
Journal of Computers Vol. 29 No. 6, 2018, pp. 211-220 

doi:10.3966/199115992018122906020 

211 

Research on Spectrum Sensing Technology for Integrated  

Space-Ground Network 

Shiyuan Tong1,2, Yun Liu1*, Jing Zhang2, Zhenjiang Zhang3, Bo Shen1, Jian Li1 

1 Department of Electronic and Information Engineering, Key Laboratory of Communication and 

Information Systems, Beijing Municipal Commission of Education, Beijing Jiaotong University, 

Beijing 100044, China 

{17111010, liuyun, bshen, lijian}@bjtu.edu.cn 

2 CETC Key Laboratory of Aerospace Information Applications, the 54th Research Institute of CETC, 

Hebei 050081, China 

zj_hb@163.com 

3 Department of Software Engineering, Key Laboratory of Communication and Information Systems, 

Beijing Municipal Commission of Education, Beijing Jiaotong University, Beijing 100044, China 

zhjzhang1@bjtu.edu.cn 

Received 9 January 2018; Revised 22 January 2018; Accepted 22 January 2018 

Abstract. The demand for wideband wireless spectrum is increasing rapidly due to a rapidly 

expanding market of satellite communications and multimedia wireless services while the usable 

spectrum is becoming scarce due to current spectrum segmentation and static frequency 

allocation policies. Cognitive Radio (CR) can be an efficient technique to increase the spectrum 

utilization efficiency of heterogeneous wireless networks. Compressive sensing (CS) can 

overcome the traditional restriction that sampling rate must satisfy the Nyquist sampling theory, 

and it is also an important technology available for the integrated space-ground network. Aiming 

at the problem that the measurement processes of orthogonal matching pursuit (OMP) are easy 

to be disturbed by noise and the sparse information may not be available for practical 

applications. To overcome these problems, we have extended the idea of OMP to illustrate 

another recovery scheme called stochastic gradient orthogonal matching pursuit (SGOMP). It’s 

shown that the proposed algorithm shows robustness against noise. Moreover, with modified the 

early termination threshold (ETT), the complexity of the proposed algorithm can be reduced.  

Keywords:  cognitive satellite communication network, compressive sensing, early termination 

threshold, least mean square error, stochastic gradient pursuit 

1 Introduction 

With the continuous increasing of the global network and information requirements, ground 

communications network has been unable to meet the growing demand for information acquisition and 

transmission. Vehicle applications, mobile devices and the Internet of Things are growing has gradually 

get the attention of the industry [1]. Although the ground network is developing rapidly, due to the 

limitation of the coverage, the construction and the maintenance cost, it can only provide 

communications services to economically developed and populous urban areas. For offshore platforms, 

deserts and bipolar areas where such inaccessible but in need of reliable communications, terrestrial 

communication networks are even more powerless. Due to its wide coverage, flexible network 

configuration and good broadcast performance, satellite communication can achieve long-span 

information transmission through effective spatial networking and provide a feasible way for seamless 
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coverage of communication services in the world. Once the terrestrial network is blocked or damaged, 

satellite communication network can also serve as a backup force for the terrestrial network, which can 

transmit and receive data packets through the satellite network, greatly improving the reliability of the 

communication network. In addition, satellite communication networks can provide the necessary relay 

channels for human space exploration activities. Satellite communication networks also have better 

multicast and broadcast capabilities than other modes of communication. With the exponential growth of 

information resources, multicast and broadcast technology are powerful means to solve the problem of 

insufficient communication bandwidth resources. With the development of aerospace technology, 

communication technology and satellite load capacity, communication technology of satellite 

communication networks are expected to support the ever-increasing types of services, the ever-

increasing communication speeds and the ever-growing user base. 

The demand for wideband wireless spectrum is increasing rapidly due to the rapid development of 

multimedia wireless services and high-throughput satellite technology. Time division multiplexing is 

widely used in satellite communications at present, but there is less research on spectrum utilization. 

