2 2exp((ln()) /(2) /(2).
c d d c d

d dμ σ π μ= − − Network environment availability is computed by

max

0

(, ,)
d

nea x d d
R f x μ σ= ∫ , where

max
d is effective distance maximum of atomic service node.

Reliability of service hermit equipment expresses how hermit equipment availability affects atomic

service reliability. N expresses number of atomic services of running hermit equipment at some point of

time. ω is expected arrival number of atomic services for hermit equipment. In general, random

variables N follows Poisson distribution whose parameter is .ω So distribution probability is

() () exp() / !.n

P N n nω ω= = − Reliability of service hermit equipment is defined by
hea

R
hea

R

1

exp()
N

f a n

n

P t P

=

= ⋅ ⋅∑ . In this formula, fP is failure probability when n atomic services reach hermit

equipment at the same time, and
a
t is run time of atomic service.

Reliability of the service discovery is the probability of return correct service which is requested by

user at the given time interval when user request discovery service to service registry. In the process of

service discovery, two errors may occur: the requested service isn’t found as it doesn’t exit or list in the

service list; service discovery criteria provided by user is incorrect or inconsistence between service

descriptions and service function cause service discovery error. When the two errors are considered

together, the formula reliability of the service discovery
dis

R is shown as the following.

1

/ /()
N n

dis i

i

R N n N N nα

−

=

= − −∑ (1)

To the formula, N is the total number of services which are found according to user’s request, and n is

the number of error services of discovery, and
i

α is mistake probability of the ith service in grammar

logic.

Binding reliability is probability of binding specific from abstract service, after the service is found.

After finding appropriate services for user, UDDI will feed back these specific services matching abstract

a service to user in the process of service execution, and one of specific services is bound to implement.

In process of binding two errors may occur:

(1) The mistakes of WSDL service description document lead to wrong binding. The probability of

error is denoted by
1
F
P . Let λ denote failure intensity parameter.

(2) Binding service can’t satisfy user’s QoS needs. The probability of error is denoted by
2

F
P . Let µ

denote failure intensity parameter.

Binding reliability
bind

R is shown as the following:

1 2

1 1

1 ()
i i

n n

bind F F

i i

R P Pλ μ
= =

= − +∏ ∏ (2)

Journal of Computers Vol. 29, No. 5, 2018

181

The reliability of atomic is * * * .
a nea hea dis bind

R R R R R=

3.2 Reliability Prediction for Web Service Composition

Reliability of composite Web service depends on reliability of atomic services, but that is not enough to

only learn reliability of atomic services. Atomic service interactions and composition patterns all have an

effect on reliability of service composition.

Petri Net have become a powerful system modeling tool used for the analysis of a wide range of

systems coming from different domains (e.g., distributed computing, telecommunication, control systems,

workflow management) and characterized by situations of concurrency, synchronization, causality and

conflict. It is a model that is used to describe distributed systems and system structures, verify distributed

systems, and also can simulate the operation of the system. Therefore, Petri net is particularly applicable

to describe component-based multithreading, distributed software system structures, and constitutes a

running relationship between the various components of a software system. Petri-net, compared to most

other Web service composition models, is better able to describe subsequent executions of software

system, such as a Web server composition.

A basic petri net is a 3-tuple (P, T, F) where:

1 2
{ , , , }

n
P p p p= … is a finite set of places,

1 2
{ , , , }

m
T t t t= … is a finite set of transitions,

() ()F P T T P= × ×∪ is a finite set of arcs (flow relation).

A Petri net is basically characterized by places, transitions and arcs defining its structure and it is

graphically represented by a directed bipartite graph in which places are drawn as circles, transitions are

drawn as bars, input and output arcs are drawn as arrows and inhibitor arcs are drawn as circle headed

arrows.

Several approaches proposed in [15-17] have some things in common: (1) They use Petri net to model

control flows or path in the process of service composition. Inputs and outputs of places in Petri net only

come from user’s request. Connecting relationship among component services is described by one-to-one,

but one-to-many and many-to-one relationships aren’t considered. (2) They all estimate the reliability of

composite service based on its internal structure. However, composite service reliability is affected by the

reliability of each component service in the composition, and the reliability of the operating environment.

