
Journal of Computers Vol. 29 No. 6, 2018, pp. 52-65

doi:10.3966/199115992018122906005

52

BTHYDRA+:

Towards a Comprehensive Model to Conduct

Cross-project Defect Prediction

Ning Huang1, Jinglong Fang2, Dan Wei2, Bin Chen2, and Xingqi Wang2*

1 School of Computer Science, Hangzhou Dianzi University, ZheJiang Province,

925958391@qq.com

2 Key Laboratory of Complex Systems Modeling and Simulation Ministry of Education,

School of Computer Science, Hangzhou Dianzi University, ZheJiang Province,

{fjl, weiwd, chenbin, xqwang}@hdu.edu.cn

Received 13 July 2017; Revised 28 November 2017; Accepted 9 January 2018

Abstract. Cross-project defect prediction (CPDP) is a field of study where researchers need to

build a universal model by using within-project data to predict defects on other projects.

However, variations in the distribution of source and target projects have an influence on the

performance of classifiers. To enable effective cross-project defect prediction, we propose a

comprehensive model containing data preprocessing and classifier transferring to construct a

better classification space and strengthen the performance of classifiers. In preprocessing step,

one baseline is calculated for every dataset from its non-defective samples based on the distance

to all other non-defective samples and the data is transformed by using rank function. Genetic

algorithm and ensemble learning are selected as the way in transferring step to extract effective

representation from source projects and boost the capability of weak classifiers. We use Naive

Bayes, Support Vector Machine and Classification and Regression Trees as classifiers and apply

this model on five open resource projects (one Apache and four Eclipse projects) and NASA

MDP dataset. Selecting accuracy as fitness in genetic algorithm improves the performance of

classification. The model we proposed yields similar results and obtains higher precision

comparing the within-project models. Meanwhile, it obtains better performance than the state-

of-the-art methods on cross-project defect prediction. These results show that our model

provides an opportunity to training classifiers by using more samples from different projects.

Keywords: classifier transferring, cross-project defect prediction, data preprocessing

1 Introduction

Software defect prediction (SDP) is a crucial process in the software development. It helps developers to

find some potential defects in the sample, and reduce the cost of the entire project. In the past, many

researchers [1] worked on improving the performance of defect prediction algorithm on local dataset. In

recent years, more attention has been focused on how to handle cross-company or cross-project defect

prediction [2]. The difference between these two researches is that organizations predict defects by their

own historical data in within-project defect prediction (WPDP), while cross-project defect prediction

(CPDP) needs to apply a model built from within-project data on other projects or even new releases of

the same project. Zimmermann et al. [3] use defect prediction models learnt from one project on another,

but the success rate is only 3.4%. So within-project data must be carefully preprocessed before being

utilized globally.

* Corresponding Author

Journal of Computers Vol. 29, No. 6, 2018

53

Generally, cross-project defect prediction is a challenging task since the models that is trained on one

or a set of projects might not generalize well to other projects. The difficulty for building CPDP models

is to solve variations of data in training and target projects [4]. Zhang et al. [5] consider two ways to

overcome this challenge: (1) only use similar data from projects for training and testing [6], (2) transform

data from the training project and the target project to the same distribution [7]. Meanwhile, Xia et al. [8]

put forward a HYbrid moDel Reconstruction Approach (HYDRA) based on genetic algorithm and

ensemble learning. However, these two methods either only have the function of preprocessing, or only

focus on the performance of the classifiers. Therefore, we combine the advantages of preprocessing

method and classifier transferring. A better comprehensive model is proposed to unify the distribution of

data in different projects and strength the capability of classifiers.

In this study, we first propose a baseline transformation to address the variations in the distribution of

training and target projects. Each project dataset has two classes of defect (minority) and non-defect

(majority). One baseline is looked for among non-defective samples for every dataset, and used to

transform corresponding data respectively. These baselines are required to be closest to the non-defective

samples in other datasets. In other words, they are some standards of normal module that are most likely

to be recognized by other projects in its own project data. So different project data can be pulled back to

a same level by preprocessing with using these standards. Then we improve HYDRA model on threshold

generation and use it to predict those samples from target projects after transformation. Threshold is

generated randomly in Xia’s article. This method may cause the entire GA phase to crash, because almost

Comp(j) are smaller than threshold. Generation delay helps to evaluate range of Comp(j) in advance,

which not only avoids the calculation problem of F-measure, but also reduce the cost during searching

threshold. Moreover, fitness selection is studied for find a way to promote the capability of classifiers on

imbalance problem. Both Accuracy and F-measure are selected as Fitness to measure performance of

parameters.

We apply our approach to five open source projects (Eclipse, Equinox, Mylyn, Lucene, and PDE),

which is also the dataset used by Zhang et al. [5] in their research. In addition to Naive Bayes (NB),

Support Vector Machine (SVM) and Classification and Regression Trees (CART) are added to evaluate

the performance of our model on different classifiers. Besides Within model, we compare our model

against seven cross-project prediction methods [3, 5, 9-13]. The results show that (1) in the contrast

between cross-project and within-project defect prediction, our models yields comparable F-measure and

have a few drawback on accuracy (lower than 1%-6%), but far from within-project model on recall

(lower than 14%); (2) in the comparison of cross-project preprocessing methods, the accuracy and F-

measure of our model are higher than others’; (3) utilizing accuracy as a fitness increases the accuracy of

classification without decrease of F-measure. For examining the generalizability of our method, we apply

it to NASA MDP dataset. The results provides a similar performance as we mentioned before.

