
Journal of Computers Vol. 29 No. 5, 2018, pp. 232-243

doi:10.3966/199115992018102905018

232

A Distributed Caching Scheme for Improving Read-write

Performance of HBase

Bo Shen1,2*, Zi-Bo Yu1, Wei Lu1, Yi-Chih Kao3

1 School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, China

{bshen, 14120167, 16120103}@bjtu.edu.cn

2 Key Laboratory of Communication and Information Systems, Beijing Municipal Commission of Education,

Beijing, China

3 3Information Technology Service Center, National Chiao Tung University, Taiwan

ykao@mail.nctu.edu.tw

Received 7 January 2018; Revised 7 July 2018; Accepted 7 August 2018

Abstract. As an important infrastructure of big data, HBase has been wildly used in lots of

businesses and provides high performance in massive data reading and writing. However, HBase

is still undergoing continuous improvement for meeting the special demands in lots of individual

application fields. The issues involve cache replacement algorithm, region split and compact

strategy, load balance and so on, and a relatively uniform scheme is still needed. In this paper,

we propose a RowKey generation method based on consistent hashing and introduce a pre-

partition scheme to distribute data to RegionServers uniformly. We also give the consideration

to reading performance while design the improved writing mechanism for several data types.

Experiments show that the performance of reading and writing has been significantly improved

comparing with original HBase, which benefits by mapping data to the virtual nodes in the

designed hashing ring.

Keywords: consistent hashing, HBase, load balance, partition

1 Introduction

Nowadays, the amount of Internet data reaches level PB. Traditional storage methods will no longer meet

the requirements of efficient IO performance and expansion capability. People begin to reconsider the

technologies of storing and indexing massive data, and a kind of non-relational database named NoSQL

begins to play an important role [1]. Compared with relational database, NoSQL has several advantages

[2]. For example, fixed table pattern is not necessary for data storage. The native distributed structure of

NoSQL can provide high concurrent and efficient reading and writing abilities to massive data.

The common NoSQL databases belong to four major categories [3]: key-value store database, column

storage database, document database and graphics database. Generally, key-value database, such as Redis,

is a kind of memory databases and usually used as content caching. So, it rarely considers the

performance of data persistence. Column storage database, which is usually used to store massive data,

has high abilities of distributed storage and scalability. It provides large storage capacity but relatively

limited function of processing data relationship. The representatives are HBase and Cassandra. Document

database is considered as semi structured in general and documents are stored in a specific format, for

instance JSON. The table structure is variable and the data structure is flexible, for example MongoDB.

Graphics database has flexible graphical model and can be extended to multiple servers, such as Neo4J.

HBase is a multi-row and multi-dimensional mapping table based on HDFS, which is inspired by the

Google file system [4] and MapReduce [5] and provides high reliability, high performance and high

availability. Currently HBase has become the most popular massive data storage, management and

* Corresponding Author

Journal of Computers Vol. 29, No. 5, 2018

233

computing technology, with more than 60 related components in programming and data access

framework [6]. HBase has been widely used by Internet companies such as Facebook, Alibaba and

Amazon.

HBase continues to improve. In some cases, it still cannot meet the demand of business. For example,

during the data writing stage of HBase, blocking mechanism is extremely easy to cause the split and

compact operations are performed circularly, which greatly affects the write performance of HBase. Also,

in data storage period, storage mechanism of HBase does not achieve load balancing purpose well [7]. It

indicates that there are still some room for improvement in HBase storage. The current researches usually

take specific scenario as the targets of improvement and optimize the performance on specific business

function. But many times, a universal optimization strategy is needed. Combination of current

development of massive data processing, the design of the storage layer, as the bottom of the whole big

data system, is particularly necessary. In view of this, we focus on the distributed caching strategy of

HBase and propose an applicable scheme for enhancing the storage performance of HBase.

2 Two-stage Partition Storage Schemes

2.1 Problem Analysis

In HBase, region is the minimum unit of storage which fells in each RegionServer [8-10]. When data

need to be updated, the region where the data is stored should be located first by RowKey [11]. And then

the writing request is sent to the corresponding RegionServer. So, RegionServer plays a very important

role in the whole process of storage [12]. Because each region stores data in ascending order of RowKey

strictly, the seemingly distributed method tends to cause the problem of hot spot writing and result in

unbalanced load.

