
Journal of Computers Vol. 29 No. 6, 2018, pp. 193-200

doi:10.3966/199115992018122906018

193

Partition Connectivity Recovery Based on Relay Node

Deployment for Wireless Sensor Networks

Ji-Kai Zhang, Dan Tao*

School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, 100044, China

{13211143, dtao}@bjtu.edu.cn

Received 9 January 2018; Revised 17 January 2018; Accepted 22 January 2018

Abstract. In this paper, we address the problem of partition connectivity recovery based on relay

node deployment for wireless sensor networks. We firstly propose a graph theory based method

to accurately detect partitions in the network which consists of vast low-energy sensor nodes. To

restore the communication links between these partitions, we present a heuristic Steiner tree

based partition recovery algorithm by deploying high-energy relay nodes. The suitable

quadrilaterals or triangles are chosen to connect the disjoint partitions and their Steiner nodes are

found. The minimum number of relay nodes are placed on the edges of Steiner tree.

Experimental results show that our algorithm can achieve partition connectivity recovery for

wireless sensor networks with a smaller number of relay nodes and less energy consumption of

network communication compared to MST algorithm.

Keywords: graph theory, partition connectivity recovery, relay node deployment, Steiner tree,

wireless sensor networks

1 Introduction

Stable network topology becomes one of the most important problems in the context of wireless sensor

networks (WSNs) to guarantee data exchange and data transmission. However, energy-limited sensor

nodes can be easily destroyed due to exhausting their batteries, hardware faults, externally inflicted

damage caused by natural or human factors. The wireless sensor network may be separated into multiple

disjoint partitions which cannot communicate with each other. Therefore, linking these disjoint partitions

to re-establish a connected network topology is necessary to maintain the functional network operations

[1].

At present, the common partition connectivity recovery methods for WSNs can be classified into two

categories [2]. One is relocating movable sensor nodes. It requires that sensor nodes have moveable

ability with extra auxiliary devices, so its realization cost is large. In addition, this method tends to trigger

a cascaded movement of nearby sensor nodes resulting in increased overhead and widening the scope of

the recovering throughout the network [3]. The other is redeploying extra relay nodes, which has no

special requirements on the existing sensor nodes. It has been shown to be an effective method for

restoring network connectivity. Here, the network connectivity recovery can be realized by redeploying

extra relay nodes here.

In this paper, we address the problem of partition connectivity recovery in wireless sensor networks

with relay node deployment. The main contributions of our works are two. (1) We propose a graph

theory based disjoint partition detection algorithm to find partitions in the network. (2) We present a

heuristic partition recovery algorithm by redeploying a small number of costly, but more powerful relay

nodes, which can be illustrated in Fig. 1. A backbone communication network can be constructed by

these relay nodes based on Steiner tree theory, in order to prolong network lifetime while preserving

network connectivity. The shortest path feature of Steiner tree can ensure that the data transmission of the

backbone network is low latency and energy consumption.

* Corresponding Author

Partition Connectivity Recovery Based on Relay Node Deployment for Wireless Sensor Networks

194

Low-energy sensor node

High-energy relay node

Fig. 1. Partition connectivity recovery based on relay node deployment

The remainder of this paper is organized as follows. Section 2 overviews the related work. In Section 3,

a partition connectivity recovery algorithm based on relay node deployment for WSNs is proposed.

Performance evaluations are given to testify the performance of the proposed solutions in Section 4 and

we conclude this paper in Section 5.

2 Related Work

Extensive studies have been conducted on partition recovery problem in the context of WSNs, this

problem can be divided into two subcategories: relocating movable sensor nodes and redeploying extra

relay nodes.

2.1 Relocating Movable Sensor Nodes

Akkaya et al. [4] proposed a PADRA to detect possible partitions, and restored the network connectivity

through controlled relocation of movable nodes. Imran et al. [5] presented a distributed partitioning

detection and connectivity restoration algorithm to tolerate the failure of actors. DCR proactively

identified actors that were critical to the network connectivity based on local topological information, and

designated appropriate, preferably non-critical, backup nodes. Abbasia et al. [6] proposed a distributed

least-movement topology repair algorithm, which strived to relocate the least number of nodes and

reduce the traveled distance and message complexity.

2.2 Redeploying Extra Relay Nodes

Most of researches achieve network connectivity restoration by deploying extra relay nodes. To prolong

network lifetime while preserving network connectivity, Lloyd et al. [7] deployed the minimum number

of relay nodes to achieve communication with other sensor or relay nodes. The approach proposed in [8]

opted to re-establish connectivity using the least number of relays while ensuring certain quality in the

formed topology. Unlike the existing schemes that formed a minimum spanning tree among the isolated

segments, the proposed approach established a topology that resembled a spider web, for which the

segments were situated at the perimeter. Lee et al. [9] presented an approach for federating segments in

the network by populating the least number of relay nodes. The optimization problem was then mapped

to finding the cell-based least-cost paths that collectively met QoS requirements. Lee et al. [10] proposed

heuristics which was QoS-aware relay node placement using minimum Steiner tree on convex hull. Chen

et al. [2] proved the problem of finding the minimum relay nodes was NP-hard and hence heuristics

methods were preferred. And then they presented a Steiner tree algorithm to address this problem.