Additionally, SVM is considered as an efficient classifier in CPDP rather than NB or CART because it

has good ability of non-linear classification and excellent robustness. In summary, the major contribution

of our study is providing a comprehensive model combining preprocessing method and classifier

transferring to address the problem existing in cross-project defect prediction. This thought enables us to

build a universal model for different classifiers on a large set of projects.

The remainder of this paper is organized as follows. Section 2 summarizes the related work in the field

of CPDP. Section 3 describes our approach and Section 4 presents the results and discussions of

experiments. We conclude and provide insights for future work in Section 5.

2 Related Work

Software defect prediction is an effective way to detect defective samples or documents in software

system. It builds a model by historical data from the same software or project to predict label of test data.

However, it is rare that sufficient historical data is available for a new project, but there is plenty of data

from other projects. Thus, more attention has been focused on how to effectively utilize the data from

other projects. This approach provides a new research direction in defect prediction, which is called

cross-project defect prediction (CPDP). The aim of CPDP is to build a model from other projects to

successfully predict defects in their own projects. Usually, simply applying models from training projects

on target projects does not lead to accurate prediction. In Fig. 1, some methods that can be used in CPDP

are collected and divided into three categories: Original, Data Preprocessing and Classifier Transferring.

BTHYDRA+: Towards a Comprehensive Model to Conduct Cross-project Defect Prediction

54

Fig. 1. Methods to solve cross-project defect prediction

Zimmermann et al. [3] run 622 cross-project predictions on 12 real-world applications. They do not

using any transferring method, but only make one-to-one classification (BASIC)1. Decision trees are used

to identify the factors (i.e., process, code data and domain) that do influence the success of cross-project

prediction. They conclude that cross-project prediction is a serious problem, that is, simply using projects

in the same domain does not work to build accurate prediction models. Process, data and domain need to

be quantified, understood and evaluated before prediction models are built and used.

Peters et al. [11] consider that when local data is scarce, more information exists in other projects.

Accordingly, they improve Burak filter (a state-of-the-art relevancy filter) [14] and propose Peters Filter

to solve the problem existing cross-project predictions. This filter selects training data via the structure of

other projects. To assess the performance of the Peters filter, they compare it with two other approaches

for quality prediction. Within-company learning and cross-company learning with the Burak filter. The

results show that: (1) within-company predictors are weak for small datasets; (2) the Peters filter + cross-

company builds better predictors than both within-company and the Burak filter + cross-company; and (3)

the Peters filter builds 64% more useful predictors than both within-company and the Burak filter +

cross-company approaches.

However, Peters filter only uses similar data from projects for training and testing. It is improved when

Feng Zhang et al. [5] propose their context-aware rank transformations. It is a preprocessing method that

can transform all of data from training projects and target projects to the same distribution. They cluster

projects based on the similarity of the distribution and derive the rank transformations using quantiles of

predictors for a cluster. Then they fit the universal model on the transformed data of 1,398 open source

projects hosted on SourceForge and GoogleCode. The results suggest that a universal defect pre-diction

model may be an achievable goal.

Finding a better classification space is regarded as a main method to overcome challenge from

difference between source project and target project. Domain adaptation solves this problem in a target

domain by utilizing the training data in a different but related source domain. TCA [9], TCA+ [15],

MIDA [16], SA [17], ITL [18] and KPCA [10] are used for searching space according some criteria and

projecting the data. TCA is one of most common method proposed by Pan et al. [9]. It tries to learn some

transfer components across domains in a Reproducing Kernel Hilbert Space (RKHS) using Maximum

Mean Discrepancy (MMD). As a result, standard machine learning methods can be applied in the source

domain for use in the target domain. They verify effectiveness and efficiency of TCA by experiments on

two real-world applications: cross-domain indoor WiFi localization and cross-domain text classification.

Kernel function [19] in classifiers also perform similar role in searching space, but the difference to

projection is that it can only combine with some certain classifier like SVM. Belkin et al. [12] propose a

family of learning algorithms (i.e., LapSVM and LapRR) based on a new form of regularization. They

focus on a semi-supervised framework that incorporates labeled and unlabeled data in a general-purpose

learner and also use properties of Reproducing Kernel Hilbert Space (RKHS) to prove new Representer

theorems that provide theoretical basis for the algorithms. The experiments suggest that these semi-

1 We refer to Zimmermann et al.’s approach as BASIC in this section

Journal of Computers Vol. 29, No. 6, 2018

55

supervised algorithms are able to use unlabeled data effectively, which corresponds to application

scenarios of cross-project prediction.

Meanwhile, some ensemble learning methods are applied like Voting in CoDEP [20], GP [21] and

Adaboost in TransferBoost [22]. HYbrid moDel Reconstruction Approach (HYDRA) with using

Adaboost is proposed by Xia et al. [8] performs well on cross-project defect prediction. Experiments on

29 datasets from the PROMISE repository with using logistic regression as the underlying classification

algorithm are conducted. Their approach obtain better F-measure than TCA+, Peters filter, GP, MO, and

CODEP. In addition, HYDRA on average can discover 33 percent of all bugs if developers inspect the

top 20 percent lines of code. Moreover, HYDRA also can improve the F-measure of Zero-R. Other

method like MO [23] and TSVM [13] also can be applied on cross-project prediction.

Honestly, there are some drawbacks in these studies. The filter removes a large number of samples,

which will lose a lot of useful information. This method is suitable for the project possessing many

samples. And only in this way, the shortcoming of filter can be hidden. The theoretical basis of rank

method suggests is not sufficient, and this method only has preprocessing function. As for projection,

different algorithms have different criteria. It is difficult to select a universal criterion for all the projects.

