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Abstract. Magnetic resonance imaging (MRI) has been a prevalence technique for breast cancer 

diagnosis. This paper introduces a semi-supervised method for extracting breast tumors in a set 

of real MRIs of different types of breast cancer patients. We call the proposed method as Semi-

supervised Tumor Segmentation (SSTS), and apply it to both mass and non-mass lesions. We 

have trained 225 classifiers with respect to different settings of threshold parameters that need to 

be set in SSTS. We will show the performance of SSTS for extracting the infiltrating ductal 

carcinoma (IDC) and the ductal carcinoma in situ (DCIS) tumors based on a set of real MRIs of 

21 breast cancer patients; and how different settings of the parameters will influence the 

extraction results. We additionally implement five state-of-the-art intensity-based image 

segmentation algorithms that can be compared with SSTS on breast tumor extraction. 
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1 Introduction 

Breast cancer is one of the most common cancer that causes deaths in women worldwide [1]. Magnetic 

resonance imaging (MRI) is an advantageous technique for breast cancer diagnosis. Radiologists assess 

MRIs slice-by-slice to locate lesions and diagnose diseases, which is an arduous and time-consuming 

task in real clinical applications [2]. Therefore, computer-aided detection and segmentation of lesions 

from 

MRIs plays an increasing vital role for breast cancer diagnosis. 

Numbers of researchers focused on lesion segmentation in MRIs in past decades [3-4]. Issues in the 

state-of-the-art breast tumor extraction methods include (1) some methods require manual delineation of 

ROIs as a step of initialization (e.g. [5]), which restricts the automatic segmentation to cases that 

sufficient expert knowledge should be known in advance [6]; (2) supervised methods require a large 

amount of labelled images for model construction or parameter learning (e.g. [6]); (3) existing work 

mainly focuses on segmenting mass tumors ( e.g. [2-3, 6]), less investigation on segmenting non-mass 

lesions because of the shape diversity of the lesions. 

To tackle these issues, we propose an unsupervised method for breast tumor segmentation, and take a 
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supervised classification step to classify the tumor and non-tumor pieces obtained from the unsupervised 

segmentation to automatically locate the tumor regions in an MRI. We call the proposed method as Semi-

supervised Tumor Segmentation (SSTS), which comprises four main steps (Fig. 1 modules 1-4)): at first, 

we segment an imaged MRI by using Otsu thresholding [7]; and then remove the cluster in low intensity 

levels, as tumors in MRI images normally have relatively high intensities. Our experiment results show 

this thresholding step can dramatically improve the performance of super-pixel segmentation of module 2. 

Secondly, over-segment the remaining image based on the Simple Linear Iterative Clustering (SLIC) 

method [8] to form super-pixels, which further reduces the number of pixels and improves the clustering 

efficiency in the sequel stages. Thirdly, group super-pixels based on the DBSCAN technique [8] in terms 

of mean intensities and positions of super-pixels. Finally, classify tumor pieces to locate tumors in the 

original image by using an Adaboost classification algorithm [9] based on 20 texture features [5]. 

 

Fig. 1. Overview of Semi-supervised tumor segmentation framework (SSTS) 

To obtain the optimal performance of tumor extraction, we take extensive experiments to learn 

parameters of segmenting and classifying (Modules 2-4) and train 225 classifiers (Module5) 

corresponding to different parameter settings. In addition, we implement a series of intensity-based tumor 

segmentation algorithms, including Particle Swarm Optimization (PSO) [10], Fractional-order Darwinian 

Particle Swarm Optimization (FO-DPSO) [11], K-means [12], Fuzzy-C-Means (FCM) [13], and Multi-

thresholding (MT) [14]. Other than intensity, we analyse texture features of breast tumors in MRIs to 

evaluate how different texture features assist identifying infiltrating ductal carcinoma (IDC) and ductal 

carcinoma in situ (DCIS) tumors. The texture features include the statistical moments (first-order and 

second order) [15] and 21 gray-level co-occurrence metric (GLCM) features [16]. 