Existing methods including literature [15-17] assume that reliability of atomic and component services

are known on the basis of which reliability of composite service is computed. Besides, environmental

impacts for composition reliability are overlooked. Using Petri nets to model Web service composition is

not a new idea. However, our model has three aspects of innovation. Firstly, places of basic Petri net for

Input and Output are extended to some subtypes for multi-source input place and multi-use output place.

These can address the complex connecting relationship among subservices and realize dynamic

organization of subservices. Secondly,εPlace and ε transition with combine-select and copy-split

mechanisms are introduced for complex connecting relationship such as 1:n and n:1 [18]. Thirdly, we

incorporate reliability of atomic services into reliability prediction for web service composition, based

Petri nets model. During this process, reliability of atomic services combining composition patterns will

form firing probability of transition. These can realize reliability prediction of composite service.

Definition 1. ECWS (Extended Composite Web Service). We define a Petri Net model to extended

composite Web Service as a 6-tuple (P,T,WS,R,α,λ),where

(1) P is a finite nonempty set of places. ,
I O

P P P P
ε

= ∪ ∪ .

I O
P P φ=∩

I
P is input places union of all

component services. (1, 2, 3, ...,).
I Ii
P P I K=∪ In this Petri net model,

I
P consists not just input places of

user request, but two types of input places. One is input places of service coming from output places of

other services. The other is input places requested by some services that no information can match.
O
P is

output places. The extended output places have three types. First, output places are target outputs of user

request. Second, output places will be taken as input places of some component services. Third, output

places will never be used. (1, 2, 3, ...,).
O Oi
P P i k= =∪ P

ε
 is general places.

(2) T is a finite set of transitions, corresponding to candidate component services execution, P T φ=∩ .

s
T T T

ε
= ∪ . T

ε
 denotes a finite nonempty transitions set of all component services. T

ε
 denotes a finite

nonempty transitions set in which combine-select and copy-split mechanisms are introduced for complex

Reliability Prediction and QoS Selection for Web Service Composition

182

connecting relationship such as 1:n and n:1.

(3) R denotes relationship between P and T. () ()R P T T P= × ×∪

(4) WS is component services set, and every component service denotes a Petri net model.

1 2 3
{ , , , }.

k
WS WS WS WS WS= � (, , ,).

i Ii Oi i i
WS P P T λ=

Ii
P and

Oi
P denote input places and output places

of component service
i

WS .
i
T is a finite set of transitions of component service

i
WS .

i
λ denotes firing

probability of transition
i
T for component service

i
WS within the required time t, and

i a
Rλ = . Atomic

service reliability
a

R is used to express probability of component service executed successfully.

(5) :WS Typeα → denotes aggregation mapping function. Type express control structures in Web

services composition patterns. { , , , , }.Type null sequence and or loop∈ Use CS to aggregate more

complex composition.
1 1 1

: () | () | (||) | ()
i i i i i i i

CS WS WS WS WS WS WS WS
+ + +

= ⊕ ⊗ ⎣ .

(6) λ denotes firing probability for composite service WS. Firing probability for composite service WS

reflects reliability of Web service composition. Reliability for an component web service is measured by

a
R . The aggregated reliability of a composite service depends on the structure of the business process,

the degree of independence between web services, and whether there are multiple web services (in the set

of selected services) capable of supporting the task. In this paper, we present reliability of Web service

composition with different the control structures in Web services composition patterns.

(7) In the sequence pattern
1 2 3

,seq kWS WS WS WS WS= ⊕ ⊕ ⊕ ⊕� firing probability
seq

λ is

1

().
n

seq i

i

λ λ

=

=∏

(8) In the parallel pattern
1 2 3
|| || || || ,par kWS WS WS WS WS= � firing probability

par
λ is max ().par i k iλ λ

≤
=

(9) In the conditional pattern
1 2 3

,
con k

WS WS WS WS WS= ⊗ ⊗ ⊗ ⊗� firing probability
con

λ is

1

(),
k

con i i

i

bλ λ

=

=∏ where bi is execution probability of branch i.