Journal of Computers Vol. 29, No. 6, 2018

195

3 Partition Connectivity Recovery based on Relay Node Deployment

3.1 Problem Statement

This paper focuses on the problem of relay node deployment involved in partition connectivity recovery

in wireless sensor network. Two kinds of nodes are contained in the WSN: (1) low-energy sensor nodes

deployed initially, are responsible for collecting and transmitting sensing data; and (2) high-energy relay

nodes re-deployed, are responsible for linking disjoint partitions to recovery a connected network

topology and achieve data transmission.

3.2 Disjoint Partition Detection

How to detect disjoint partitions in the WSN is a principal problem to be solved. Assume that a WSN can

be modeled as a communicating graph G(V,E), where V is the node set, and E is the edge set. For a pair

of node v1,v2∈V, the edge (v1,v2)∈E if d(v1,v2) ≤2R, where R denotes the communicating radius of low-

energy sensor nodes. Then we define the partition as follows. Given a sub-graph G1(V1,E1)∈G, if for any

node vi∈V1, vj∈V-V1, d(vi,vj)>2R, then we call G1 as a partition. To some extent, the number of

partitions in a network reflects the connectivity performance of network.

We take FindPartition algorithm (see Algorithm 1) to find all the partitions in the WSN. Assume the

network graph G be represented as an adjacency list. Partitioning a WSN into several isolated partitions

helps to detecting communication holes. And thus, we eliminate these communication holes by re-

deploying a small number of high-energy relay nodes to restore network connectivity.

Algorithm 1. FindPartition(v)

{v∈V, V denotes the node set of a wireless sensor network.};
//use a visit flag array Visited
Visited[v]=TRUE; // the node v is visited
v=*v.first; // take the first node
While (v is not NULL) Do
 If (!visited[*v.vertex])//if the node is not visited
 FindPartition (*v.vertex);
 v=*v.next;
 Endif
Endwhile

3.3 Intra-partition Relay Node Deployment

After finding multiple isolated partitions in the WSN, the sensor nodes in the same partition can

communicate with each other. We firstly discuss the intra-partition relay node deployment. Assume that

the communicating radius of a relay node be represented as Rr, where Rr>R. A high-energy relay node

deployed in a partition can be used to forward sensing data from sensor nodes to sink node. For low-

energy sensor nodes within the partition, if they can forward their sensing data to certain relay node, this

relay node has to lie in the communicating radius of a sensor node (R), as is shown in Fig. 1.

One of the simplest intra-partition relay node deployment method is finding the center of the partition

and placing relay node at this location. However, the number of relay nodes re-deployed in this

deployment method won’t be the least. There is no doubt that it will increase the deployment cost of

relay nodes. Hence, this paper designs a scheme to deploy intra-partition relay node for each partition

based on convex hull which is the most ubiquitous structure in computational geometry.

We can always find a convex hull to contain all the low-energy sensor nodes in a partition, as shown in

Fig. 2. A relay node will be placed at the location which must satisfies two conditions: (1) the distance to

certain sensor node on the convex hull is no more than R to guarantee the information exchange between

intra-partition sensor nodes and the relay node; and (2) the distance to the center of region is the least to

ensure a smaller number of relay nodes to be deployed.

Partition Connectivity Recovery Based on Relay Node Deployment for Wireless Sensor Networks

196

(a) (b)

Fig. 2. Convex hull of a partition in the network

3.4 Inter-partition Relay Node Deployment

After determining all the location information of intra-partition relay nodes, inter-partition relay nodes

will be deployed to connect each disjoint partition together to achieve the whole network communication

connectivity. Considering the requirements of transmission delay and energy consumption, a Steiner tree

will be built which is based on intra-partition relay nodes to guarantee the shortest communication path

of the whole high-energy communication network.

The Steiner tree problem [11] is defined as follows: given a set of points (vertices), interconnect them

by a network (graph) of shortest length, where the length is the sum of the lengths of all edges. The

difference between the Steiner tree problem and the minimum spanning tree problem is that [12], in the

Steiner tree problem, extra intermediate vertices and edges may be added to the graph in order to reduce

the length of the spanning tree. These new vertices introduced to decrease the total length of connection

are known as Steiner points (vertices). It has been proved that the resulting connection is a tree, known as

the Steiner tree.