Cognitive Radio (CR) can be an efficient technique to increase the spectrum utilization efficiency of 

heterogeneous wireless networks. However, how to use this technology in a hybrid network of multiple 

terrestrial wireless networks and satellite networks to improve the utilization rate of such networks is a 

hot issue. Cognitive Radio technology allows the coexistence of primary and secondary users within the 

same spectrum without obstructing the normal operation of the primary licensed systems. Spectrum 

sensing is one of the core technology in CR, but the high sampling rate has hampered the development of 

traditional wideband spectrum sensing seriously. compressive sensing (CS) can overcome the traditional 

restriction that sampling rate must satisfy the Nyquist sampling theory, and it is also an important 

technology available for the integrated space-ground network. 

Compressive sensing is a technology that can efficiently acquire a signal using relatively few 

measurements, it can find the unique representation of signals based on the sparsity or compressibility of 

signals in some domains. As the wideband spectrum is inherently sparse due to its low spectrum 

utilization, compressive sensing becomes a promising candidate to realize wideband spectrum sensing by 

using sub-Nyquist sampling rates. Tian and Giannakis first introduced compressive sensing theory to 

sense wideband spectrum in [2]. This technique used fewer samples closer to the information rate, rather 

than the inverse of the bandwidth, to perform wideband spectrum sensing. After recovery of the 

wideband spectrum, wavelet-based edge detection was used to detect spectral opportunities across 

wideband spectrum. 

The compressive sensing has made a revolutionary breakthrough in the field of communication, which 

has attracted the attention of researchers, to improve the robustness against noise uncertainty, Tian et al. 

[3] studied a cyclic feature detection-based compressive sensing algorithm for wideband spectrum 

sensing. It can successfully extract second-order statistics of wideband signals from digital samples taken 

at sub-Nyquist rates. The 2D cyclic spectrum (spectral correlation function) of a wideband signal can be 

directly recovered from the compressive measurements. In addition, such an algorithm is also valid for 

reconstructing the power spectrum of a wideband signal, which is useful if the energy detection algorithm 

is used for detecting spectral opportunities. 

For further reducing the data acquisition cost, Zeng et al. [4] proposed a distributed compressive 

sensing-based wideband sensing algorithm for cooperative multihop cognitive radio networks. By 

enforcing consensus among local spectral estimates, such a collaborative approach can benefit from 

spatial diversity to mitigate the effects of fading. In addition, a decentralized consensus optimization 

algorithm was proposed that aims to achieve high sensing performance at a reasonable computational 

cost. A mechanism based on information fusion is proposed in [5] for reducing the volume of data being 

transferred. The mechanism is a trade-off between uploading the results of in-network data processing 

and uploading all of the raw data. Based on users' requirements, proper data will be uploaded, and the 

accuracy of querying will be as good as, or better than, uploading all of the raw data. 

The existing compressive sensing based spectrum sensing algorithms can be divided into the 1l  norm 

algorithm and the greedy algorithm. The 1l  norm algorithm, which includes basis pursuit algorithm BP 

[6] and its optimization algorithm called gradient projection for sparse reconstruction (GPSR) [7], which 

can convert a combinatorial optimization problem into a convex optimization problem. The 1l  norm 

algorithm can provide a theoretical performance guarantee. However, they are noise sensitive and 

computationally complex. The greedy algorithm approximates the spectral index set of the target signal 
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by iteratively approximating the spectral index set of the signal, which is more efficient for large-scale 

reconstruction problems. At present, typical greedy algorithms include the orthogonal matching pursuit 

which called OMP algorithm [8], the ROMP algorithm [9] and the SOMP algorithm. The complexity of 

these algorithms is far lower than the 1l  norm algorithms. However, they require a large amount of 

measurement data for accurate recovery and their anti-noise ability is weak. CoSaMP shows robustness 

against noise. However, for practical applications, the sparse information may not be available. In view 

of the above problems, an enhanced algorithm called stochastic gradient orthogonal matching pursuit 

(SGOMP) algorithm which based on the OMP algorithm is proposed in this paper. 

This paper is organized as follows: In Section 2, we present architecture of the integrated Space-

Ground network and the detailed description of the OMP algorithm. The proposed SGOMP algorithm is 

discussed in Section 3. In Section 4, some simulation analysis process and results are given. Finally, the 

Section 5 concludes with a summary of the obtained results. 