(10) In the loop pattern ,loop iWS WS= ⎣ firing probability
con

λ is () ,vloop iλ λ= where v is iterations of

component service WSi.

4 Candidate Web Services Selection

Reliability prediction ensures reliable execution of composite Web service, but it is not enough to

provide optimal composite Web service for users. The process of service composition contains some

service classes and each service class can be achieved by a set of functionally-equivalent concrete

services. The goal of QoS-aware service composition is to select best candidate services from each

service class to satisfy QoS requirements and optimize overall QoS of the composite service as far as

possible. However, it is not practical to perform an exhaustive search to find the best combination that

satisfies QoS constraints in this scenario, because the number of functional equivalent services is very

large. Skyline approach is also used to deal with the uncertainty of service in the process of selection [19].

Service selection is an important issue in the area of service computing. As the number of services and

service providers proliferate, there are a large number of candidate, most likely competing, services for

fulfilling a desired task. Performing an exhaustive search can be very expensive in terms of computation

time and, therefore, inappropriate for run-time service selection in applications with many services and

dynamic needs. Thus, service selection is becoming important for helping users to identify desirable

services. User preferences play a key role during the selection process. Skyline computation offers a new

solution of finding optimal data from huge data sets, whose computation can be expensive and whose

applications require fast response times.

Our approach for QoS based service selection decreases the range of choices without effectively

pruning the potential candidates by taking advantage of the skyline method. The basic selection with

QoS-based skyline is to compute all skyline services in a static environment and then recommend them to

be selected, while the advanced selection deals with real cases in practical applications.

Journal of Computers Vol. 29, No. 5, 2018

183

4.1 Skyline Query

The skyline computation is an elegant summary method over multidimensional datasets [20]. A

commonly cited example for the use of a skyline computation is assisting a tourist in choosing a set of

interesting hotels from a larger set of candidate hotels. Each hotel is identified by two attributes: a

distance from a specific point (such as a location on a beach), and the price for the hotel. To assist a

tourist in narrowing down the choices, the skyline operator can be used to find the set of all hotels that

are not dominated by another hotel. Hotel a dominates hotel b if a is at least as close as b and at least as

cheap as b, and offers either a better price, or is closer, or both compared to b. Fig. 1 shows an example

dataset and the corresponding skyline; the distance of the hotel from the beach is shown on the x-axis and

the hotel price is plotted along the y-axis. The skyline is the set of points a, c, d, i, and j.

Fig. 1. Example dataset and its skyline

The skyline can be generalized to multidimensional space where a point a dominates another point b if

it is as good or better than b in all dimensions, and is better than b in at least one dimension. Implicit in

this definition of the skyline operation is the notion of comparing the goodness along each dimension. A

common function for determining this property is to use the minimum function. However, skyline

computation can easily be extended to consider other functions, such as max [21].

Definition 2. Skyline. Given a dataset P of n points in d-dimensional space. Let p and p´be two different

points in P, we say p dominates p´iff for all i, p[i]≤p´[i] and for at least one i, p[i] < p´[i], where p[i] is the

i-th dimension of p and 1 ≤i ≤d. The skyline points are those points in P that are not dominated by any

other point in P.

4.2 Optimal QoS selection for Web Service Composition

Definition 3. Dominance. Given a service set WSi assigned to activity Ai having n candidate services:

1 2

, , , ,

i i in
A A A

WS WS WS� QoS vector is d dimensions:
1 2

1 1 1
(), (), , ().

i i in
A A A

q WS q WS q WS�

iu
A

WS is said to

dominance
iv

A
WS , denoted

iu iv
A A

WS WS≺ as
iu

A
WS iff is better than or equal to ,

iv
A

WS [1,] :k d∀ ∈

() ()
iu iv

k A k A
q ws q ws≤ and [1,] () ()

iu iu
l A l A

l d q ws q ws∃ ∈ < n all attributes and strictly better in at least one

attribute, i.e..