Meanwhile, the projection does not utilize the information of labels very well. Kernel method are similar

with projection method to some extent, but they are often applied to a certain classifier. In addition,

ensemble learning can largely improve the performance of the weak classifiers. But the time and space

complexity are greatly increased, and parameters (e.g., number of iteration) need to be optimized in the

process.

However, the comprehensive model we proposed can effectively avoid the above shortcomings. The

comprehensive model takes data preprocessing and classifier transferring into account. It adopts the

baseline transformation to make full use of all data information including labels, and then ensemble the

weak classifiers with hybrid model reconstruction approach to strengthen generalization ability.

Moreover, we improve the process in the parameter searching step, and reduce the time complexity of

HYDRA. Besides, the interface of different classifiers is provided in the model, which solves the

problem that only one classifier is used in kernel methods.

3 Approach

3.1 Overall Architecture

The overall framework of our model is divided into two steps: preprocessing step and classification step,

which is shown in Fig. 2. In preprocessing step, we first unify metrics of source projects and target

project to ensure that all samples are under the same feature space. Then baseline transformation is used

to reduce the variation of the distribution of data from different projects by utilizing the most

representative samples to rank projects. In the classification step HYDRA+ algorithm combining

different classifiers is used for cross-project defect prediction. This algorithm contains GA phase and EL

phase. GA phase is aimed at finding the samples that can facilitate the prediction from the source projects,

while EL phase is helpful to enhance the performance of the weak classifiers.

Fig. 2. Overall architecture of BTHYDRA+

BTHYDRA+: Towards a Comprehensive Model to Conduct Cross-project Defect Prediction

56

The phase of unifying metrics is claimed briefly in section 4. In this section, we mainly discuss about

baseline transformation and the improvements on HYDRA.

3.2 Baseline Transformation

The aim of transformation in cross-project defect prediction is to make it easier for classifiers to find a

standard between defective and non-defective samples. If we find a baseline b in non-defective samples

of a project P , and it can be recognized by other projects, then b will be the most universal sample in P

for classification standard. By ranking all the samples in P according to b , the variations of the

distribution among different projects can be solved. This process is simply described in Fig. 3.

(a) original data

 defective samples

(b) find baseline for each dataset

 non-defective sample

(c) perform rank transformation

 baseline

Fig. 3. Schematic diagram of baseline transformation

Fig. 3(a) is original data from three projects. In Fig. 3(b), three baselines are found among non-

defective samples, and these three projects are transformed by them in Fig. 3(c). Defective samples are

divided into the same level with the change of mutual relation among these projects, so classifiers can

training model better with less cost.

We define
1 2

{ , ,..., } 1...
L

D D D D k L= = as L datasets, where
k

D
+ represents defective samples in the

kth dataset, while
k

D
− represents non-defective samples in the kth dataset.

For each dataset, we can find a sample from its non-defective samples as baseline:

1

1

|| ||, 1... , 1...

min || ||

i

k

L

k l kk

l

L

l
t D

l

baseline min D D l Land l k i n

t D
−

− −

=

−

∈
=

= − = ≠ =

= −

∑

∑

. (1)

The sum of this sample to all non-defective samples in the other datasets is the smallest.

For each feature in datasets, it can be transformed by using rank function:

 (,) (,)() () ()
i j j i j

R D B Q baseline Q D= + − . (2)

where the (,)()
i j

Q D is the tenth quantile of the ith sample on the jth feature. B is a base value, which

ensures that the features after transformation are positive. Because tenth quantile is used, so we set B to

10. For example, there are 10 samples whose values of the jth feature are: 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10

respectively. If the 7th sample is considered to be the baseline, the values of transformation is 4, 5, 6, 7, 8,

9, 10, 11, 12, 13.

Journal of Computers Vol. 29, No. 6, 2018

57

3.3 HYbrid moDel Reconstruction Approach+

HYDRA [8] contains genetic algorithm (GA) phase and ensemble learning (EL) phase. In the GA phase,

(N+1) classifiers are built for each source project Si and training target data Tt. Genetic algorithm (GA) is

used to search for the best composition of these classifiers. In the EL phase, multiple GA classifiers are

built by running the GA phase multiple times, and these GA classifiers are composed according to

Adaboost algorithm.

However, there are some faults in HYDRA. For example, F-measure cannot be calculated in (N+1)th

classifier because randomly selecting samples in Tt, and kβ should be decreasing function of kε rather

than increasing function. We propose generation delay of threshold in GA phase to solve the problem

that almost Comp(j) are smaller than threshold.

Consider N source projects {S1; S2; . . . ; SN}, and a training target data Tt. We build (N+1) classifiers

from the source projects and the training target project. A GA classifier composes these (N+1) classifiers

and assigns a label to an instance j as follows:

1

1

1 (. .,), ()
()

0 (. .,), ,

,

()

()
()

N

i i

i

i e defective if Comp j threshold
Label j

i e clean Otherwise

where

Score j

Comp j
LOC j

α

+

=

≥⎧
= ⎨
⎩

×

=
∑

. (3)

Where Scorei(j) is the likelihood score outputted by the ith classifier for instance j,
1

α to
1N

α
+

are the

weights of the (N+1) classifiers. The threshold is the boundary used to decide whether an instance is

defective or not, and LOC(j) is the number of lines of codes for instance j. Instance j will be classified as

defective (i.e., y=1) if its composite score Comp(j) is larger than or equal to threshold; otherwise it is

classified as clean. Note that
1

α to
1N

α
+

 and threshold are the parameters of a GA classifier. Thus, a GA

classifier is denoted as (
1

1

N

i i

i

Mα

+

=

∑ , threshold) where each Mi is a classifier,
i

α is the weight of Mi, and

threshold is the defect boundary. The searching space of all possible compositions corresponds to the

various assignments of values to the weights
1 2 1

{ , ,..., }
N

α α α
+

, and the defect boundary threshold. Each

weight is a real number from zero to one.