2 Preliminaries 

2.1 Integrated Space-Ground Network Architecture 

Cognitive satellite communication network is a satellite communication network system using cognitive 

radio technology, it also involves the use of cognitive satellite (unassigned communication satellite) to 

the terrestrial licensed band and satellite licensed band. Cognitive satellite communication technology 

allows unlicensed satellites to use the licensed satellite link or the licensed land link frequency band for 

uplink downstream communication without prejudice to the normal communication of authorized users. 

Therefore, more satellite users can be developed to further promote the development of satellite 

communications. Enriching relevant research in this field will play an important role in promoting the 

utilization of spectrum resources, improving the quality of satellite communications services and system 

capacity, and promoting the development of satellite communications. 

A typical topology of integrated Space-Ground network is shown in Fig. 1. According to the location 

in the network, integrated Space-Ground network can be divided into two parts: access satellite network 

and backbone satellite transport network. The access satellite network is responsible for the connection 

between the space-based satellites, satellite and user terminals and between satellite and ground gateway, 

so as to fully realize the effective interconnection of the space information network with the ground core 

network and the ground terminal users so as to effectively use the space, the air, the sea and other multi-

dimensional information to achieve the integrated and complex processing of integrated networks and the 

maximum effective use of. The backbone satellite transport network consists of a single-layer satellite 

constellation with the same orbital altitude or a multi-layer satellite constellation without orbital altitude, 

and completes the routing, exchange and transmission process of the communications service in the 

space network part through the inter-satellite link. 

 

Fig. 1. Integrated Space-Ground network topology 
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2.2 OMP for Compressive Sensing Recovery 

The compressive sensing can be modeled in matrix form as: 

 y x n= Φ +  (1) 

There are two basic problems in compressive sensing. The first one is to find a measurement matrix 

which can ensures every k-sparse signal has a unique measurement. The second problem in CS is to find 

a suitable algorithm that can exactly recover any sparse signal from its unique measurements. 

In the problem of compressive sensing recovery using OMP, it is known a priori that the measured 

signal is k-sparse, which means has non-zero entries only at unknown index. The detailed steps are 

described in the following algorithm. 

Notations used in this paper.  

• x  = Original signal 

• y  = Observation vector 

• r  = Residual error 

•M  = Input length 

• N  = Measurement length 

• k  = Signal sparsity 

• R  = Residual matrix 

•Φ  = Measurement matrix (size: M N× ) 

•λ  = Maximum index after dot product 

• t  = Iterations 

•

max
t  = Required iterations (usually equal to k ) 

• n  = Noise 

OMP begins by initializing the residual error to the input measurement vector, selected index set to 

empty set and initial approximation to a null vector. At iteration t, OMP chooses a new index by finding 

the best atom matching with the residual, and updates the selected index set. Then, OMP obtains the best-

term approximation by a least-squares (LS) minimization. 

In OMP, the residue is always orthogonal to all the selected atoms. That means the non-zero 

correlation will only occur for those atoms, which are not linear combinations of atoms in. Thus at 

iteration t ,OMP will select an atom which is linearly independent from the previously selected atoms. 

Therefore, the obvious choice for k-sparse signal recovery is to identify correct atoms in iterations of 

OMP.  

The detail steps of OMP algorithm are described as Table 1. 

Table 1. OMP for compressive sensing recovery 

OMP Algorithm: ( )ˆ ,x OMP y= Φ  

Input: 
N d×

Φ∈�  
N

y∈�  
max
t k=  

Procedure: 

Initialize: 
0 0

, , 1r y tφ= Λ = = ( )ˆ ,x OMP y= Φ
 

while   t M= is not satisfied 

1... 1
,

t j N t j
argmax rλ ϕ

= −

=

 

t t-1 t
{ }λΛ = Λ ∪

 

1
[ , ]

t
t t λ

ϕ
−

Φ = Φ
 

2
ˆ ˆ

t t
x argmin y- x= Φ

 
ˆ , 1

t t t
r y x t t= −Φ = +

 
end while 

return ( )x̂ t  

Output: 

x̂  
N

t
r ∈�  
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3 Stochastic Gradient Orthogonal Matching Pursuit Algorithm 

In this section we discuss OMP algorithm, and extended the idea of OMP to illustrate another recovery 

scheme called SGOMP and SGOMP(ETT).  