In Fig. 3(a), we show an example of the Steiner tree of three points, A, B and C, where an extra Steiner

point P is added. In our work, we utilize the idea of the Steiner tree of four points. In this case, two extra

Steiner points X and Y are added. Fig. 3(b) shows an example of a Steiner tree of four points, A, B, C

and D.

A

B

C

P

A

B

D

X

C

Y

(a) A Steiner tree of three points (b) A Steiner tree of four points

Fig. 3. An example of a Steiner tree

The essence of inter-partition relay node deployment algorithm is to find the minimum Steiner tree. It

has been proved that the solving of minimum Steiner tree is an NP-hard problem. Therefore, when the

node scale is large, heuristic methods are preferred. The process of finding minimum Steiner tree

contains three core problems:

(1) the suitable quadrilaterals or triangles are chosen to connect the disjoint partitions (refer to

literature [2]);

(2) their Steiner nodes are found;

Journal of Computers Vol. 29, No. 6, 2018

197

(3) the minimum number of relay nodes are placed on the edges of Steiner tree.

Assume Dis(Rei,S) represent the distance between the intra-partition relay node Rei and a Steiner node

S. The calculation method of the number of relay nodes to be deployed along an edge of Steiner tree can

be described as Ceiling(Dis(Rei,S)/Rr-1).

The algorithm description of Steiner tree based inter-partition relay node deployment can be given in

Algorithm 2.

Algorithm 2. Inter-partition relay node deployment

Step 1: Enumerate all the combinations of non-degenerate convex quadrilaterals and store them in list Q,

and sort Q by the perimeter in ascending order. For each non-degenerate convex quadrilateral q

in Q, if the number of disjoint partitions that the vertexes of q represent is larger than 3, then

compute Steiner edge and deploy relay nodes along the Steiner edge.

Step 2: Enumerate all the combinations of triangles and store them in list T, and sort T by the perimeter

in ascending order. For each triangles t in T, if the number of disjoint partitions that the vertexes

of t represent is larger than 2, then compute Steiner edge and deploy relay nodes along the

Steiner edge.

Step 3: For the remaining two partitions, select the shortest Steiner edge which connects these two

partitions to form a connected network.

In Fig. 4, we illustrate the generation of minimum Steiner Tree. The minimum non-degenerate convex

quadrilateral is composed of relay nodes Re2, Re3, Re4 and Re5. Two Steiner nodes of this quadrilaterals

are found. Several relay nodes are then placed to the appropriate positions on the edges of Steiner tree to

connect four partitions in the network (see Fig. 4(a)). If three angles of a triangle are less than 120°, then

the Steiner point can be found within the triangle. Otherwise, if one angle of a triangle is greater than

120°, this is a triangle with degeneration. Re1, Re6 and Re7 constitute a degenerate triangle. Hence, we

consider forming a non-degenerate triangle which consists of Re4, Re6 and Re7. One Steiner node of this

triangle is found. Extra relay nodes are then deployed on the edges of Steiner tree to connect three

partitions in the network (see Fig. 4(b)). After the above operation, the current number of partitions is 2.

In this case, we find the shortest edge to connect these two partitions into a connected network (see Fig.

4(c)).

Re3

Re5

Re6

Re4
Re7Re2

Re1
Low-energy sensor node

High-energy relay node

Re3

Re5

Re6

Re4
Re7Re2

Re1
Low-energy sensor node

High-energy relay node

(a) (b)

Re3

Re5

Re6

Re4
Re7Re2

Re1
Low-energy sensor node

High-energy relay node

(c)

Fig. 4. Generation of minimum Steiner tree

Partition Connectivity Recovery Based on Relay Node Deployment for Wireless Sensor Networks

198

4 Performance Evaluation

In this section, we evaluate the performance of the proposed solutions via extensive simulations. Without

the loss of generality, sensor nodes are deployed in a region with the size of 1500m*1500m. We explore

two primary parameters: communicating radius (R), the number of partitions (Np), the number of sensor

nodes (N) and evaluate their effects on the number of relay nodes (Nr). Each result shown here is the

statistical average of 20 simulations.

Different from other works, in the proposed algorithm, high-energy relay nodes re-deployed are used

for data forwarding in each partition. Here, we only compare the number of inter-partition relay nodes

deployed in our quadrilateral Steiner tree based algorithm and Minimum Spanning Tree (MST) algorithm.

4.1 Effect of Communicating Radius

Fig. 5 gives the effect on the number of relay nodes from the communicating radius of sensor nodes. In

this example, the number of partitions Np is 9. When some parameters (e.g., the size of region, the

number of sensor nodes) are unchanged, the length of connection path of Steiner tree is relatively fixed.

From the data, we can find that as R increases from 50m to 200m, Nr required to achieve network

communication connectivity will gradually reduce.