The creation process of regions, which involves several components such as Region, MemStore and

StoreFile [13-16], indicates that all data will be written to one region at the beginning when there is no

partition. So only one RegionServer is working at this time. In addition, data are usually inserted on the

basis of a certain order or a range of RowKey regardless of partitioning regions. Thus, data will be still

inserted into individual regions at the same time. Normally, a region rarely performs write operations

after data inserted unless some data need to be updated. Obviously, each RegionServer does a lot of

storage operations at some time and the rest stays in idle waiting period, which do not make the

distributed storage systems work to their advantage.

There are three key mechanisms about data storage in HBase, named flush, compact and split [17],

which are all carried out in region unit and have the significant influence over storage performance.

When writing in HBase, data are first written into memStore of distributed writing cache. Once the

threshold of memStore is reached, all memStore in the same Region will perform flush operation and

write data to StoreFile. If a table has multiple column families, many StoreFiles will generate and their

number will quickly reach the threshold of compact. And then the compact probability will be greatly

improved, which easily produces compaction storm and reduces the overall throughput of the system.

Further, split mechanism is employed to ensure that each region does not store too much data, which is

achieved by smaller split threshold value. Small split threshold can increase the efficiency of data

inserting but lead to more frequent split operation. When split, regions enter offline mode and all requests

to these regions will be blocked. It is thus obvious that small split threshold could result in many regions

splitting at the same time and the whole access service of the system would be greatly affected.

Specifically, the case that the average throughput of the system is larger but the throughput is extremely

unstable will arise. On the other hand, the larger Split threshold can reduce the probability of Split and

overcome the issue of unstable throughput but give rise to more StoreFile existing, which leads to more

Compact operations in a Region. Compact operation first reads all data in original files and then writes

them into a new file. After that the original files are deleted. Compacted file will become bigger and

bigger and take up lots of IO. So, the average throughput decreases. In summary, it can be seen that the

flush, Split, Compact mechanism of HBase are interrelated and constrain each other.

A Distributed Caching Scheme for Improving Read-write Performance of HBase

234

2.2 Pre-partition

The above discussion indicates that well designed RowKey [18] and partition method would be the way

of solving the problems of unbalanced data distribution and hot-writing point. There are three patterns of

partition in HBase, called automatic partition, manual partition and pre-partition. Automatic partition

divided a region into two regions once the specified threshold is reached. Manual partition means a

region can be divided into two by shell command manually. Pre-partition method builds several Regions

according to the scope of RowKey in the initialization stage of a table. After pre-partition, each region is

assigned a startKey and a endKey except the first Region which has no StartKey and the last Region no

EndKey, as shown in table 1. Where StartKey and EndKey have the same means as that in range query of

HBase [19-20]. When writing data, the request will be sent to the corresponding Region according to the

RowKey and the requests field of the Region will plus one. Obviously, pre-partition pattern is beneficial

to share the load of RegionServer.

Table 1. Partition information

Name Region Server Start Key End Key Requests

t1,,1479956792917.ebbebfabdb130955225177630abbfb03. localhost:60030 201605000000 0

t1,201605000000,1479957153101.ba9a2b4da601d84866d19e065c73eca0. localhost:60030 201605000000 201610000000 0

t1,201610000000,1479957270016.8248f7556d2e45cf78e93d16a8d7aa04. localhost:60030 201610000000 201611000000 0

t1,201611000000,1479957270016.6f47062bdb2cadc6301570366672a2a8. localhost:60030 201611000000 0

However, it is difficult to estimate the range of every Region in accordance with the RowKey of each

table, which means no universal pre-partition scheme exists. Further, the current simple pre-partition

method does not take the situation of cases that node is added or deleted. It also does not consider the

dynamic adjustment of partition for achieving load balance.

To distribute data onto more than one Regions uniformly, here we first calculate the hash value of

RowKey when pre-partition is executing. Hashing algorithm has the ability of changing the distribution

of data and achieve uniform distribution. Once data are distributed equally to each Region, the problem

of writing hot point is avoided naturally. Further, the uniqueness of hash result ensures that multiple

calculation results of a data have the same value, which enables the data to be located in the correct

position when query.