If
iv

A
ws is neither dominated by nor dominates

iu
A

ws , then iv
A

ws and
u

A
ws are incomparable. The

notion of dominance handles requirement, since comparing matched services takes into consideration the

degrees of match in all parameters, instead of calculating and using a single, overall score.

Definition 4. Skyline Web Service [22]. Skyline service of a service class WS, denoted by SWS,

comprises those services in WS that are not dominated by any other services, i.e., SWS =

{ | : }.
i j j i

ws WS ws WS ws ws∈ ¬ ∈ �

Reliability Prediction and QoS Selection for Web Service Composition

184

0

20

40

60

80

100

120

140

160

180

0 2 4 6 8 10 12 14 16 18

delay

p
r
i
c
e

p1

p5

p4

p3

p2

p10p8

p9

p7

p6

Fig. 2. Skyline Services

We observe that only those services that belong to the SWS are not dominated by any other

functionally equivalent service, are valid candidates for the composition. This provides a valid pruning of

the number of candidate services. Fig. 1 shows an example of skyline services of candidate services for a

certain activity. Each service is described by two QoS attributes, namely delay and price. Hence, the

services are represented as points in the 2-dimensional space, with the coordinates of each point

corresponding to the values of the service in these two parameters. SWS includes four elements,

SWS={p1,p2,p4,p7}, because they are not dominated by any other service. On the other hand, service p6 is

not contained in the SWS, because it is dominated by the services p2 and p4 [22].

The skyline Web services provide different trade-offs between the QoS attributes, and are

incomparable to each other, as long as there is no pre-specified preference scheme regarding the relative

importance of these attributes. For example, for a specific user, service a may be the most suitable choice,

due to its very low delay and despite its high price, while for the other user, service may be the most

preferred one due to its low price.

Consider an n-dimensional QoS attributes data space. We use architecture proposed [19] to achieve

distributed parallel QoS selection effectively. The candidate services of predicting reliability are divided

into data blocks. The data blocks are dispatched to many slaver servers for parallel processing. Then, the

local skylines from service data points are generated in subdivided data blocks.

In this process, local skylines generated by all slaver servers are merged and integrated into a global

skyline [19]. Skyline algorithm is the key in optimal QoS selection. We used a new skyline algorithm

based on aR-tree index, and The index tree is traversed to judge whether it is dominated by the candidate

Skyline sets．These are important difference from [19].

Local skyline service selection. Any data block dispatched to slaver server is denoted D, and D is n-

dimensional data set. (D is actually QoS property set of candidate service, and n is the dimension of QoS

space). p is a point,
[1] [2] []

, (, , , ,).
d

p D p id p p p∈ = �

Fig. 3. Architecture of distributed parallel QoS selection [19]

Journal of Computers Vol. 29, No. 5, 2018

185

Definition 5. Domination set D({p}). ,p D∈ D({p}) is services set dominated by service p.

Definition 6. Skyline score | () | .D p | () |D p is defined number of points in set D({p}).

Definition 7. Skyline coverage distance d(p,rp). d(p,rp) expresses the smallest distance between not

skyline representative point of Web service and the nearest skyline representative point of Web service.

Definition 8. Evaluation function of skyline service ((),).F k SΨ ((),) (,) | () | .F k S d p rp D pΨ = ⋅ ()kΨ

is skyline service set and S is candidate service set.

The local candidate services of each partition are then computed by using ((),).F k SΨ The local

skyline service set is {max(((),)).F k SΨ Local skyline service selection will implement when the local

skyline service set of every data block is produced.

Global skyline service selection. There are two steps in the process of global skyline service selection:

(1) Transmitting local skyline services from slave servers to one centralized server through network

connection; (2) Computing the global skyline by merging local skyline services [19]. Due to the

existence of dominance relationship between local skyline services from different slave servers, some

local skyline services could be filtered by appropriate skyline services from different servers. We use an

approximate solution based on R-tree index to implement global skyline service selection. In centralized

server, n local skyline service sets are stored by R-tree. The index tree is traversed to judge whether it is

dominated by the candidate Skyline service sets. We use the R-tree because of its ubiquity in

multidimensional indexing and its use in other static-data skyline algorithms such as [23].

