
Journal of Computers Vol. 29 No. 6, 2018, pp. 230-234

doi:10.3966/199115992018122906022

230

A Smart Provisioning Approach to Cloud Infrastructure

Julio Sandobalin1,2*, Emilio Insfran2, Silvia Abrahao2

1 Departamento de Informática y Ciencias de la Computación, Escuela Politécnica Nacional,

Ladrón de Guevara, E11-253, Quito, Ecuador

julio.sandobalin@epn.edu.ec

2 Departamento de Sistemas Informáticos y Computación, Universitat Politècnica de València,

Camino de Vera, s/n, 46022, Valencia, España

{jsandobalin, einsfran, sabrahao}@dsic.upv.es

Received 9 January 2018; Revised 21 January 2018; Accepted 22 January 2018

Abstract. Cloud Computing has become the primary model to pay-per-use used by practitioners

and researchers for getting an infrastructure in a short time. DevOps is a paradigm that provides

practices and tools to optimize the software delivery time. On the one hand, Infrastructure as

Code is the cornerstone of DevOps to infrastructure automation based on practices of software

development. On the other hand, there exist tools that provide support for infrastructure

provisioning and configuration management in the Cloud. Currently, companies are using

Cloud-based DevOps processes to leverage the capacities of Cloud Computing and improve the

software delivery time. However, infrastructure provisioning is a time-consuming and error-

prone activity because it is supported by tools which work in isolation and they do not have any

link between them. For this reason, we propose a smart provisioning approach of infrastructure

based on models, which have configuration needed to create infrastructure, run a set of

automated tests and setup automatically the DevOps tools used in this process.

Keywords: cloud computing, DevOps, infrastructure provisioning, model-driven development,

smart provisioning

1 Introduction

In today’s enterprises, one of the most important challenges is how to deliver a new idea or software

artefact to customers as quickly as possible. Furthermore, to succeed in a world where technologies,

requirements, ideas, tools, and timelines are continually changing, information must be accurate, readily

available, easily found and, ideally, delivered continuously in real-time to all team members [1]. For

these reasons, practitioners have adopted a new paradigm called DevOps [2] (Development &

Operations), which is promoting continuous collaboration between developers and operation staff

through a set of principles, practices and tools that optimize the software delivery time. The cornerstone

of DevOps is the Infrastructure as Code [3] which is an approach to infrastructure automation based on

software development practices that emphasize the use of consistent and repeatable routines for hardware

provisioning. We take advantage the concepts aforementioned to develop an infrastructure modelling tool

called ARGON [4], which models a generic infrastructure model and generate configuration files to

manage provisioning tools. On the other hand, we have presented a DevOps toolchain for cloud

infrastructure provisioning [5], which supports an approach to achieve a continuous delivery process for

cloud infrastructure provisioning based on DevOps community tools.

In this work, we present an approach to achieve a smart provisioning of cloud infrastructure based on

models. We have abstracted the configuration features of DevOps community tools used in an

infrastructure provisioning process for adding new modeling elements in ARGON tool. Firstly, it is

necessary to models an infrastructure model that define the cloud elements and provisioning tools

* Corresponding Author

Journal of Computers Vol. 29, No. 6, 2018

231

configurations. Once the infrastructure model is ready, it is pushed towards a control version system to

retain and provide access to every version of every infrastructure model that has ever been stored on it.

Next, an integration server takes the infrastructure model from control version system and automatically

generate configuration files for a specific provisioning tool depending on what cloud provider is required.

Then, a set of automated tests are run against this configuration files to validate their structure and

syntaxes. Once configuration files have overcome the set of tests, the integration server uses these scripts

and decide which tool provisioning use to deploy the infrastructure toward a particular cloud provider.

Finally, infrastructure has been deployed in the Cloud, and a set of automated tests validate the installed

hardware and software.

The remainder of this paper is structured as follows: Section 2 discusses related works. Section 3

presents the smart provisioning of cloud infrastructure. Finally, Section 4 presents our conclusions and

future work.