There are many hash algorithms in literature. We need the RowKey hash to ensure the uniform

distribution of data. Meanwhile, the calculation performance and conflict probability are also important.

Fig. 1 shows the distribution of hash value of several common hash algorithms, which indicates that

MD5 [21] and SHA-1 have stable and relatively uniform distribution. Table 2 gives the number of

conflict and running time on 100 million randomly generated string. The results show that MD5 and

SHA-1 do not bring any conflict although they take more time. Comparing with SHA-1, MD5 has better

calculational performance. So, we use MD5 as the hashing method of RowKey.

MD5 produces 128-bit hash value. In order to take advantage of its distribution character, we map this

128-bit value into a string with 32 letters from A to P. This means every 4 bits are converted to a letter of

A to P. And then, the new RowKey is formed by MD5 hash value of the original RowKey and the

original RowKey.

The new RowKey ensures all data to be stored in HBase begin with a letter from A to P, which can be

used as the dividing point of Regions. That is, the data having the RowKey starting with A will be stored

in Region 1, and so on. Because of having explicit StartKey and EndKey, all pre-regions can be built in

the initialization stage of a table.

2.3 Adaptive Partition

Pre-partition mentioned above could be helpful at initial phase of storing data into HBase, but some

RegionServer might still be congested due to their overload and performance differences. So, we

introduce adaptive partition to bring load balance to HBase during run time.

Journal of Computers Vol. 29, No. 5, 2018

235

Fig. 1. Distribution of hash value of several algorithms

Table 2. Hash conflict and running time of several hash algorithm

Hashing algorithm The number of conflicts The running time(ms)

ELFHash 59168 78

JSHash 29306 61

DJBHash 30574 55

MD5 0 852

SHA-1 0 1423

After pre-partition, 16 Regions will be built. If every region is treated as a virtual node, all nodes

divide the circle of consistent hashing space into 16 fragments as shown in Fig. 2, and consistent hashing

algorithm just can be used to distribute each region to which of RegionServer. The specific condition of

RegionServer decides which of several regions are distributed to every RegionServer. For example,

suppose a system has 8 RegionServers, the virtual nodes corresponding to each RegionServer might be as

shown in Table 3. Thus, the storage location corresponding to each data is in the first RegionServer

arrived closewise.

Fig. 2. Distribute regions in consistent hashing space

A Distributed Caching Scheme for Improving Read-write Performance of HBase

236

Table 3. Allocation of virtual nodes in RegionServer

RegionServer virtual nodes RegionServer virtual nodes

RegionServer01 A，I RegionServer05 E，M

RegionServer02 B，J RegionServer06 F，N

RegionServer03 C，K RegionServer07 G，O

RegionServer04 D，L RegionServer08 H，P

Some researches indicate that massive data mapping always meet mapping failure caused by the

addition and deletion of storage nodes identified by conventional Hash algorithm [22-25]. We find

combining the pre-partition method with consistent hashing algorithm can solve the problem. The data

structures of common implementation of consistent hashing algorithm include list and AVL tree.

Comparing with list, AVL tree has better performance. But nodes in AVL tree cannot known the

situation of their neighbors. The consistent hashing algorithm needs to know not only the information of

storage nodes, but also their neighbors’. So, we employ the idea of B+ tree [26] to design the required

data structure.

To search node on consistent hash ring, the initial machine nodes on the hash ring are treated as the

key of nodes on B+ tree, and other machine nodes are stored as the information of leaf nodes on the tree.

Because the data of adjacent nodes of target node are needed, the uni-directional chain list structure of

B+ tree should be translated into bi-directional chain list, named extended B+ tree, in which the time

complexity of finding target storage node is O(log n) and finding adjacent node is O(1). Fig. 3(a) gives

the example of a third order extended B+ tree that uses A-P as its key.

The consistent hash ring based on extended B+ tree has flexibility to add nodes to the ring or remove

them. If the target leaf node in the extended B+ tree is not full, new node can be inserted into the bi-

directional chain list directly. Otherwise, the target leaf node will be divided into two parts and a new key

will be added to its parent node. At the same, terminal node Q should be appended at the end of sub-

chain, as shown in Fig. 3(b). Removing node from the consistent hash ring has reverse process, which

means nodes combination will occur when a node has less child-nodes due to the removal of nodes. Fig.