Since the range of comp (j) is usually in [0, 1], almost comp (j) are greater than the threshold if the

threshold and alpha are generated randomly at the same time. Meanwhile, the test samples are judged as

defective modules, which will cause Fitness (F-measure) cannot be calculated and GA crash. We put

forward that the alpha should be generated first, and then delay the generation of threshold after

calculating the range of comp (j). As formula (4) shown, it can effectively avoid the problem we

mentioned before. Besides, the threshold is in the range of comp (j), so F-measure is also easier to

achieve the optimum solution, which largely save the cost in searching parameters.

() (max min) min

,

min min(()) max max(())

threshold rand C C C

where

C Comp j C Comp j

= ⋅ − +

= =

. (4)

On the other hand, the selection of Fitness indicator in GA is also studied. Fig. 4 present the

discrepancy on the weight in confusion matrix by selecting different indicator.

BTHYDRA+: Towards a Comprehensive Model to Conduct Cross-project Defect Prediction

58

(a) original (b) F-measure (c) accuracy

Fig. 4. Weight in confusion matrix by selecting different indicator

The concentration is divided equally in the original situation, while it on true negative class will be

transferred when using F-measure as Fitness because precision and recall are emphasize the successful

prediction on positive class. However, the amount of negative class is much more than positive class in

test samples, so accuracy is selected as an alternative to F-measure in order to explore optimum

performance of HYDRA+.

In HYDRA+, interfaces are provide for different classifiers, re-generation step is added to increase the

adaptability of parameters to various projects and execution sequence is modified when
1

2
kε < in EL

phase.

4 Experiments

4.1 Preparation

Some datasets from the real project are usually used in software defect prediction experiment. Each

dataset contains a number of software samples, which are characterized by static code metrics (e.g.,

Halstead [24-25], McCabe [26] of the method level) and they are converted into numerical samples.

However, these datasets cannot be used directly when we make cross-project experiments, because cross-

software defect prediction is a binary classification problem with the same task and same feature space in

training and target projects, which is defined by transfer learning.

Different from the traditional learning model, the dataset needs to be preprocessed to ensure the same

feature space in the cross-project perdition model. We simply claim the process of unifying metrics step

in Fig. 5. This paper use five open source projects (i.e., one Apache project: Lucene, and four Eclipse

projects: Eclipse, Equinox, Mylyn, and PDE) for the comparison on cross-project defect prediction. The

feature has been integrate by Zhang et al. [5], so we only list basic information of these projects in Table

1.

Fig. 5. Process of unifying metrics

Table 1. Open source projects description

 Eclipse Equinox Mylyn Lucene Pde

number of features 18 18 18 18 18

number of samples 997 324 1862 691 1497

number of defective samples 206 129 245 64 209

percentage of defective samples 20.66% 39.81% 13.16% 9.26% 13.96%

Journal of Computers Vol. 29, No. 6, 2018

59

For examining the generalizability of methods, we apply them to NASA MDP dataset, which is also

used by many researchers as general data to compare their algorithms, such as B. Turhan [27] and L. Guo

[28] used Naive Bayes and Random Forest on it to predict defects respectively. This dataset contains

more projects and samples, and it is listed in Table 2.

Table 2. NASA MDP dataset description

 CM1 JM1 KC1 KC3 MW1 MC1

number of features 37 21 21 39 37 38

number of samples 344 9593 2096 200 364 9277

number of defective samples 42 1759 325 36 27 68

percentage of defective samples 12.21% 18.34% 15.51% 18.00% 7.42% 0.73%

 MC2 PC1 PC2 PC3 PC4 PC5

number of features 39 37 36 37 37 38

number of samples 127 759 1585 1125 1399 1711

number of defective samples 44 60 16 140 178 471

percentage of defective samples 34.65% 7.91% 1.01% 12.44% 12.72% 27.53%

As the Table 2 shows, the feature spaces of these datasets are not exactly identical, so 20 common

features are selected in NASA MDP dataset. After filtering some features, experiments are carried out for

studying following three questions: (1) The performance of fitness selection and baseline transformation;

(2) The differences between cross-project model and within-project model; 3) The comparison between

cross-project transformation methods.

In cross-project defect prediction, leave-one-out method is used. It is a method that selecting one

project as test set and the remaining is training set. The validity of this method is proved in Xia’s article

[8]. Meanwhile, in within-project defect prediction, ten-fold validation method [29] is used to evaluate

the performance of classifiers. NB [30], SVM [31] and CART [32] are selected as classifiers in our

experiment. Accuracy, precision, recall and F-Measure, which are calculated by confusion matrix, are

selected as the performance index.

4.2 Evaluation of Fitness Selection and Baseline Transformation

The experiment is carried out through two groups. Both F-measure and accuracy is selected as fitness in

each group, while the difference between this two groups is whether the model contains baseline

transformation. Because of the use of generation delay about threshold in HYDRA+, the parameters like

PopSize, MaxGen and K are set to 10, 10 and 5 respectively, which is much smaller than HYDRA’s.

The results on five open source projects and NASA MDP dataset are shown in Table 3 and Table 4.