The SGOMP algorithm is proposed to divide the CS recovery problem into two processes: pursuing 

process and estimation process. In the pursuing process, it is desired to identify the location of nonzero 

terms. In the estimation process, only nonzero terms are calculated. In OMP, the selected matrix of the 

iteration is related to the LS estimation of last iteration, which leads to the error propagation and makes 

OMP vulnerable to measurement noise. 

The pursuit process of SGOMP and OMP is identical, the correlation of the current residual error and 

measurement matrix can  be calculated to determine the index 
t

λ : 

 ( ) 1
1,2,...,

,
t j

j N

t argmax rλ ϕ
−

=

=  (2) 

where N denotes the column number of the measurement matrix. After determining the maximum and 

selecting the most correlative column, the index set are added as follows: 

 ( ) ( ) ( )1t t tλΛ = Λ − ∪  (3) 

The measurement matrix selected according to the index set can then be expressed as follows: 

 ( ) { | ( )}
t j

j tϕ
Λ

Φ = ∈Λ  (4) 

The MMSE equalizer is adopted to address the noise problem in digital communications, as a result, 

the ZF criterion is often replaced by the MMSE criterion to improve the performance [10]. 

Since the LS estimation is applied in OMP as well as ZF criterion, it is reasonable to replace LS 

estimation of OMP algorithm with MMSE criterion, for the AWGN channel, the MMSE solution is 

expressed as: 

 

1
2

( ) 2
ˆ

n
M AWGN

x|

x I y
σ

σ

−

∗ ∗

Λ

⎛ ⎞
= Φ Φ Φ +⎜ ⎟⎜ ⎟

⎝ ⎠
 (5) 

where ( )
ˆ

M AWGN
x  is nonzero terms of x̂ , 2

|xx x L L
E Iσ

∗

Λ ×
=  and 2H

nn n M M
E Iσ

×
= . 

However, it is difficult to determine 2

x|σ
Λ

 and 2

n
σ  in compressive sensing. In the practical applications, 

the amplitude of each nonzero term is different and the power of x  cannot be controlled. As a result, the 
2

x|σ
Λ

 is unavailable. On the other hand, the 2

n
σ  is also unknown.  

The core idea of the minimum mean square error estimation is to minimize the mean square error of 

the observation vector y  which is identically distributed with x . The gradient descent method is usually 

used to find the minimum value of the MSE because of the inability to determine the invalid expression 

of the MMSE estimator. The least mean square estimation is a well-known stochastic gradient descent 

method, whose purpose is to minimize the mean square error between the observation vector y  and the 

output of the adaptive filter. The steady state solution of the least mean square can be expressed as: 

 1ˆ [ ]
x x n

x R R R y
∗ ∗ −

= Φ Φ Φ +  (6) 

where 
n nn

R E
∗

=  and 
x xx

R E
∗

=  is the auto correlation matrix of { }( ) |x x i i
Λ
= ∈Λ . Equation (6) indicates 

that the LMS estimate converges the iteration to the solution Φ  of the MMSE estimate, so that the 

MMSE estimation can also be realized in the long run even if 
x

R  and 
n

R  have no definite values. 

If it further happens that 
n

R  and 
x

R  are nonsingular matrices, then the above equation (6) for x  can be 

rewritten in an equivalent form that will be convenient for later analysis: 

 1 1 1 1ˆ [ ]
x n n

x R R R y
− ∗ − − ∗ −

= +Φ Φ Φ  (7) 

The stochastic gradient pursuit algorithm is utilized to iterate the solution of MMSE, and propose a 
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new algorithm named stochastic gradient orthogonal matching pursuit. The compressive sensing (CS) 

recovery is regarded as a system identification process. If all of the nonzero terms can be identified after 

iterations, the compressive sensing (CS) without noise n  can be modeled in matrix form as: 

 ˆy x x
Λ

= Φ ⋅ = Φ ⋅  (8) 

where the x̂  is the optimal nonzero term of x , and 
Λ

Φ  is the optimal measurement matrix corresponding 

to it. 