3(c) gives an example of node removal.

(a) Extended hash algorithm

implemented by extended B+ tree

(b) Extension of the B+ tree after

inserting AB

(c) Extension of the B+ tree after

deleting AB

Fig. 3.

2.4 RegionServer performance evaluation strategy

To achieve load balance, it is necessary to evaluate the performance of each RegionServer periodically

for adjusting data distribution in running process of the system. Here we employ TOPSIS [27-28] and

AHP [29] to design the evaluation strategy. On the basis of the storage mechanism of HBase, there are

several factors that affect the performance of RegionServer node and the load balance of the whole

system, as shown in Table 3.

Journal of Computers Vol. 29, No. 5, 2018

237

Table 3. Factors affecting load balance

Hardware (B1)
Region Number (C11), CPU(C12),

Memory (C13), Disk (C14)

Network performance (B2)

Bandwidth (C21), Throughput (C22), Number of

RegionServer read requests (C23), Number of

RegionServer write requests (C24)

Factors affecting the

performance of system (A)

Mobile cost (B3) Localized data (C31)

The factors of each node in a system form a matrix A named the decision matrix, in which the column

represents RegionServer node and the row is corresponding factor set. Due to the difference of value

range, these factors are normalized first by the following method.

min()
, max() min()

max() min()

0,

ij j

j j

ij j j

a a
a a

a aa

otherwise

−⎧
≠⎪

−= ⎨
⎪
⎩

 (1)

where
j

a is the column j of A and
ij
a is the entry of A and ija is the normalized value.

Next, AHP is employed to calculate the weight of each factor, as following,

11 1

/ ()
N NN

N N
i ij ij

jj j

w u u

== =

= ∑∏ ∏ (2)

where
ij
u is the element of judgment matrix obtained through AHP.

And then, the element of normalized decision matrix is weighted as follow.

 ijij i
v w a=

Let
i
v
+ and

i
v
− are the positive ideal solution and the negative ideal solution respectively, the distance

between column J of the decision matrix and the ideal solution has the following form,

 2

1

()
n

j ij i

i

S v v
+ +

=

= −∑ , 2

1

()
n

j ij i

i

S v v
− −

=

= −∑ (3)

Then, the evaluation index of all RegionServer nodes and load equilibrium points can be calculated by,

j

j

j j

S
S

S S

+

+ −
=

+

 (4)

It means nodes are running healthily when the evaluation index of nodes is less than the evaluation

index of the load balance point. When the evaluation index of half of nodes are higher than that of the

load balance point, the load balance point index becomes the average value of current evaluation index of

all nodes, and the system is waiting for the next round of evaluating. In other cases, the evaluation index

that goes over load balance point index will be re-calculated.

2.5 Optimization of HBase Query Performance

In HBase, the read cache is controlled by BlockCache [30]. RegionServer contains a Block priority queue

with three levels: Single, Multi and InMemory. Such that, the core content such as .META. Table is

loaded into InMemory, and multiple use data is in Multi. This design is very flexible to avoid the mutual

influence between Cache. However, it is not difficult to find that the BlockCache cache replacement

strategy is a typical LRU algorithm, which decides the cache elimination only according to the write

memory time. The design doesn’t take care of data hotspots. The data in Single queue will upgrade to

Multi queue when they are hit again and become old generation. After old generation are replaced, the

memories they occupied will be recycled by CMS, which uses marking clean algorithm and generates

A Distributed Caching Scheme for Improving Read-write Performance of HBase

238

lots of discontinuous memory fragments. When large objects need to be created, GC should be executed

first. GC will stop the whole progress and affects the normal read and write requests seriously.

The current data replacing rule of Single queue is based on the timestamp of inserting data, which

would result in the replacement of hot data by new data. An intuitionistic judgement is that the more

times a data appears in unit time, the hotter it is. So, the frequency can be used to represent the heat of

data, as follows,

c

F
CurTime LastTime

=

−

 (5)

where CurTime is the time of current cache replacement, LastTime indicates the last time of cache

replacement and c is the times that a data has been queried after the last time of cache replacement

occurred.