Table 3. Comparison of four classification model on five open source projects

SVM NB CART

acc Pre rec F acc pre rec F acc pre rec F

F_HYDRA+ 71.49 65.15 31.11 41.27 68.80 67.92 30.13 39.93 64.92 61.73 25.77 35.12

A_HYDRA+ 74.06 62.83 32.59 41.28 71.87 52.62 28.28 31.43 68.05 56.55 29.94 35.53

F_BTHYDRA+ 74.65 23.99 40.96 18.24 78.91 38.08 36.30 36.03 71.61 49.23 31.69 34.79

A_BTHYDRA+ 77.87 47.08 30.09 36.41 79.08 45.91 23.11 29.42 72.41 53.06 31.72 37.66

Table 4. Comparison of four classification model on NASA MDP dataset

SVM NB CART

Acc pre rec F acc pre rec F acc pre rec F

F_HYDRA+ 72.10 58.07 22.14 30.81 59.69 76.04 19.30 28.67 68.29 55.86 19.02 24.70

A_HYDRA+ 74.64 57.03 21.46 29.41 63.49 73.55 19.11 28.44 69.12 54.11 18.15 23.97

F_BTHYDRA+ 78.63 30.02 25.89 25.89 63.56 74.50 17.60 25.82 72.07 52.94 18.60 24.11

A_BTHYDRA+ 79.09 34.75 18.63 21.39 73.19 53.54 22.87 32.12 72.28 51.18 22.17 26.91

From the comparison between these four models in Table 3 and Table 4, we find that: (1) Baseline

transformation can improve the accuracy of classification because variation of distribution from different

BTHYDRA+: Towards a Comprehensive Model to Conduct Cross-project Defect Prediction

60

projects is reduced by using this preprocessing method. It makes the classifiers collect more effective

training samples in another feature space. (2) Utilizing accuracy as a fitness can increase the accuracy of

classification without decrease of F-measure. It might because there are some random values in the

HYDRA, which interfere with the results of classifiers. So the specific application scenarios should be

referred to select indicators like cost-sensitive function [33] as fitness in GA phase. (3) The classifiers

obtain similar performance on five open source datasets and NASA MDP dataset, which indicates that

our models can be applied to predict defects on the data with different size. 4) The precision is generally

higher than the recall because the software defect prediction is an imbalance binary classification

problem with many none-defective (negative) samples, but a few defective (positive) samples in the

training set. This phenomenon makes the classifier more difficult to capture defective representation.

Thus, it is easier to judge positive samples as negative samples compared to the opposite situation.

4.3 Comparison with the Within-project Model

We apply the within-project model on Eclipse, Equinox, Mylyn, Lucene, Pde, and NASA MDP dataset,

respectively. And it is compared with our cross-project model, the results are listed in Table 5 and Table

6.

Table 5. Within-project prediction on five open source projects

SVM NB CART

Acc pre rec F acc pre rec F acc pre rec F

Eclipse 79.09 0.00 NaN 82.42 31.53 68.42 43.17 80.81 47.50 52.86 50.04

Equinox 66.25 97.47 53.90 69.42 73.75 44.48 81.87 57.64 72.81 66.81 65.25 66.02

Mylyn 86.88 2.39 54.42 4.57 83.82 32.42 36.64 34.40 82.10 28.53 30.33 29.40

Lucene 90.43 0.00 NaN 87.10 38.77 33.43 35.90 88.41 28.80 34.33 31.33

Pde 85.91 0.00 NaN 82.89 27.82 35.17 31.07 81.07 30.50 31.86 31.16

Avg 81.71 19.97 54.16 36.99 82.00 35.01 51.10 40.44 81.04 40.43 42.93 41.59

F_BTHYDRA+ 74.65 23.99 40.96 18.24 78.91 38.08 36.30 36.03 71.61 49.23 31.69 34.79

A_BTHYDRA+ 77.87 47.08 30.09 36.41 79.08 45.91 23.11 29.42 72.41 53.06 31.72 37.66

Table 6. Within-project prediction on NASA MDP dataset

SVM NB CART

acc pre rec F acc pre rec F acc pre rec F

CM1 83.82 0.00 NaN 85.00 31.50 31.35 31.42 82.94 23.86 31.90 27.30

JM1 81.99 6.08 64.03 11.11 81.38 19.57 46.73 27.59 76.40 33.03 34.89 33.94

KC1 84.11 3.55 47.35 6.61 82.39 34.80 38.00 36.33 82.49 39.42 45.50 42.24

KC3 79.50 0.00 NaN 76.00 29.45 42.96 34.95 78.50 37.76 38.33 38.05

MC1 99.57 44.79 71.17 54.98 94.64 28.77 4.33 7.52 99.29 37.38 60.74 46.28

MC2 68.33 0.00 0.00 75.83 42.00 56.67 48.24 64.17 56.00 50.88 53.32

MW1 90.38 0.00 NaN 76.54 50.74 23.35 31.98 88.08 41.17 50.00 45.16

PC1 92.40 0.00 0.00 90.53 33.53 38.75 35.95 89.07 32.78 45.17 37.99

PC2 99.18 0.00 NaN 95.44 5.83 2.26 3.26 98.29 0.00 0.00

PC3 89.29 9.92 100.00 18.05 23.39 92.01 13.51 23.56 83.30 35.73 30.30 32.79

PC4 86.04 1.32 16.67 2.45 89.21 24.88 64.23 35.87 87.91 53.21 53.49 53.35

PC5 72.75 5.81 74.33 10.77 73.39 20.08 57.01 29.70 71.64 44.85 49.79 47.19

Avg 85.61 5.96 46.69 17.33 78.65 34.43 34.93 28.86 83.51 36.27 40.92 41.60

F_BTHYDRA+ 78.63 30.02 25.89 25.89 63.56 74.50 17.60 25.82 72.07 52.94 18.60 24.11

A_BTHYDRA+ 79.09 34.75 18.63 21.39 73.19 53.54 22.87 32.12 72.28 51.18 22.17 26.91

Note. Precision is 0 because TP is 0 and recall is NaN because FN is 0, which cause F-measure cannot be calculated.