The main contributions of our work are: (1) we design a semi-supervised method for delineating breast 

tumors in MRIs, which requires smaller labelled datasets compared with the full supervised methods; (2) 

our experiment is based on a set of real three-dimensional MRIs of 21 patients; and abundant 

experimental results show better performance of our work compared with the existing image 

segmentation techniques, e.g. a multi-threshold method (MT) [7] and a Fuzzy C Means (FCM) method 

[13]. 

The structure of this paper is: Section 2 discusses the related work; Section 3 presents the SSTS 

framework and its performance; Section 4 concludes this paper and discusses future work. 
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2 Related Work 

There are mainly four types of image segmentation methods [11]: threshold-based [17-18], clustering-

based [19-20], region-based [21-22], and texture analysis based [23-24]. We review the application of 

image segmentation techniques in the area of breast and brain tumor segmentation in this section. 

Supervised learning methods are normally used for classification of different types of tumors [25-26]. 

Sauwen et al. [27] compared the performance of unsupervised classification algorithms for the 

segmentation of high-grade gliomas based on multi-parametric MRI modalities including conventional 

MRI, diffusion-weighted imaging, magnetic resonance spectroscopic imaging, and perfusion-weighted 

imaging. Unsupervised methods like Fuzzy C Means (FCM) and Particle Swarm Optimization (PSO) 

have been applied to brain tumor segmentation. Sehgal et al. [28] proposed an automatic method to 

segment brain tumors from MRIs. The method includes five steps: Image Acquisition, Pre-processing, 

Segmentation using FCM technique, Tumor Extraction and Evaluation. 

The work on breast tumor segmentation is relatively less than the work on brain tumor segmentation. 

Chen et al. [29] proposed a fuzzy c-means (FCM) clustering-based method to segment breast lesions 

from three dimensional contrast enhanced MR images. The drawback of this method is its requirement 

of manually drawing ROIs as an initialization step. The authors of [6] developed a multichannel Markov 

random fields (MRFs) framework, in which they use conditional mutual information to search for 

conditional independent features. This method requires a large amount of labelled data as a priori for 

model construction, and it does not analyse the segmentation results on non-mass tumors by using the 

proposed method. 

There are several significant work focusing on anomaly detection in different types of images. Li et al. 

[30] introduced a detection scheme for identifying the copy-move forgery in images based on the 

techniques of key-point extraction and the Expectation-Maximization algorithms. Zheng et al. [31] 

designed two algorithms: generalized fuzzy-c-means (FCM) and hierarchical fuzzy-c-means to solve the 

problems of the sensitivity of FCM’s robustness and Euclidean distance to noise and outliers.  

3 SSTS Framework Description 

Fig. 1 shows an overview of SSTS. Pre-processing module is to normalise MRIs after breast separation 

from chests using simple image processing operation. As shown in Fig. 1, Module1 segments the breast 

MRI based on the Otsu thresholding [7] of imaged intensity. As imaged tumors in MRIs normally show 

high intensity levels, the clustered pixels with low intensity are removed. The remaining high intensity 

parts are over-segmented to super-pixels using SLIC [8] (Module2). Our work has empirically shown 

that the thresholding step can improve the efficiency of the over-segmentation by removing low intensity 

noise. Module3 clusters super-pixels based on the DBSCAN technique [8] in terms of mean intensities 

and positions. As a lesion is normally presented as a connected area in an MRI, this step groups super-

pixels having similar intensity, and meanwhile are spatially adjacent (according to 8-adjacency matrix) to 

each other. 

After DBSCAN clustering (Module4), we get a set of tumor and non-tumor patches, where a (non-) 

tumor patch means a patch is part of a (non-)tumor area or covers a (non-)tumor area (see Fig. 1). As the 

patches cannot always fit the real tumor area well, we define: if the area of a patch coinciding with the 

ground truth tumor area is above a threshold (r), it is a tumor patch. We use the dice ratio (DR) between a 

patch and a ground truth to measure the coinciding area of tumor and non-tumor patches. 