Algorithm 1. GSSS(k,S)
Input: S the set of all local skyline service sets
 K number of slave servers
Output: ()kΨ global skyline service set
1: int index=0;
2: initialize root entry of R-tree L=n;
3:for all local skyline service set

i
s S∈ do

4: E=max(F(s
i
))

5: if (E is not dominated by any local skyline service
j
s form other

slave servers) then
6: for all children of E

c
of E do

7: if (is not dominated by any local skyline service
j
s form

other slave servers) then
8: Ec→L;
9: end if
10: end for
11: if (E is leaf point) then
12: insert p to ()kΨ
13: end if
14: end if
15: end for

As seen in Algorithm1, list L is maintained, which stores all local skyline services by exploiting R-tree

index structure. For local skyline services, maximum of evaluation function of skyline service is found to

judge if local skyline service is dominated by local skyline services of other slave servers. This can prune

the local skyline services early with maximum evaluation function but are dominated by other local

skyline services. These local skyline services will be removed from L. E in line 4 expresses some local

skyline service with maximum evaluation function in L. Algorithm1 can finally compute all local skyline

service sets S and find global skyline services which is put in ()kΨ .

Reliability Prediction and QoS Selection for Web Service Composition

186

5 Experimentation

We can use skyline Web services in SWS as new candidate services which are variables for QoS

aggregation function. On that basis, we can calculate utility value. Finally, we select Qos-based optimal

service that maximizes the overall utility value from SWS.

In the section, we use two scenarios to evaluate the effectiveness and the efficiency of our approach. In

the first scenario, different services are generated to implement the activities of example workflow. The

result shows that the composite services which are composed by the selected component services not

only are executed correctly and reliably but have optimal QoS. In the second one, we use the OWL-S

service retrieval test collection OWLS-TC v22. The execution time of QoS services selection with

skyline computation is compared with that without skyline computation.

For the first scenario, we use the OWL-S service retrieval test collection OWLS-TC v22. This

collection contains services retrieved mainly from public IBM UDDI registries, and semi-automatically

transformed from WSDL to OWL-S. We apply skyline to select the best candidates for QoS selection.

We compare execution time of QoS selection using skyline computation with the time without using it.

Fig. 4 illustrates the running time of QoS selection with (and without) skyline computation. Observe that

the time without using skyline computation is higher using it.

0

500

1000

1500

2000

2500

2000 4000 6000 8000 10000

Number of services

E
x
e
c
u
ti
o
n
 t
im
e
 (
m
se
c

QoS selection without skyline computation

QoS selection with skyline computation

Fig. 4. Execution time

The second scenario is implemented as follow. In order to evaluate the behavior of our service

selection approach, we write program whose input is a workflow composed of n activities and the output

is a TCWS corresponding to a list of elementary Web services or composite Web services assigned to

each activity of the input workflow. Experiments were conducted by implementing the proposed service

selection approach with the program on a PC Core i3 with 2GB RAM, Windows 7, and Java 2 Enterprise

Edition V1.5.0. The experiments involved composite services varying the number of activities and

varying the number of Web services. The example in this paper is based upon a travel scheduling service

composition which is depicted by state diagram in Fig. 5 and petri net in Fig. 6. We select twelve atomic

Web services for composite Web service, and carried out the experiment for ten groups. As the

comparison, we also use Nelson model [24-27] to calculate the reliability of the example. The formula to

calculate the reliability is
1

1 / (),
m

i i i

i

R f n P E
=

= −∑ where fi denotes the number of failures out of ni runs,

and ()
i

P E is the probability that the input datum is taken from the subspace Ei in usage. In our case, Ei;

i=1,2,...10 represent test cases. We assume that the every test case has the same chance to be executed.