Table 5 and Table 6 present that the within-project defect prediction has an advantage over other

indicators except precision. According to the formula of the index, we conclude that this may be due to

the decrease in TN and the increase in FN, which is also reported by Turhan et al. [34]. Moreover, there

is little difference between the accuracy of our model and within-project prediction. In addition, the F-

measure is promoted when using our model combining SVM and NB on NASA MDP dataset.

Journal of Computers Vol. 29, No. 6, 2018

61

4.4 Improvements and Comparison Among Cross-project Models

Our models are compared with prior cross-project defect prediction approaches including: BASIC [3], FZ

[5], TCA [9], KPCA [10], Pfilter [11], LapSVM [12], and TSVM [13], which ensures at least one

algorithm is selected in each class of transferring method. For LapSVM2 and TSVM3, we use the source

code provided by the authors.

We re-implement BASIC, FZ, TCA, KPCA and Pfilter through MATLAB. Notice that there is no

context factors like programming language in NASA MDP dataset when we using FZ. Thus, the features

with large variance is selected, and segmentation step is implemented through distance to the mean of

that features. RFB is used as a kernel function in TCA because RBF is better than Linear in the Sinno’s

experiment on WiFi data, and we set grammar to 10 in RBF function. Similarly we also use RBF as

kernel function for KPCA. In addition, the data is post-processed by PCA in TCA and KPCA, which may

potentially decompose the information. The number of dimension after PCA is set to 9 and 10 in the

NASA MDP dataset and the five open source projects respectively. It is worth noting that MATLAB

cannot save more than 10000×10000 matrix when calculating RBF kernel, so in the experiment on

NASA MDP dataset, 10,000 samples are randomly selected as training set when using TCA and KPCA.

The results of comparison are listed in Table 7 and Table 8.

Table 7. Comparison of different cross-project classification models on five open source projects

SVM NB CART

acc pre rec F acc pre rec F acc pre rec F

Within 81.71 19.97 54.16 36.99 82.00 35.01 51.10 40.44 81.04 40.43 42.93 41.59

Basic 70.33 20.33 60.35 25.34 61.74 56.05 37.95 41.34 61.06 35.12 30.97 29.38

FZ 79.08 12.03 38.79 18.37 55.19 63.57 35.01 45.15 65.31 31.64 29.37 30.46

F_HYDRA+ 71.49 65.15 31.11 41.27 68.80 67.92 30.13 39.93 64.92 61.73 25.77 35.12

A_HYDRA+ 74.06 62.83 32.59 41.28 71.87 52.62 28.28 31.43 68.05 56.55 29.94 35.53

F_BTHYDRA+ 74.65 23.99 40.96 18.24 78.91 38.08 36.30 36.03 71.61 49.23 31.69 34.79

A_BTHYDRA+ 77.87 47.08 30.09 36.41 79.08 45.91 23.11 29.42 72.41 53.06 31.72 37.66

TCA 77.33 20.33 60.35 25.34 70.61 25.65 30.64 26.78 71.37 35.47 30.85 29.29

KPCA 73.69 15.79 66.85 24.60 76.81 18.04 54.78 27.42 75.79 28.55 32.72 28.81

Pfliter* 19.37 100.00 19.37 31.18 19.05 100.00 19.05 30.42

LapSVM 65.92 73.33 17.16 28.18

TSVM 75.78 42.99 23.13 30.07

Note. Pfliter select all training samples with the same label on five open source projects, so SVM cannot be trained.

Table 8. Comparison of different cross-project classification models on NASA MDP dataset

SVM NB CART

acc pre Rec F acc pre rec F acc pre rec F

Within 85.36 5.99 63.16 20.13 78.93 40.83 31.40 30.99 84.24 33.37 39.80 39.37

Basic 75.66 3.94 42.10 8.69 61.67 74.49 22.01 31.44 64.93 27.59 22.29 20.79

FZ 82.43 1.64 34.40 3.12 61.40 46.24 18.66 26.59 67.69 18.05 21.27 19.53

F_HYDRA+ 72.10 58.07 22.14 30.81 59.69 76.04 19.30 28.67 68.29 55.86 19.02 24.70

A_HYDRA+ 74.64 57.03 21.46 29.41 63.49 73.55 19.11 28.44 69.12 54.11 18.15 23.97

F_BTHYDRA+ 78.63 30.02 25.89 25.89 63.56 74.50 17.60 25.82 72.07 52.94 18.60 24.11

A_BTHYDRA+ 79.09 34.75 18.63 21.39 73.19 53.54 22.87 32.12 72.28 51.18 22.17 26.91

TCA 78.33 20.33 60.35 25.34 67.76 34.98 23.72 14.31 68.92 25.98 15.71 17.72

KPCA 74.69 13.52 53.90 22.46 62.37 28.72 42.79 34.10 65.02 21.39 24.08 18.93

Pfliter 63.35 46.08 20.39 23.39 79.34 80.82 18.53 30.66 68.06 44.68 22.04 25.29

LapSVM 62.73 74.74 15.27 26.38

TSVM 71.21 39.23 26.43 31.59

Table 7 and Table 8 prove that our model is generally dominant on three classifiers comparing with

other methods. This may be attributed to following two points: (1) there is a preprocessing method that

can find a better feature space for the classifiers. Baseline transformation draws on the FZ’s point of view

2 https://github.com/tknandu/LapTwinSVM/tree/master/Primal_LapSVM/lapsvmp_v02
3 http://svmlight.joachims.org/ and https://github.com/sods/svml

BTHYDRA+: Towards a Comprehensive Model to Conduct Cross-project Defect Prediction

62

with using all of data. Oppositely, Pfliter only selects those training samples that are closest to the target

project. In addition, compared to TCA and KPCA, BT play a better role in promoting because the label

information is used. (2) When using HYDRA+ as transferring method on classifier, not only genetic

algorithms is used to find from the target project in the classification of effective features, but also

different weights on each GA classification model are given by AdaBoost based on the predicting error.