After pursuit process, the selected M L×  optimal matrix ( )tΛ
Φ  is input, and the value of the nonzero 

term is estimated by the least mean square process. The estimation error of the observation vector y  

using the adaptive filter can be expressed as: 

 ˆ
ˆe y x

λ λ λ λ
= −Φ ⋅  (9) 

where y
λ

 is the thλ  element of the observation vector y , ˆ
λ

Φ  is the thλ  row of the selected optimal 

matrix, and the x̂
λ

 is a vector, the length of which is 1L× . The gradient decent recursion of least mean 

square process can be expressed as: 

 
1

ˆ
ˆ ˆx x e
λ λ λ λ

∗

+
= + ⋅Φ  (10) 

The output ˆ
M
x  of the least mean square process can be expressed as: 

 ( )
ˆ ˆ ( )M i| t
x x t

Λ
=  (11) 

After the least mean square process, the current residual error ( )r t  can be calculated as follows: 

 ( ) ( )
ˆ

Mt
r t y x

Λ
= −Φ ⋅  (12) 

where the ˆ
M
x  is a 1L×  vector which contains only nonzero terms.  

The current residual error’s 2l  norm will approach to zero as the increase of iteration, it can be 

calculated as: 

 2

2
1

M

n

i

i

r r

=

=∑  (13) 

An early termination scheme is desired reduce the computational complexity of OMP algorithm with 

early termination threshold is mentioned in [11]. The iterative procedure will be early terminate when the 

current residual error’s norm satisfies: 

 
2

n

r ETT<  (14) 

where the early termination threshold ETT is determined by simulation. 

Since the root operation for calculating the 2l  norm requires a high cost, this section presents an 

optimized early termination criterion that calculates the correlation between the current residual error 

( )r t  and the measurement matrix 
j

ϕ , which can be expressed as follows: 

 ( )
1,2,...,

argmax ,
t j

j N

r tη ϕ
=

=  (15) 

Finally calculate the difference between the current residual error and the degree of correlation of the 

previous iteration residual error with the measurement matrix ： 

 ( )1 1
,

t t t t
C η η η η

− −

= −  (16) 

The proposed stopping condition is increased on the basis of the number of iterations arriving at M, 

expressed as: 

 ( )1,
t t

C ETTη η
−

<  (17) 
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In order to reduce the number of iterations that are necessary for signal recovery by the SGOMP 

algorithm while not reducing the performance of the algorithm, how to determine the value of threshold 

ETT is an important issue. 

To look for the value of ETT, we first look into error tolerance margin of the recovered signal, an early 

termination criterion based on normalized root-mean-squared error (NMSE) is proposed in this paper, 

which is denoted as E . In practical applications, the recovery can be regarded as successful recovery if 

NMSE of the recovered signal is lower than targeted NMSE as: 

 1
ˆ( )

N

t tt

NMSE

x x
E

N

=

−

=

∑
 (18) 

where 
t
x  and ˆ

t
x  are ith  element in x  and x̂ . 

The recovered signal x̂  does not  need to be exactly the same as x  in noiseless scenario. The equation 

(18) can be expressed as: 

 2

1
ˆ( )

N

NMSE t tt
E N x x

=

× > −∑  (19) 

According to Cauchy-Schwarz inequality, the early termination threshold ETT can be expressed as: 

 2 2

NMSE
ETT E N= ×  (20) 

The proposed SGOMP algorithm will stop when the proposed stopping condition is smaller than the 

threshold ETT or when the set maximum number of iterations is reached. Otherwise, the SGOMP 

algorithm will go back to calculation of correlation and algorithm iterates. 

The detail steps of SGOMP algorithm can be described as Fig. 2. 

( )tx̂

( ) ETTC
tt

<
−1

,ηη

Mt≥

 

Fig. 2. The flowchart of the SGOMP algorithm 
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4 Numerical Experiments 

In this section, we conduct an experiment on SGOMP and OMP algorithms under noisy scenario, the 

simulation setup is summarized as follows: The input length N=512, measurement length M=64, and 

signal sparsity K=8 are set according to [12]. We modify the signal-to-noise ratio (SNR) to observe the 

recovery performance. The 
max

K  is set to be 16, and maximum number of iterations is set to be 64 as 

OMP. When 3
0.5 10

-

E = × the early termination threshold ETT can be determined 2
6.6 10

-

ETT = ×  

according to (20). Due to additive noise n, the required iterations of OMP cannot be determined. 