Consider that data have diverse frequency in different periods, recent query frequency of data has great

influence on the frequency next time, and the influence is weakening with time, the caching evaluation

index is defined as,

 () ()(1) 1S n F S nα α= × + − × − (6)

where α is the decay factor, which determines the proportion of the current and the previous heat.

Obviously, through continuous iteration, the heat proportion of previously cached data is getting smaller

and smaller, which avoids the problem that some data remain in cache for a long time once they appear.

To reduce full GC further, recycling the Blocks with large size should be a priority in Multi-layer. On

the other hand, the data that are queried frequently are usually some data in Block. Evidently, the larger

the Block is, the lower the value of caching it. Therefore, we assess a Block with the way,

 () ()
S

V LastVisit BuildTime CurTime LastVisit
F

= × − × − (7)

where S represents the size of a Block. Because the data entering Multi-layer in the earlier time will

become useless data with larger probability and should be eliminated, but some data stay in cache for a

long time due to constantly queried, the time factors should be considered.

LastVisit is the time of last access to the data, and BuilderTime indicates when the data entered Multi-

layer. Once the storage capacity of Multi-layer reaches its threshold, all cached data should be sorted

according to the evaluation indexes, and then the data with maximum index value should be eliminated to

Single level until the storage capacity returns to normal.

3 Experiments and Results

To verify the effectiveness of proposed scheme, we use three types of data to test the writing and reading

performance on modified HBase: random, centralized and continuous data set. Random data set includes

5 million lines with random RowKey, which is retrieved from Weibo system. The data in centralized data

set have the RowKeys which appear in a particular range. For example, the order data of taxi in the rush

hour have the timestamp that are concentrated. We generate 5-million-line data with this characteristic by

codes. Continuous data mean their RowKeys are incremental or decremental, which are easily generated

by codes.

Two kinds of clusters are built for the experiment, homogeneous cluster composed by the same

computers and heterogeneous cluster including computers with various hardware configuration. All

clusters run original HBase first, and then run the proposed HBase distributed cache strategy. The

performance of data query and write under the two strategies are compared.

First, we test the write operation in homogeneous cluster by inserting 100 thousand, 1 million, and 5

million data of three different types to HBase cluster. We compare the writing time of native HBase and

the HBase applied caching strategy. The results are shown in Fig. 4.

Journal of Computers Vol. 29, No. 5, 2018

239

Fig. 4. Comparison of inserting data time

Obviously, after improving the storage mechanism, the writing time has a significant reduction

comparing with the original HBase, no matter for which type of data. The reason is that there is a great

difference in quantity of writing requests handled by each RegionServer although the number of Region

allocated in each of them is basically the same, as shown in Fig. 4.

The plots in Fig. 5 imply that the number of processed requests vary greatly for continuous data in

each time unit by original HBase system, and there will be a node in rarely working state for each time

unit. It proofs the original HBase will write into a Region preferentially without pre-partition and current

writing requests will arrived at the latest Region until the Region needs to be split. Without pre-partition,

about 4 Regions will generated in each statistics time interval, which causes a waste of distributed system.

The results indicate that the proposed caching strategy can guarantee the balance of requests of each

RegionServer due to MD5 hashing of RowKey and pre-partition of Region. And for different type of data,

the proposed method can help for realizing the performance of distributed storage system of HBase.

Fig. 5. The processing of various data types by HBase

Further, Fig. 6 gives the results of writing data into heterogeneous clusters which is to verify the

correctness of RegionServer performance evaluating strategy. So, the storage scheme of native HBase is

compared with that of MD5 pre-partition design by using random data. It can be observed that the

A Distributed Caching Scheme for Improving Read-write Performance of HBase

240

scheme employed performance evaluation has the shortest writing data time in case of various data size.

In the original HBase strategy, the Region distribution is determined by the HMaster, and Master has

great randomness to decide the unallocated Region. In addition, the original HBase judge the load

balance by the number of Regions, so the Regions distributed on each RegionServer can stay in

equilibrium.