Meanwhile, there are several classifiers like SVM in each GA classification model. The advantage on the

amount of classifiers makes results better, which is similar to the function of deeper network in deep

learning, even if HYDRA+ does not possess advanced transferring methods like LapSVM and TSVM.

Accuracy was often regarded as the main indicator to measure the performance of classifiers in the

past, but Wang et al. [35] hold that there are some deviations when using accuracy to measure an

imbalance problem. This is because an overall accuracy of 99% can be attained by a binary classifier that

classifies all data samples as majority class [32]. Fortunately, F-measure is a trade-off between precision

and recall, which is helpful to calibrate results from evaluation. It follows the setting used in many defect

finding studies [31]. Fig. 6 are used in order to clearly observe the trend of different methods on these

two indicators. Different colors are used to distinguish different classifiers, and the triangle with different

orientations represents the models our proposed. It should be noted that LapSVM and TSVM are not

drawn because they can only be applied to SVM, and we omit Pfliter on the five open source projects

because there are some bugs when it filters data.

(a) Performance of different transferring methods on five open source projects

(b) Performance of different transferring methods on NASA MDP dataset

Fig. 6. Different transferring methods on accuracy and F-measure

Journal of Computers Vol. 29, No. 6, 2018

63

Blue line is used to divide the area into four parts. The upper right part represents better performance

with high accuracy and high F-measure. In Fig. 6, we find that: (1) Compared to NB and CART, SVM is

more suitable to be a classifier for cross-software defect prediction, since SVM has good ability of non-

linear classification and excellent robustness. (2) Our models are generally better than others and their

results are closest to the Within’s, especially on five open source projects. (3) The models we proposed

are suited to different classifiers. (4) The performance of NB and CART on open source projects and

NASA MDP datasets are different. The reason causes this phenomenon is that there are large number of

samples in training step in NASA MDP dataset with using leave-one-out cross validation in the

experiment, which lead to the situation of underfitting and overfitting when complex problems need to be

solved by NB and CART (e.g., NB + Pfilter perform well on NASA MDP dataset because Pfilter prevent

NB from underfitting by largely reducing the samples). In summary, robust classifiers like SVM should

be chosen in cross-project defect prediction, especially in the case of using many samples from source

projects.

5 Conclusion

In this study, we attempt to use a comprehensive model containing data preprocessing and classifier

transferring to solve variations of data in cross-project defect prediction. We first propose a baseline

transformation method to make distribution of different projects more similar. We then use the genetic

algorithm and ensemble learning in HYDRA, and put forward generation delay of parameters to reduce

cost during searching threshold. By comparing with the original HYDRA, we find that baseline

transformation is conducive to promote performance of classifier. Moreover, we apply within-project

models on five open source project and NASA MDP dataset, and further find that our cross-project

model has higher precision than within-project models. Because of the underperformance on accuracy,

we improve it by using accuracy as Fitness in genetic algorithm. We also evaluate the performance of our

models with a series of state-of-the-art approaches. The results show that our models generally better

than others on different classifiers.

However, there still exist several unsolved problems including experimental method and difference

between research and reality. For instance, leave-one-out method is considered to be an effective way to

detect the reliability of cross-project software defect prediction. But the correlation among datasets may

have an influence on the final results (e.g., when PC1 is selected as test set, PC2-5 in training sets can

improve the performance of the prediction). In the future study, we plan to remove the relevant data set

and then experiment. Meanwhile, although the experiment on NASA MDP dataset is added to

demonstrate the generality of our method, it is unclear if the universal model also performs well on real

software development projects. We attempt to test our method on projects provided by developers.

Acknowledgments

This research work was supported by ZheJiang Provincial Natural Science Foundation of China under

Grant Nos. LQ16F020006, LY17F020023 and LQ17F020003, and the Defense Industrial Technology

Development Program of China under Grant Nos. JCKY2016415C005 and JSZL2016415B002,

ZheJiang Provincial Science and Technology Department Foundation of China under Grant

No.2015C33003.

References

[1] T. Hall, S. Beecham, D. Bowes, D. Gray, S. Counsell, A systematic literature review on fault prediction performance in

software engineering, IEEE Transactions on Software Engineering 38(6)(2012) 1276-1304.

[2] F. Peters, T. Menzies, L. Gong, H. Zhang, Balancing privacy and utility in cross-company defect prediction, IEEE

Transactions on Software Engineering 39(8)(2013) 1054-1068.

[3] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, B. Murphy, Cross-project defect prediction: a large scale experiment on

BTHYDRA+: Towards a Comprehensive Model to Conduct Cross-project Defect Prediction

64

data vs. domain vs. process, in: Proc. the 12th European Software Engineering Conference and the 17th ACM SIG-SOFT

Symposium on the Foundations of Software Engineering, (ESEC/FSE ’09), 2013.

[4] J. Nam, S. J. Pan, S. Kim, Transfer defect learning, in: Proc. the 35th International Conference on Software Engineering

(ICSE ’13), 2013.

[5] F. Zhang, A. Mockus, I. Keivanloo, Y. Zou, Towards building a universal defect prediction model with rank transformed

predictors, Empir Software 21(5)(2016) 2107-2145.