2 Related Works

Currently, practitioners and researchers have focused their efforts on cloud infrastructure provisioning

using DevOps community tools. In this context, below are described the principal research works that

aim this approach.

MODAClouds [6] is a European project undertaken to simplify the management of cloud service. The

goal is to deliver an Integrated Development Environment to support system developers in building and

deploying applications and related data to multi-Clouds spanning across the full Cloud stack. Energizer

4Clouds is an executable platform of MODAClouds which includes automatic infrastructure provisioning

using specially designed Puppet modules, the ability to use existing infrastructure and an API

middleware for job control.

MORE [7] is a model-driven operation service for cloud-based IT systems that focus on automating

the initial deployment and the dynamic configuration of a system. MORE provides an online modelling

environment for defining a topology model to specify system structure and desired state. MORE

transforms the topology model into executable code for the Puppet tool to get virtual machines, physical

machines, and containers.

TOSCA [8] is a standard for Topology and Orchestration Specification for Cloud Application which

allows modelling nodes and orchestrates the deployment of cloud applications. TOSCA uses DevOps

provisioning tools such as Chef for infrastructure provisioning and Juju for implementation of cloud-

based applications.

An analysis of works mentioned above shows that research efforts have focused on reuse DevOps

provisioning tools, which are used in isolation and they do not have links for supporting a continuous

delivery process of the infrastructure provisioning. For this reason, we propose an approach to support a

smart provisioning of cloud infrastructure based on models that use DevOps community tools.

3 Smart Provisioning of Cloud Infrastructure

There is a wide range of cloud providers and tools that can be used to support the infrastructure

provisioning and software applications deployment. To support these processes we have presented an

infrastructure modeling tool for cloud provisioning called ARGON [4], which was developed following

the Model Driven Architecture (MDA).

ARGON has a Domain Specific Language (DSL) to model the cloud infrastructure and a

transformation-engine to generate configuration files automatically. ARGON has an Infrastructure

Metamodel (see Fig. 1), which abstracts the capacities of cloud computing (i.e. computing, storage,

networking and elasticity) and the configuration files for a specific cloud provider. The Infrastructure

Metamodel is the abstract syntax used to generate the graphical notation or concrete syntax of the DSL.

In the Infrastructure Model (see Fig. 2) are modeled generic cloud elements and configurations, which

will be used at runtime to decide between available provisioning tools that are useful for a particular

cloud provider.

A Smart Provisioning Approach to Cloud Infrastructure

232

Fig. 1. Infrastructure Metamodel

Fig. 2. An Infrastructure Modeling Too

ARGON architecture (see Fig. 3) uses the Infrastructure Metamodel as a Platform-Independent Model

(PIM) to facilitate the model-to-model (M2M) transformation and get a specific Infrastructure Model as a

Platform-Specific Model (PSM) and settings to choose a provisioning tool. Once the particular

provisioning tool and cloud provider are selected, the transformation-engine uses the Infrastructure

Model to apply on it a set of model-to-text (M2T) transformation and generate scripts, which have the

sentences to create infrastructure in the Cloud.

Journal of Computers Vol. 29, No. 6, 2018

233

Fig. 3. ARGON architecture

ARGON has a Domain Specific Language (see Fig. 3) to model the cloud infrastructure elements and

its configuration platforms.

In the Fig. 3, it is depicted a cloud application in which a virtual machine (Web Server) has a security

group (Group Sever), which allows the access to the virtual machine through the port 80 (http). The

virtual machine has a role (Web Profile), which specified the software application (Install Application)

that will be installed and configurations (File Configuration). Furthermore, it will be stored in a

knowledge database and used by configuration file repository to choose a provisioning tool for deploying

the cloud infrastructure.

The attributes tab of File configuration (see Fig. 3) is used by Configuration File Repository to give an

intelligent provisioning to the cloud infrastructure. In these attributes are specified:

． destination and file path specify configuration files that will be modified in the virtual machine

deployed,

． mode defines the file permission which must be applied in the file configuration,

． name is the element name on the infrastructure model,

． notify is an alarm that is activated in the install process, and

． source is a configuration file with the setting of provisioning tool and cloud provider.