Then, the reliability of our reliability prediction approach is shown by curve EA in Fig. 7 and the

reliability of Nelson model is shown by curve HA in Fig. 7. The difference between two reliabilities is

shown in Fig. 7, which is very weak. Thus, we can conclude that our method to calculate the reliability of

service composition is reasonable.

Journal of Computers Vol. 29, No. 5, 2018

187

Fig. 5. Illustrative state diagrams for travel scheduling

Fig. 6. TCWS-CPN for travel scheduling

Fig. 7. Ten groups in HA and EA

Reliability Prediction and QoS Selection for Web Service Composition

188

6 Conclusions

In this paper, to capture the semantics of complex Web services combinations and their respective

interactions we defined a Petri net extended with QoS properties and give the semantics for quality Petri

net in terms of quality timed transition model. We also propose a consistence verification approach based

on the Petri net which can detect the logical inconsistence of the semantic Web service process before the

deployment, enhancing the robust of the process and the user’s satisfaction. We propose a reliability

prediction model based on Petri net. For atomic services, a staged reliability model is provided which

predict reliability from network environment availability, service availability of hermit equipment,

discovery reliability and binding reliability. To address the complex connecting relationship among

subservices, places of basic Petri net for Input and Output are extended to some subtypes for multi-source

input place and multiuse output place. Moreover, we use skyline computation to select services for

composition effectively and efficiently, reducing the number of candidate services to be considered. We

also define aggregation functions, and use a Multiple Attribute Decision Making approach for the utility

function to achieve QoS-based optimal service selection. Experimental evaluation on real and synthetic

data shows the effectiveness and efficiency of the proposed approach.

Web services in SWS as new candidate services which are variables for QoS aggregation function and

select Qos-based optimal service that maximizes the overall utility value from SWS. As shown by

experiment results, our approach is quadratic in term of selection and service size, in the majority of

cases, which is the best solution in terms of QoS.

Our future work will focus on partial user Query satisfaction, using message-oriented methods.

Additionally, we are working on failure recovery of TCWS execution considering transactional

properties and techniques for Web service enforcement.

Acknowledgements

This work is partially supported Shaanxi education department foundation of China, No 16JK1273, by

the Education Reform Project of Weinan Normal University, No. JG201624.

References

[1] Z.H. Ding, M.Y. Jiang, A. Kandel, Port-based reliability computing for service composition, IEEE Transactions on Services

Computing 5(3)(2012) 422-436.

[2] R.H. Reussner, H.W. Schmidt, I.H. Poernomo, Reliability prediction for component-based software architectures, Journal of

System and Software 66(3)(2003) 37-48.

[3] H.J. Zo, D.L. Nazareth, H.K. Jain, Measuring reliability of applications composed of Web services, in: R.H. Sprague (Ed.),

Proceedings of the 40th Hawaii International Conference on System Sciences, HICSS-40, Waikoloa, HI, USA, January 29,

2007, IEEE Computer Society, 2007, pp. 1530-1605.

[4] A. Arsanjani, B. Hailpern, J. Martin, P. Tarr, Web wervices: promises and compromises, ACM Queue, March 1(1)(2003)

48-58.

[5] L.J. Jin, V. Machiraju, A. Sahai, Analysis on service level agreement of Web services, HP Labs Report HPL-2002-180, HP

Laboratories, 2002.

[6] L. Zeng, B. Benatallah, A. Ngu, M. Dumas, J. Kalagnanam, H. Chang, Quality-aware middleware for Web service

composition, IEEE Trans. Softw, Eng. 30(5)(2004) 311-327.

[7] Y. Liu, A.H.H. Ngu, L. Zeng, Qos computation and policing in dynamic web service selection, in: Proc. the Thirteenth

International World Wide Web Conference, 2004.

[8] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, Q.Z. Sheng, Quality driven web services composition, in: Proc. the

Journal of Computers Vol. 29, No. 5, 2018

189

Twelfth International World Wide Web Conference, 2003.

[9] L. Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas, J. Kalagnanam, H. Chang, Qos-aware middleware for web services

composition, IEEE Trans. on Software Engineering 30(5)(2004) 311-327.