Each labelled patch (tumor/non-tumor) is described by 21 features (20 texture features and mean 

intensity). The texture features [32] are defined based on the GLCM, including: autocorrelation, contrast, 

correlation, cluster prominence, cluster shade, dissimilarity, energy, entropy, homogeneity, maximum 

probability, sum of squares: variance-sum average, sum variance, sum entropy, difference variance, 

difference entropy, information measure of correlation1, information measure of correlation2, inverse 

difference normalized, and inverse difference moment normalized. The features of each patch are stored 

in the Patch database. 

An Adaboost classifier [33] is trained for patch classification based on the labelled patches and their 

features in Patch database. The classified patches are combined together to form a tumor area in an MRI. 
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3.1 Parameter Setting Procedure 

There are three parameters that need to be set by users in SSTS, which are distance threshold s for SLIC 

oversegmentation, distance threshold d for clustering super-pixels to form patches based on DBSCAN, 

and r for patch labelling (see Fig. 2). Values of s and d determine the clustering performance of SLIC and 

DBSCAN, and hence influence the extent of the segmented tumor patches fitting to the ground truth. 

Therefore, it is vital to carefully set values of s and d. We adopt an exhaustive method based on extensive 

experiments to observe the performance in terms of pre-defined values of s and d. As the performance of 

tumor extraction is also based on the patch classification results (i.e. whether patches are grouped to the 

right categories), training an efficient classifier plays a key role. Correctly labelling the segmented 

patches (tumor or non-tumor) is the base of the classifier training. Threshold r is defined for patch 

labelling. 

 

Fig. 2. Determine optimal parameters for segmenting and classifying tumor patches 

The parameter training procedure is shown in Fig. 2. We separate the overall MRIs to three sets: 

training, testing and validating. Given an MRI i, if the DR between one patch p of i and the ground truth 

of i is no less than r, then p is labeled as tumor (see lines 7-8 in Fig. 2). Given different values of s and d, 

the patches of segmenting i is different. And given different r, the labelling results of patches are 

different. Therefore, for each patch in a segmentation, we save this patch and its corresponding 

parameters (s, d and r) in Q (line 9). Each setting < s,d,r > corresponds to a set of labelled patches 

obtained from segmenting different MRIs. For each setting, we train a classifier based on its labelled 

patches (line 11). We validate the performance of the classifier based on the labelled patches of testI (line 

12). At last, we use the validation set VI to validate the trained parameters pa and its corresponding 

classifier (line 14). 

3.2 Dataset Description and Empirical Parameter Setting 

Our dataset includes a set of 3D MRI records of 21 patients. Each MRI image is in uint8 format, and 

image size is 512*512*1 pixels. Fourteen patients have mass tumors (M), and 7 have non-mass tumors 

(NM). Fourteen patients have infiltrating ductal carcinoma (IDC) tumor, two have the ductal carcinoma 

in situ (DCIS), and five have both IDC and DCIS. The total number of MRI layers containing tumors is 

407. 

For each MRI layer containing tumors, we set a series of parameter values to train corresponding 
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tumor extraction models (inputs in Fig. 2), which are: Ds =< 5, 10, 15, 20, 25 >, Dd = < 3, 5, 8, 10, 15 >, 

and Dr = < 0.1, 0.2, ..., 0.9 >. For each setting of parameters, we train one classifier based on the 

segmented patches. Each parameter setting corresponds to around 500 tumor patches and 4000 non-

tumor patches. To resolve the problem of data unbalancing, we use SMOTE method [34] to generate 

synthetic tumor samples, and use under-sampling method to reduce the non-tumor patches. Overall, we 

have 225 classifiers with respect to different parameter combinations. Users can set other parameter 

values to see corresponding extraction results (Fig. 3. The trained classifiers can also be used for 

detecting which breast (right or left) contains tumors in an MRI. 

 

Fig. 3. Screenshot of an MRI segmentation process of SSTS. Users of the system can change parameter 

settings to see different segmentation results. The DB-patches are classified by a pre-trained classifier 

with respect to a parameter setting (e.g. s = 10, d = 10, r = 0.5) 

3.3 Validation of Tumor Extraction 

The proposed system uses both quantitative and qualitative methods to validate the performance of tumor 

extraction. System users can qualitatively compare the extracted tumor area (S) and the ground truth 

ROIs (G) (Fig. 4). Fig. 5 and Fig. 6 show the tumor extraction results of SSTS, FCM and MT with 

respect to the parameter settings in Table 1 based on mass and non-mass tumors respectively. 