Fig. 6. Comparison of inserting data time

The MD5 pre-partitioning method initially divides the entire storage area into 16 areas (A-P), each of

which contains a Region and is allocated to different RegionServer. That is, initially each RegionServer

contains 4 Regions. For 5 million micro-blog user data with 2G bytes and the default HBase partition

threshold of 64M, each region split into two after data writing, which proves that the MD5 uniform

hashing has better performance of load balance.

Next, we test the random reading performance of HBase and proposed scheme. The query conditions

are the 2 million items extracted from 5 million data randomly, and the hit rate on cache of each query is

counted. The results are shown in Fig. 7.

(a) Comparison of cache hit rate (b) Results of random reading

Fig. 7.

After optimizing, the reading cache the hit rate is obviously improved. This is because the separated

design of Single-layer and Multi-layer give the opportunity of adding data heat comparison into Single-

layer and adding data block size comparison into Multi-layer, which are both helpful for enhancing the

hit rate of query.

We also test the continuously reading performance. In each query we choose a starting point and select

up or down consecutive records of the point as query conditions. When the total number of queries

achieve 10 million, the number of data processed in per second is recorded. The results are shown in Fig.

8.

Journal of Computers Vol. 29, No. 5, 2018

241

Fig. 8. Processing speed of continuous data

We find that, the original HBase sorts data by dictionary order and cache data by blocks, which

provides high accessing performance. But the proposed method uses hashed RowKey and distributes

continuous data to various nodes, which leads to low performance at the beginning of test. After that the

second level cache stores frequently-used data, which makes the performance of proposed scheme close

to the original HBase. This avoids the drawback brought by optimization of writing.

4 Conclusion

In summary, we propose a two-stage partition strategy for improving the performance of Hbase caused

by load balance. In pre-partition stage, we use MD5 realize the uniform distribution of RowKey, and

design a RegionSever performance evaluation method which employs the improved consistent hashing

algorithm to map the partitions into a hash ring. We also introduce a design of read cache which

considers the data heat and continues data distribution.

The experiment results about continuous, centralized and random data indicate that the proposed

scheme can improve the performance of reading and writing data in both cases of homogeneous and

heterogeneous clusters and has stable reading and writing speed no matter which type of data.

Acknowledgements

This research is supported by the National Key Research and Development Program of China (No.

2017YFC0840200) and the Fundamental Research Funds for the Central Universities (No. 2017JBZ107).

References

[1] M. Stonebraker, SQL databases v. NoSQL databases, Communications of the ACM 53(4)(2010) 10-11.

[2] T. Nasser, R.S. Tariq, Big rata fhallenges, J Comput Eng Inf Technol 4(3)(2015) 10.4172/2324-9307.1000161.

[3] F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M. Burrows, T. Chandra, A. Fikes, R.E. Gruber, Bigtable: a

distributed storage system for structured data, ACM Transactions on Computer Systems 26(2)(2008) 1-26.

[4] S. Ghemawat, H. Gobioff, S. Leung, File and storage systems: the Google file system, ACM Symposium on Operating

Systems Principles Bolton Landing 37(2003) 29-43.

[5] J. Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters, ACM 51(1)(2008) 107-113.

[6] T. White, D. Cutting, Hadoop: the definitive guide, O’reilly Media Inc Gravenstein Highway North 215(11)(2012) 1-4.

[7] L. George, HBase: the definitive guide, Andre 12(1)(2011) 1-4.

A Distributed Caching Scheme for Improving Read-write Performance of HBase

242

[8] S. Nishimura, S. Das, D. Agrawal, D. El Abbadi, MD-HBase: a scalable multi-dimensional data infrastructure for location

aware services, in: Proc. IEEE International Conference on Mobile Data Management, 2011.

[9] J. Huang, X. Ouyang, J. Jose, Md. Wasi-ur-Rahman1, H. Wang, M. Luo, H. Subramoni, C. Murthy, D.K. Panda, High-

performance design of HBase with RDMA over InfiniBand, in: Proc. IEEE 26th International Parallel and Distributed

Processing Symposium, 2012.

[10] C. Zhang, H.D. Sterck, Supporting multi-row distributed transactions with global snapshot isolation using bare-bones

HBase, in: Proc. IEEE/ACM International Conference on Grid Computing, 2011.