[6] T. Menzies, A. Butcher, A. Marcus, T. Zimmermann, D. Cok, Local vs. global models for effort estimation and de-fect

prediction, in: Proc. the 2011 26th IEEE/ACM International Conference on Automated Software Engineering, 2011.

[7] Y. Ma, G. Luo, X. Zeng, A. Chen, Transfer learning for cross-company software defect prediction, Information and Software

Technology 54(3)(2012) 248-256.

[8] X. Xia, D. Lo, S.-J. Pan, N. Nagappan, X. Wang, HYDRA: massively compositional model for cross-project defect

prediction, IEEE Transactions on Software Engineering 42(10)(2016) 977-998.

[9] S.J. Pan, I.W. Tsang, J.T. Kwok, Q. Yang, Domain adaptation via transfer component analysis, IEEE Trans. Neural

Networks 22(2)(2010) 199-210.

[10] B. Schölkopf, A. Smola, K. Müller, Kernel principal component analysis, in: Proc. the 7th International Conference on

Artificial, 2005.

[11] F. Peters, T. Menzies, A. Marcus, Better cross company defect prediction, in: Proc. 10th Int. Workshop Mining Softw.

Repositories, 2013.

[12] M. Belkin, P. Niyogi, V. Sindhwani, Manifold regularization: a geometric framework for learning from labeled and

unlabeled examples, J. Mach. Learn. Res. 7(2010) 2399-2434.

[13] J. Thorsten, Transductive inference for text classification using support vector machines, in: Proc. the Sixteenth

International Conference on Machine Learning, 1999.

[14] B. Turhan, T. Menzies, A. Bener, J. Di Stefano, On the relative value of cross-company and within-company data for defect

prediction, Empirical Software Engineering 14(2009) 540-578.

[15] J. Nam, S. J. Pan, S. Kim, Transfer defect learning, in: Proc. Int. Conf. Soft. Eng., 2013.

[16] K. Yan, L. Kou, D. Zhang, Domain adaptation via maximum independence of domain features. <http://arxiv.org/abs/1603.

04535>, 2016.

[17] B. Fernando, A. Habrard, M. Sebban, T. Tuytelaars, Unsupervised visual domain adaptation using subspace alignment, in:

Proc. 2013 IEEE International Conference on Computer Vision, 2013.

[18] Y. Shi, L. Angeles, F. Sha, Information-theoretical learning of discriminative clusters for unsupervised domain adaptation,

in: Proc. the 29th International Conference on Machine Learning, 2012.

[19] B. Gong, Y. Shi, F. Sha, K. Grauman, Geodesic flow kernel for unsupervised domain adaptation, in: Proc. the 2012 IEEE

Conference on Computer Vision and Pattern Recognition, 2012.

[20] A. Panichella, R. Oliveto, A. De Lucia, Cross-project defect prediction models: L’Union fait la force, in: Proc. 2014 Softw.

Evol. Week - IEEE Conf. Softw. Maintenance, Reengineering, Reverse Eng. CSMR-WCRE 2014 - Proc, 2014.

[21] Y. Liu, T. M. Khoshgoftaar, N. Seliya, Evolutionary optimization of software quality modeling with multiple repositories,

IEEE Trans. Softw. Eng. 36(2010) 852-864.

[22] E. Eaton, M. des Jardins, Selective transfer between learning tasks using task-based boosting, in: Proc. 25th AAAI Conf.

Artif. Intell, 2011.

Journal of Computers Vol. 29, No. 6, 2018

65

[23] G. Canfora, A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, S. Panichella, Multi-objective cross-project defect

prediction, in: Proc. IEEE 6th Int. Conf. Softw. Testing, Verification Validation, 2013.

[24] M.-H. Halstead, Elements of Software Science, Elsevier Science, New York, 1997.

[25] Y. Jiang, B. Cukic, Fault prediction using early lifecycle data, in: Proc. 8th IEEE International Symposium on Software

Reliability, 2007.

[26] McCabe, T, A complexity measure, IEEE Transactions on Software Engineering SE-2(1976) 308-320.

[27] B. Turhan, A. Bener, Analysis of naive bayes assumptions on software fault data: an empirical study, Data & Knowledge

Engineering 68(2)(2009) 278-290.

[28] L. Guo, Y. Ma, B. Cukic, H. Singh, Robust prediction of fault-proneness by Random Forests, in: Proc. 15th Int’l Symp.

Software Reliability Eng, 2004.

[29] M. D’Ambros, M. Lanza, R, Robbes, Evaluating defect prediction approaches: a benchmark and an extensive comparison,

Empir Software Eng 17(2012) 531-577.

[30] Y. Penga, G. Wanga, H. Wangb, User preferences based software defect detection algorithms selection using MCDM,

Information Sciences 191(2012) 3-13.

[31] I.-H. Laradji, M. Alshayeb, L. Ghouti, Software defect prediction using ensemble learning on selected features, Information

and Software Technology 58(2015) 388-402.

[32] S. Shivaji, S.-E. James, W. Jr., S.-R. Akella, Senior, S. Kim, Senior reducing features to improve code change-based bug

prediction, IEEE Transactions On Software Engineering 39(4)(2012) 552-569.

[33] J. Zheng, Cost-sensitive boosting neural networks for software defect prediction, Expert Systems with Applications

37(2010) 4537-4543.

[34] B. Turhan, T. Menzies, A.B. Bener, D.-J. Stefano, On the relative value of cross-company and within-company data for

defect prediction, Empirical Software Engineering 21(2016) 2107-2145.

[35] S. Wang, X. Yao, Using class imbalance learning for software defect prediction, IEEE Transactions On Reliability

62(2)(2013) 434-443.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