 

Fig. 4. Examples of tumor extraction results of SSTS, FCM, and Multi-level thresholding (MT) on MRIs 

of two patients: MRI of patient 1 contains a non-mass tumor, and MRI of patient 2 contains a mass tumor 
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Fig. 5. Qualitative evaluation of Mass tumor extraction of MRIs of nine patients based on SSTS, FCM, 

and MT. The parameters of SSTS are set as: < s; d; r > = < 15; 5; 0:6 > 
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Fig. 6. Qualitative evaluation of Non-mass tumor extraction of MRIs of seven patients based on SSTS, 

FCM, and MT. The parameters of SSTS are set as: < s; d; r >=< 15; 5; 0:6 > 

Meanwhile, the system shows the quantitative validation results between S and G by using five metrics: 

Dice Rate (DR), Precision (PR) and Recall (RC), which are defined in Table 1. We have initialized the 

parameter setting as the one resulting in an optimal performance based on the current dataset and 

parameter settings. The optimal settings and results are shown in Table 2, where < s, d, r > = < 15, 5, 0.6 >. 

Table 2 also quantitatively compares the performance of SSTS with the performance of FCM and MT, 

where the clustering number (cn) of FCM is 4, the separated level number of MT is 6, and r = 0.6 for 

classifier training of both FCM and MT. 

Table 1. Definitions of validation metrics 

Metrics Formulas 

DR 
2( )

*100
S G

S G S G

∩

∩ + ∪

 

PR /S G S∩  

RC /S G G∩  
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Table 2. Optimal parameter settings and segmentation results 

Method DR PR RC para 

SSTS 0.74 0.83 0.69 < s, d, r > = <15, 5, 0.6 > 

FCM 0.67 0.87 0.57 < cn, r > = < 4, 0.6 > 

MT 0.67 0.85 0.6 < ln, r > = < 6, 0.6 > 

 

From Table 2, the dice ratio and recall of SSTS are better than those of FCM and MT, while the 

precision of SSTS is worse than that of FCM and MT. Based on the definition of DR, PR, and RC (Table 

I), the delineated area of SSTS tends to be larger than the true ground tumor area (ROI), while the FCM 

and MT tend to delineate an ROI’s sub-area that cannot cover the whole tumor. 

Our experiment is mainly based on MRIs containing tumors whose shortest radius are over 17 pixels. 

Fig. 7 shows two examples of tumors with short radius less than 17 pixels (namely very small tumors). 

The performance of SSTS based on very small tumors is not as efficient as its performance on normal 

tumors. The main reason is that the features textures of very small tumors cannot be described as well as 

the features of normal tumors, so it is difficult to distinguish the very small tumor area with the other 

parts in an MRI. How to efficiently extract very small tumors of MRIs will be our future work. 

  

Fig. 7. Two examples of small tumors 

3.4 SSTS System 

Fig. 3 shows a screenshot of an MRI segmentation process of SSTS. Users can change parameter settings 

to see different segmentation results. The DB-patches are classified by a pretrained classifier with respect 

to a parameter setting (e.g. s = 10, d = 10, r = 0.5 in Fig. 5). Fig. 4 shows tumor extraction results of 

SSTS, FCM, and Multi-level thresholding (MT) of two patients: the MRI of patient 1 contains a non-

mass tumor, while patient 2’s MRI contains a mass tumor. 

4 Conclusion 

This paper presents an application of a set of image segmentation algorithms on segmenting IDC and 

DCIS tumors of Breast MRIs. Especially, it shows more advanced performance of SSTS for tumor 

extraction compared with other algorithms. The advantages of SSTS are its accuracy and flexibility of 

segmenting tumors based on adjustable parameters; and we have trained a set of classifiers with respect 

to different parameter settings for classifying tumor and non-tumor patches. However, the current 

parameter setting process is an exhaustive procedure, and only discrete parameter values are tested. Our 

future work will be on developing a more efficient parameter setting procedure; and extend our work to 

extracting more types of Breast tumors and very small tumors. 
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