[10] G.L. Nemhauser, L.A. Wolsey, Integer and combinatorial optimization, COR@L Technical Report 12T-020, 1988.

[11] I. Maros, Computational Techniques of the Simplex Method, Kluwer Academic, Norwell, MA, 2003.

[12] D. Skoutas, D. Sacharidis, A. Simitsis, K. Timos Sellis, Serving the sky: discovering and selecting semantic Web services

through dynamic skyline queries, in: Proc. the 2008 IEEE International Conference on Semantic Computing, 2008.

[13] A. Immonen, D. Pakkala, A survey of methods and approaches for reliable dynamic service compositions, Service Oriented

Computing and Applications 8(2)(2014) 129-158.

[14] C.L. Xie, J.G. Ren, A dynamical reliability prediction algorithm for composite service. <https://www.hindawi.com/

journals/mpe/2014/917903/abs/>, 2014.

[15] R. Hamadi, B. Benatallah, A Petri net-based model for web service composition, in: D. Klaus, X.F. Zhou (Eds.),

Proceedings of the 14th Australasian database conference, ADC 2003, Adelaide, South Australia, February 2003, CRPIT 17,

Australian Computer Society, Adelaide, Australia, 2003, pp. 191-200.

[16] Y. Cardinale, J.E. Haddad, M. Manouvrier, M. Rukoz, Web service composition based on petri nets: review and

contribution, in: Proc. International Workshop on Resource Discovery, 2013.

[17] P.C. Xiong, Y.S. Fan, M.C. Zhou, A Petri net approach to analysis and composition of web services, Systems, Man and

Cybernetics, Part A: Systems and Humans, IEEE Transactions 40(2)(2010) 376-387.

[18] Y.D. Lin, Key technology of semantic Web service composition and its application, [PhD thesis] Guangzhou, China: South

China University of Technology, 2013.

[19] D. Papadias, Y. Tao, G. Fu, B. Seeger, An optimal and progressive algorithm for skyline queries, in: Y.H. Alon, G.I.

Zachary, D. AnHai (Eds.), Proceedings of ACM SIGMOD International Conference on Management of Data, San Diego,

California, USA, June 9-12, ACM, 2003, pp. 467-478.

[20] M. Xie, Software reliability models: past, present and future, in: N. Limnios, M. Nikulin (Eds.), Recent Advances in

Reliability Theory, Statistics for Industry and Technology, Birkhäuser, Boston, MA, 2000, pp. 55-90.

[21] M. Morse, J.M. Patel, W.I. Grosky, Efficient continuous skyline computation, Information Sciences 177(2007) 3411-3437.

[22] M. Alrifai, D. Skoutas and T. Risse, Selecting skyline services for QoS-based web service, Raleigh, in: Proc. the 19th

International Conference on World Wide Web, 2010.

[23] J. Wu, L. Chen, Q. Yu, L. Kuang, Y.L. Wang, Z.H. Wu, Selecting skyline services for QoS-aware composition by

upgrading MapReduce paradigm, Cluster Comput 16(2013) 693-706.

[24] D. Kossmann, F. Ramsak, S. Rost, Shooting stars in the sky: an online algorithm for skyline queries, in: A. Bernstein, Y.E.

Ioannidis, R. Ramakrishnan, D. Papadias (Eds.), Very Large Databases (VLDB), Hong Kong SAR, China, 2002, pp. 75-286.

[25] W. Hussein, T. Peng, G.J. Wang, A weighted throttled load balancing approach for virtual machines in cloud environment,

Int. J. of Computational Science and Engineering 11(4)(2015) 402-408.

[26] Z.Y. Shao, B. Yang, Proof of retrievability with efficient verification, Int. J. of Embedded Systems 7(3-4)(2015) 203-215.

[27] R. Eswari, S. Nickolas, Effective task scheduling for heterogeneous distributed systems using firefly algorithm, Int. J. of

Computational Science and Engineering 11(2)(2015) 132-142.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

