
Journal of Computers Vol. 29 No. 6, 2018, pp. 243-253

doi:10.3966/199115992018122906024

243

Android Malware Detection Based on

Static Behavior Feature Analysis

Chen Chen1, Yun Liu1*, Bo Shen1, Jun-Jun Cheng2

1 Department of Electronic and Information Engineering, Key Laboratory of Communication and Information

Systems, Beijing Municipal Commission of Education, Beijing Jiaotong University, Beijing, China

{15120201, liuyun, bshen}@bjtu.edu.cn

2 China Information Technology Security Evaluation Center, Beijing, China

chengjj@itsec.gov.cn

Received 9 January 2018; Revised 22 January 2018; Accepted 22 January 2018

Abstract. As an open source operating system, Android has groups of users and developers,

which result in a great deal of Android application in app markets. But at the same time, app’s

benign and malicious behavior cannot be screened, the number of new malware sample for

Android platform and infected mobile phone are still soaring, Android malware detection is

faced with a tough challenge. Thus this paper proposes an approach that analyze Android

malware by extracting app’s static behavior, and information are captured include the use of

permission, android’s components and API calls. Then we take the advantage of PCA to extract

app’s principle behavior features. Finally, classifiers are trained by Android app dataset to

validate the performance. Experiments show that the proposed method is capable of 97.4% true

positive rate and 99.8% area under ROC, our lightweight classifiers can detect Android’s

unknown malware effectively and accurately.

Keywords: Android, feature extraction, feature selection, malware, static behavior

1 Introduction

Figures released by International Data Corporation (IDC) show that smartphone companies shipped a

total of 1.47 billion smartphones worldwide by 2016, Android dominated the smartphone market with a

share of 86.8%, moreover, it is expected to continue rising in 2017 [1]. With the popularity of

smartphone, the malicious software in desktop computer began to spread over mobile devices. 360

Internet security center pointed out in the report that 14.033 million new malicious Android app samples

were intercepted by their researchers in 2016. The report also indicated, according to the intercepting

record, the accumulative total of malicious attacks have reached over 253 million times in a year, which

means an average of nearly 700 thousand infection each day [2]. A variety of third-party Android app

stores are emerging one after another and have no guarantee for the security of users. The growth rate of

Android malicious app is being accelerated, the diversity and complexity is being enhanced, thus making

the security of Android smartphone in a worse state. There are grave challenges facing the management

of Android app store and the detection of Android malware. In order to tackle the constantly changing

and continuously updated security threats, it is thus important to detect Android malware effectively and

classify Android app correctly.

The paper is organized as follows: Section 2 gives background information on the methods and

analyses of Android malware detection. Next, section 3 illustrates our static behavior analysis system and

malware detection model, also explains the machine learning techniques and main ideas behind our

analysis. Section 4 presents experiments, results and analyses. We then conclude the paper with a brief

discussion and outline future work.

* Corresponding Author

Android Malware Detection Based on Static Behavior Feature Analysis

244

2 Related Work

There are a variety of Android malicious apps which can be changed and updated rapidly. ANVA

classify mobile threats into the eight classes of charges consumption, privacy theft, malicious cost, fraud,

scamp, system destroy, remote control and malicious propagation [3]. Overall, Android malware has

been formed complete gray industrial chain, efficient and automatic analysis method have to be

approached to fight against these threats.

Methods of Android malware detection can be categorized into two classes: signature-based and

behavior-based methods. The signature-based methods on Android malware are a malicious code

matching by extracting signatures from Android app. Signature-based methods have the advantage of

quick, accurate and low false positive rate, whereas they cannot detect the unknown signature, and are

relatively backward. Due to the increasing and changing of malware, malicious code signature database

needs to be updated frequently. The behavior-based detection methods match the apps’ behavior pattern

with known malicious’. Unknown malware can be detected through these methods, but with high false

positive rate. Behavior-based have two categories: static analysis, by using reverse engineering to extract

local feature; and dynamic analysis, by running the application on virtual machine or mobile phone to

monitor and intercept the app’s behavior on runtime. In contrast to dynamic analysis, static extends to

app’s every execution step without specific execution process restriction, dynamic can only detect app’s

behavior accord with specific pattern. Meanwhile, dynamic has high real-time requirement, needs to

continuously monitor the runtime state, has an effect on mobile phone’s performance and takes time and

resources.