[11] S. Hong, M. Cho, S. Shin, J.-h. Um, C.-N. Seon, S.-K. Song, Optimizing HBase table scheme for marketing strategy

suggestion, in: Proc. International Conference on Knowledge and Smart Technology, 2016.

[12] M.N. Vora, Hadoop-HBase for large-scale data, in: Proc. International Conference on Computer Science and Network

Technology, 2012.

[13] R.C. Taylor, An overview of the Hadoop/MapReduce/HBase framework and its current applications in bioinformatics,

BMC Bioinformatics 11(S12)(2010) S1.

[14] D.J. Kim, J.H. Shin, K.S. Hong, Scalable RDF store based on HBase and MapReduce, in: Proc. International Conference on

Advanced Computer Theory and Engineering, 2010.

[15] H. T. Vo, S. Wang, D. Agrawal, G. Chen, B.C. Ooi, LogBase: a scalable log-structured database system in the cloud, in:

Proc. the 38th International Conference on Very Large Data Bases, 2012.

[16] G. Saloustros, K. Magoutis, Rethinking HBase: design and implementation of an elastic key-value store over log-structured

local volumes, in: Proc. International Symposium on Parallel and Distributed Computing, 2015.

[17] H. Dutta, A. Kamil, M. Pooleery, S Sethumadhavan, J. Demme, Distributed storage of large-scale multidimensional

electroencephalogram data using Hadoop and HBase, in: S. Fiore, G. Aloisio (Eds.), Grid and Cloud Database Management,

Springer, Berlin, 2011, pp. 331-347.

[18] H. Ding, Y. Jin, Y. Cui, T. Yang, Distributed storage of network measurement data on HBase, in: Proc. International

Conference on Cloud Computing and Intelligent Systems, 2012.

[19] Z.J. Yan, P. Sun, X.M. Liu, An HBase-based platform for massive power data storage in power system, Advanced

Materials Research 1070-1072(2015) 739-744.

[20] L. Cai, S. Huang, L. Chen, Y. Zhang, Performance analysis and testing of HBase based on its architecture, in: Proc.

International Conference on Computer and Information Science, 2013.

[21] R. Rivest, The MD5 Message-Digest Algorithm, RFC Editor, Fremont, CA, 1992.

[22] Q. Li, K. Wang, S. Wei, X. Han, L. Xu, M. Gao, A data placement strategy based on clustering and consistent hashing

algorithm in cloud computing, in: Proc. 2014 9th International Conference on Communications and Networking in China

(CHINACOM), 2014. doi:10.1109/CHINACOM.2014.7054342

[23] J. Petrovic, Using Memcached for data distribution in industrial environment, in: Proc. International Conference on

Systems, 2008.

[24] B. Fitzpatrick, Distributed caching with Memcached, Linux Journal 124(2004) 72-76.

[25] Q. Liu, W. Cai, J. Shen, B. Wang, Z. Fu, N. Linge, VPCH: A consistent hashing algorithm for better load balancing in a

Hadoop rnvironment, in: Proc. Third International Conference on Advanced Cloud and Big Data, 2015.

[26] C.S. Jensen, D. Lin, B.C. Ooi, Query and update efficient B+-tree based indexing of moving objects, VLDB (2004) 768-

779.

Journal of Computers Vol. 29, No. 5, 2018

243

[27] T.C. Wang, T.H. Chang, Application of TOPSIS in evaluating initial training aircraft under a fuzzy environment, Expert

Systems with Applications 33(4)(2007) 870-880.

[28] I. Mahdavi, N. Mahdavi-Amiri, A. Heidarzade, R. Nourifar, Designing a model of fuzzy TOPSIS in multiple criteria

decision making, Applied Mathematics & Computation 206(2)(2008) 607-617.

[29] M.C.Y. Tam, V.M.R. Tummala, An application of the AHP in vendor selection of a telecommunications system, Omega

29(2)(2001) 171-182.

[30] S. Lee, S. Shakya, R. Sunderraman, S. Belkasim, Real time micro-blog summarization based on Hadoop/HBase, in: Proc.

IEEE/WIC/A CM International Joint Conferences on Web Intelligence, 2013.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