Once the cloud infrastructure provisioning and its configuration files are modelled in ARGON, it starts

the smart provisioning pipeline of cloud infrastructure (see Fig. 4). The infrastructure model (see Fig. 3)

is pushed toward a version control system to retain and provide access to every version of every

infrastructure model that has ever been stored on it. An integration server like Jenkins or Hudson take

this infrastructure model and start the automated infrastructure provisioning. The transformation-engine

installed in the integration server apply over the infrastructure model a set of transformation rule to get

scripts with the instructions needed to create infrastructure in the Cloud. Moreover, configuration files to

set the provisioning tools like Ansible or Puppet are generated. Both scripts and configuration files have

to overcome a set of automated tests to validate its structure and syntax.

Fig. 4. Overview of an intelligent provisioning pipeline of cloud infrastructure

A Smart Provisioning Approach to Cloud Infrastructure

234

The configuration files are stored in a knowledge database and, subsequently, in a configuration file

repository is run a set of basic decision rules to select a configuration file to depend on both the

infrastructure provisioning tool and the cloud provider, which are specified in the infrastructure model. In

the case of the infrastructure provisioning process failed, the configuration file repository will select

another configuration file to repeat the provisioning process until it works successfully. Therefore,

configuration files are used for setting the provisioning tools and cloud providers. Moreover, scripts are

used in infrastructure provisioning tools to deploy the hardware and software in the cloud provider.

Finally, over the infrastructure deployed and software installed a set of tests are run against them to

verify if the infrastructure was created successfully and the software was installed.

4 Conclusions

In this work, we have presented an approach to achieve a smart provisioning of cloud infrastructure

based on models. We take advantage of the information modelled in an infrastructure model to generate

scripts for provisioning infrastructure and configuration files to set provisioning tools and cloud

providers. We use a knowledge database to store all scripts and files configuration created and, then,

configuration file repository should use them to select a file to be used. We call this process like

intelligent provisioning because, in the case of a failure in the provisioning process, a new file

configuration is selected to repeat the process until it works successfully. With this approach, we tried to

reach a continuous delivery process of cloud resources based on an intelligent provisioning of cloud

infrastructure and DevOps. The scope of this proposal provides a smart in the infrastructure provisioning

stage.

As a future work, we want to extend the concept of smart provisioning and provide self-learning

through files configuration and scripts to give a holistic solution to the of cloud infrastructure

provisioning.

Acknowledgements

This research is supported by the Value@Cloud project (TIN2013- 46300-R).

References

[1] C.A. Cois, J. Yankel, A. Connell, Modern DevOps: Optimizing software development through effective system interactions,

in: Proc. IEEE International Professional Communication Conference, 2015.

[2] J. Humble, D. Farley, Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment Automation,

1st ed., Addison-Wesley Professional, Boston, MA, 2010.

[3] K. Morris, Infrastructure as Code: Managing Servers in the Cloud, 1st ed., O’Reilly Media, Sebastopol, CA, 2016.

[4] J. Sandobalin, E. Insfran, S. Abrahao, An infrastructure modelling tool for cloud provisioning, in: Proc. 14th IEEE

International Conference on Services Computing, SCC, 2017.

[5] J. Sandobalin, E. Insfran, S. Abrahao, End-to-end automation in cloud infrastructure provisioning, in: Proc. 26th

International Conference on Information Systems Development, ISD, 2017.

[6] E. Di Nitto, P. Matthews, D. Petcu, A. Solberg, Model-Driven Development and Operation of Multi-Cloud Applications,

Springer International Publishing, Cham, 2017.

[7] W. Chen, C. Liang, Y. Wan, C. Gao, G. Wu, J. Wei, T. Huang, MORE: a model-driven operation service for cloud-based IT

systems, in: Proc. 13th IEEE International Conference on Services Computing, SCC, 2016.

[8] J. Wettinger, U. Breitenbücher, O. Kopp, F. Leymann, Streamlining DevOps automation for Cloud applications using

TOSCA as standardized metamodel, Future Generation Computer Systems 56(C)(2016) 317-332.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