Kirin is a representative permission-based static analysis of early security service for Android, it

defines malicious behaviors by comparing application’s permission requirement with static, conjunctive

rule set, which consist of common dangerous permissions using by malware. Since the study’s small

number of rules are not representative, the detection rate is low. Moreover it cannot identify collusion

attack that carried out by using a combination of multiple malicious or infected apps [4]. In respect to the

issue of malicious code flooding, Hu et al. proposes a novel statistical analysis system that combine static

and dynamic analysis technologies. Then the malicious code detection system is released online and free

to use [5]. But dynamic analysis will greatly increase cost, degrade performance, the detecting speed and

efficiency of this system cannot meet the social Android malware detection demand. Moreover, the

accuracy will decrease with unknown malware.

With the rise of machine learning, a large number of scholars attempt to get a new Android malware

detection methodology through a combination of machine learning algorithms and static analysis method,

make the detecting target transition from known malware to unknown malware. By analyzing app’s static

behavior, the classifier formed by the machine learning can identify the distinction between benign and

malicious applications more automatically and efficiently than traditional classification.

Glodek et al. extract permissions, components, native code as training features for random decision

forest classification of malicious and benign applications [6]. Zhou et al. improve the Aswini by

extracting permissions features when the privilege escalation vulnerability is considered, then they train

and test samples by five different machine learning algorithms. Although the accuracy of malware

detection is improved, the complexity is increased too [7]. After extract a number of permission and

control flow graph features, Sahs et al. train a One-Class Support Vector Machine with benign Android

app and test their system against a collection of benign and malicious apps with different kernels, but the

result is not ideal [8]. Yerima et al. apply Bayesian classification with API (Application Programming

Interface) call, permission and system command features extracted through reverse engineering of the

Android apps, results of their experiments with different feature sets and training samples show that this

model significantly improve the detection rate compare to those signature-based detection model [9].

For Android malware detection, common machine learning algorithms include Decision Tree, Random

Forest, K-means, Logical Regression, Adaboost, Naïve Bayes, Support Vector Machine, etc. And general

feature extraction algorithms are Principal component Analysis, Linear Discriminant Analysis and

Independent Component Analysis, feature selection is broadly separated into filter method and wrapper

method. No one is completely certain which machine learning algorithm to use, which feature to extract

and how to extract. In this paper, we apply a static behavior analysis system for Android app and use

feature extraction and selection to get a feature set which is composed of the use of permission, android’s

components and API calls in java code information, then use different machine learning algorithms to

Journal of Computers Vol. 29, No. 6, 2018

245

construct classifiers. The dimension of our final feature sets are quit low but those classifiers are capable

of high detection rate.

3 Model Construction

Through the investigation of large quantities of malicious application samples, researchers concluded

Android static behaviors and gave us a lot of constructive suggestions. Based on attack types, Arslan et al.

divide mobile threats into four classes: Malicious Applications (Riskware, Adware, Malware), Trojan,

derivatives and working structure, Viruses and Worms. And there is a summary of each application’s

attack, development, detection, and prevention methodology [10]. 360 Internet security center also

indicates that new malware on Android platform are mainly charges consumption apps, accounts for

74.2% in 2016, 67.4% of privacy theft apps will steal SMS information, 34.8% even steal mobile

banking information and 10.0% steal phone’s contacts.

The report on Chinese Android mobile phone’s privacy and security in 2016, published by DCCI, rate

the privacy permission on a four-point scale for permission crossing the line [11]: High-risk permission:

root permission.

‧ Core privacy permission: access to user’s contacts data, SMS data, call log, location information, and

phone number.

‧ Crucial privacy permission, send SMS messages, make calls, monitor ongoing calls, record audio,

access the camera device and mobile network,

‧ Normal privacy permission, get all application packages that are installed on the device, change Wi-Fi

and Bluetooth connectivity state, access to phone state.

The static code analysis for classifying android applications applied by Shabtai et al. is based on

Android’s Java byte-code. Features are extracted from game and tool apps’ apk, XML, and dex files for

the classification, which give us some great tips on Android app’s function and API calls [12].