Therefore, the halting condition of OMP algorithm is 3

2

0.5 10
n

r
−

< × . Respectively, if 
NMSE

E   is less 

than  , the trial is regarded as successful recovery. 

The SNR (in dB) is defined as: 

 

2

2

2

2

10
10

x
SNR log

n

Φ ⋅
=  (21) 

4.1 Signal Recovery Performance under Noisy Scenario 

Fig. 3 shows the simulation results of the signal recovery rate of the traditional OMP algorithm, ROMP 

algorithm, BP algorithm, CoSaMP algorithm and the SGOMP correlation algorithms proposed in this 

paper. SGOMP (ETT) represents the SGOMP algorithm using the early termination threshold. 

 

Fig. 3. Successful recovery rate of SGOMP, SGOMP(ETT), OMP, ROMP, BP, and CoSaMP 

It can be observed that the proposed SGOMP algorithm is robust to noise than OMP algorithm. With 

the increase of signal-to-noise ratio (SNR), the original signal recovery probability of SGOMP algorithm 

and the other algorithms are increasing constantly, but the growth rate of which is different with each 

other obviously. When the SNR is 5dB, the difference of the recovery performance between these 

algorithms is small, the recovery rate is very small. With the SNR increase, the recovery performance of 

SGOMP algorithm is much better than the traditional OMP algorithm and the other algorithms discussed 

in this section expect CoSaMP algorithm. When the SNR increased to 15dB, the recovery rate of 

SGOMP(ETT) algorithm is almost 1, which is about 35% higher than that of OMP algorithm, about 34% 

higher than that of ROMP algorithm and about 19% higher than that of BP algorithm. Especially, the 

CoSaMP algorithm performs much better than any other algorithms compared in this section when the 

sparse information is available. In practical, the sparse information used to be unavailable for practical 

applications, as a result, it can not be compared with other algorithms here. Therefore, the SGOMP 

algorithm proposed in this paper is much stronger than that of the traditional OMP algorithm in the noise 

environment. In addition, it can be observed that the recovery rate of SGOMP (ETT) using the early 

termination threshold remains almost at the same level as SGOMP as the SNR increases, so the use of 
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early termination threshold does not have a significant impact on the performance of the SGOMP 

algorithm. 

4.2 The Number of Iterations Required for Signal Recovery 

The analysis of required iterations of proposed algorithms and OMP algorithm are shown in Fig. 4, where 

SGOMP (ETT) represents the SGOMP algorithm using the early termination threshold ETT. We average 

iteration counts of simulated 100000 trials for each algorithm. 

 

Fig. 4. Analysis of required iterations for OMP and SGOMP-related recovery algorithms 

It can be observed that required iterations of SGOMP without early termination threshold is more than 

OMP regardless of the value of the SNR, and the required iterations of SGOMP algorithm does not 

change with the increase of SNR, on the contrary, the required iterations of SGOMP (ETT) and OMP 

decreases with the increase of SNR, the required iterations of the SGOMP (ETT) algorithm is more than 

that of the OMP algorithm when the SNR is low. The number of iterations of SGOMP (ETT) algorithm 

is higher than that of OMP algorithm in SNR environment. However, with the increase of SNR, the 

required iterations of SGOMP (ETT) algorithm is much more than which of traditional OMP algorithm. 

Due to proposed early termination scheme, it can be observed that required iterations of SGOMP and 

SGOMP (ETT) decrease dramatically when SNR is higher than 11 dB. On the other hand, the required 

iterations of proposed algorithms are less than OMP when SNR is higher than 14 dB. The early 

termination scheme is able to reduce 47% and 72% iterations in SGOMP when SNR equals 15 dB and 19 

dB, respectively. According to the simulation results of the success rate and the required iterations, we 

can conclude that the SGOMP algorithm with the early termination threshold ETT can reduce the 

required iterations almost without affecting the success rate of original signal recovery. 

5 Conclusion 

The results of numerical experiments reveal that the proposed algorithms have a higher success rate of 

original signal recovery in noisy environment. In addition, the use of the early termination threshold 

(ETT) can reduce the complexity of the proposed algorithm without affecting the success rate of original 

signal recovery. 
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