Fig. 5. Effect of the communicating radius of sensor nodes

For example, when R=50m, the numbers of relay nodes required Nr are 43 and 48 in our proposed

solution and MST algorithm, respectively. With the increase of the communicating radius, the number of

relay nodes required is less than that in MST algorithm. When R=200m, Nr are 6 and 9 in our proposed

algorithm and MST algorithm, respectively. It is mainly because that the increase of communicating

radius will lead to the decrease of the length of connection path.

4.2 Effect of the Number of Partitions

Fig. 6 shows the effect on the number of relay nodes from the number of partitions (R=100m). With the

increase of Np, Nr required in our proposed algorithm and MST algorithm exist a directly proportional

relationship. Obviously, the more Np is, the more Nr required to restore communication connectivity will

become. For instance, when Np=4, Nr required in our proposed algorithm and MST algorithm are 13 and

15, respectively. This is because that the more Np is, the more the number of partitions which can be

connected by using quadrilateral Steiner tree becomes.

Journal of Computers Vol. 29, No. 6, 2018

199

Fig. 6. Effect of the number of partitions

4.3 Effect of the Number of Sensor Nodes

Fig. 7 shows the effect on the number of relay nodes from the number of sensor nodes. In this example,

R=100m. We can get that with the increase of N, Nr required will gradually decrease. For example, when

N=75, Nr required are 12 and 15 in our proposed solution and MST algorithm, respectively. When the

size of region, the communicating radius are unchanged, the larger number of sensor nodes will alleviate

less partitions, and thus the less number of relay nodes is required.

Fig. 7. Effect of the number of sensor nodes

In conclusion, experimental results show that compared to MST algorithm, our proposed solution can

achieve partition connectivity recovery for WSNs with a smaller number of relay nodes and less energy

consumption of network communication.

5 Conclusion

In this paper, we propose a partition connectivity recovery solution based on relay node deployment for

wireless sensor networks. Intra-partition and inter-partition relay node deployment solutions are designed.

Extensive simulation is conducted to verify the effectiveness of our proposed solution and we give a

detailed discussion on the effects of some primary parameters.

In our future work, we plan to investigate the partition connectivity recovery scheme with the

consideration of transmission delay and computation complexity.

Acknowledgements

This work was partly supported by the Fundamental Research Funds for the Central Universities under

Grant No. 2016JBM011 and the National Science Foundation of China under Grant No. 61872027.

Partition Connectivity Recovery Based on Relay Node Deployment for Wireless Sensor Networks

200

References

[1] N.N. Qin, D. Wu, Y.H. Yu, Connectivity recovery algorithm in partition based on triangle steiner tree, Chinese Journal of

Sensors and Actuators 29(3)(2016) 423-428.

[2] H.S. Chen, K. Shi, Quadrilateral steiner tree based connectivity restoration for wireless sensor networks, Chinese Journal of

Computers 37(2)(2014) 457-468.

[3] M. Younis, R. Waknis, Connectivity restoration in wireless sensor networks using steiner tree approximations, in: Proc.

IEEE Global Telecommunications Conference, 2010.

[4] K. Akkaya, F. Senel, A. Thimmapuram, S. Uludag, Distributed recovery from network partitioning in movable sensor/actor

networks via controlled mobility, IEEE Transactions on Computers 59(2)(2010) 258-271.

[5] M. Imran, M. Younis, A.M. Said, H. Hasbullah, Localized motion-based connectivity restoration algorithms for wireless

sensor and actor networks, Journal of Network and Computer Applications 12(2)(2011) 1-13.

[6] A.A. Abbasi, M. Younis, U. Baroudi. Restoring connectivity in wireless sensor actor networks with minimal node movement,

in: Proc. the 7th International Conference on Wireless Computations and Mobile Computing, 2011.

[7] E.L. Lloyd, G. Xue, Relay node placement in wireless sensor networks, IEEE Transactions on Computers 56(1)(2006) 134-

138.

[8] F. Send, M. Younis, K. Akkaya, A robust relay node placement heuristic for structurally damaged wireless sensor networks,

in: Proc. the IEEE 34th Conference on Local Computer Networks, 2009, pp. 633-640.

[9] S. Lee, M. Younis, EQAR: effective QoS-aware relay node placement algorithm for connecting disjoint wireless sensor

subnetworks, IEEE Transaction on Computers 60(12)(2011) 1772-1787.

[10] S. Lee, M. Lee, QRMSC: efficient QoS-aware relay node placement in wireless sensor networks using minimum steiner

tree on the convex hull, in: Proc. International Conference on Information Networking, 2013.

[11] F.K. Hwang, D.S. Richards, P. Winter, The steiner tree problem, Elsevier, North-Holland, 1992.

[12] C.K. Liang, C.H. Lee, J.D. Lin, Steiner trees grid routing protocol in wireless sensor networks, in: Proc. IEEE International

Conference on Wireless Communications Networking & Information Security, 2010.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