In this paper, we apply reverse engineering on Android malware detection to get app’s source code and

resource file, and then get the usage of permission, android’s components, API calls information and so

on. Through the static analysis and observation of lots of malware samples, app’s features are captured

for training the classifiers. Next, measure the correlation between of classes and features and remove the

frivolous behavior feature. Finally, employ various machine learning algorithms for the classification of

apps’ static behavior to detect the Android malware. To implement feature engineering and machine

learning work, we take full advantage of the data mining tool WEKA [13].

3.1 Static Behavior Analysis

Each Android application contains an AndroidManifest.xml at the root of the project hierarchy, and this

file provides information that Android operating system needs in order to run the app. It describes the

permissions that the app itself must have in order to access protected parts of the API and interact with

other apps, permissions that other apps are required to have in order to interact with the app’s

components. It also declares the components of the app, which include the activities, services, broadcast

receivers, and content providers [14]. Source code file helps us detect common charges consumption,

privacy theft, malicious cost and so on behaviors in Android app form the coding point of view. Then we

can set up filtering rules through the API calls of relevant sensitive operations.

Based on the research and analysis above, we designed a system to analysis Android app’s static

behavior automatically. The steps are outlined in Fig. 1.

First, the app’s installed file is decompiled using Apktool [15], resource files are decoded to nearly

original forms. By this, there is an AndroidManifest.xml that contains permissions and components

information at project’s root directory. Second, the Dalvik executable format file can be extracted from

APK file, read the Dalvik executable (.dex) file and convert it to class (.class) files with the help of

Dex2jar [16]. A class file is a compiled .Java file created by the Java compiler, but it can be decompiled

by JAD [17]. Then decompile all class file to java code (.java) file to analysis potential runtime behavior

in java code, and look for the relevant function and system API calls based on specific keywords.

Follow the above steps, Android app’s static behavior feature can be extracted from those resource and

source code files we got.

Android Malware Detection Based on Static Behavior Feature Analysis

246

Begin to analyze

Android app’s static

behavior

Decompile and parse APK

file by apktool

Parse configuration file

AndroidManifest.xml, and

get the usage of permission,

Android’s components

Unzip the APK to extract dex

file (.dex)

Conclude the

Android static

behavior analysis.

Convert dex file to jar file

(.jar) by dex2jar

Unzip the jar file to extract

class files (.class), and then

decompile them for java files

(.java) through JAD

Based on keywords, find

relevant function and API

calls.

Read the APK file (.apk)

Fig. 1. Static behavior analysis system

The test dataset consists of 387 Android apps, 196 benign apps are the most popular apps downloaded

from the official Android Market [18-20], and 191 malicious apps were randomly downloaded from a

shared database which contains 83822 Android malware samples [21].

3.2 Feature Engineering

Features are raw materials of machine learning system, and they immediately affect the prediction model

and classification results. The input data will be too much if we model the static behavior data directly.

To better represent practical problems that processed by the prediction model, and have algorithms and

models maximum use the features that extracted from raw data, the next section is feature engineering,

which extract, prune and combine features in an automatic way.

Feature description. As an important part of Android security, the use of permissions and their

importance to static behavior analysis are mentioned earlier, here, the permission information will be

extracted for the detection of malicious applications.

Activity is the only “screenful” component, it serves as the entry point for a user’s interaction with app,

and every screen in an app is an activity by itself. For an application to be able to use activities, the

activities and certain of attributes must be declared in the manifest. An Android service is a component

that is designed to perform long-running operations in the background, and does not provide a user

interface. Broadcast Receivers simply receive and respond to broadcast announcements from other

applications or from the system, and it does not provide any UI. Content providers can help an app

manage access to data stored by itself, stored by other apps, and provide a way to share data with other

apps. It can be seen, as the four components of Android, their use and app’s true intentions are closely

linked, and play a significant role in the analysis of Android static behavior.

“SmsManager” manages SMS operations such as sending data, text, and pdu SMS messages.

“SENT_SMS_ACTION” is for sending an SMS and monitoring the success of its transmission and

delivery. “ACTION_DIAL” is invoked when system makes a call, then the built-in dialer will be

launched and a UI with the number being dialed will be shown to allow the user to explicitly initiate the

call. “android.intent.action.CALL” can implement phone calls via program directly without pop-up or UI.

“Settings.System” contains miscellaneous system preferences, allow users to modify app features and

behaviors to access individual settings entries in all aspects. Therefore, calls to those five APIs describe

app’s potential malicious behavior from a static perspective.

To capture app’s static behavior through the static behavior analysis system designed by this paper,

Journal of Computers Vol. 29, No. 6, 2018

247

387 samples were analyzed based on analyzing methods and perspective discussed above. Then 20 app’s

permissions, 4 Android components and 5 API calls information were obtained to describe app’s static

behavior.

As shown in Fig. 2, within 387 apps, only 2 malware don’t request INTERNET permission, all the

other malware and benign application have the request, and it turns out, accessing to network is the basic

needs of achieving a functional app. Beyond this, the request of crucial privacy permission SEND_SMS

in malware is far more than benign application, which reveals potential charges consumption, privacy

theft, malicious cost and so on threat.

Fig. 2. Permission requirement of malware vs. permission requirement of benign app

Because most of malware has simplex objectives and motivation, there is less request of Android

components as part of their design and development. In Fig. 3, even the Activity, only “screenful”

component, on average the usage in malware is 3.6% of benign application. And the use of Broadcast

Receivers in malware is not significantly lower than benign. When there are malware and benign

application in user’s mobile simultaneously, it is prone to threaten the data security of components, then

the benign app will be used by malware and cause sensitive information leakage.

Fig. 3. Component requirement of malware vs. component requirement of benign app

In Fig. 4, we show the average number of API calls in app’s source code. The state of the demand for

sending, reading and writing SMS in permission analysis, together with this “SmsManager” API calls,

give us confidence that most of malware steal user’s personal information, send SMS and customize

expansive plan. Those threats correspond to malicious behavior, such as intercept user’s SMS and

forward it to criminals silently, if the SMS for confirming banking trade or other sensitive information,

there will be a big risk.

Android Malware Detection Based on Static Behavior Feature Analysis

248

Fig. 4. API requirement of malware vs. API requirement of benign app

Feature extraction. In machine learning, feature extraction is a set of methods that map high-

dimensional input features to new low-dimensional output features which are more informative and non-

redundant. In order to achieve the purpose of dimensionality reduction, this paper use Principal

Component Analysis (PCA), an unsupervised feature selection strategy, to decrease the dimension of

feature vector without incurring excessive information loss, and maximize variance of the app data.

A training dataset consists of m app samples, and each app sample is described with respect to n

features, equivalently, a m n× matrix X is formed. Then the training dataset matrix X is processed by

PCA, and its covariance matrix can be written as

1

m

=

T

X
C B B (1)

B for the i -th sample (
i

B) is calculated as:

1

1
m

i
m

=

= − ∑i i i
B X X (2)

where
i

X is the i -th sample app. Then calculate ()1 2 1 2
, , ,

n n
λ λ λ λ λ λ≥ ≥ ≥� � , which is the eigenvalues

of covariance matrix
X

C , and corresponding eigenvectors , ,
1 2 n

u ,u u� . Cumulative explained variance

ratio ()dϕ associated to each d-th sample is defined as:

 () 1

1

d

ii

m

ii

d
λ

ϕ
λ

=

=

=

∑

∑
 (3)

Set cumulative explained variance () 0.95dϕ ≥ , and base on the first d eigenvalues, corresponding

eigenvectors are chosen to construct the low-dimension subspace []=
d 1 2 d

U u ,u , ,u� , a m d× matrix.

Then project the app sample
i

X in training dataset into
d

U ,

 , 1,2, ,i m=
i i d

Y = X U � (4)

Finally, app sample
i

X in high-dimension space can be expressed as
i

Y with lower dimension. In

PCA, the amount of information are only measured by variance, and not affected by factors outside of the

dataset. Besides, each of the primary components is mutually orthogonal, which can eliminate the

interaction of raw data.

In this paper, the training dataset consists of 387 app samples, and each app sample is described with

respect to 29 features. With feature extraction by PCA, primary components, where cumulative explained

variance is larger than 95%, are used for subsequent training, the training dataset matrix is 387 21× now.

Feature selection. Feature selection includes four parts: generation procedure, evaluation function,

stopping criterion, and validation procedure. First, generate a feature subset from the complete set.

Second, evaluate the feature subset with evaluation function. Third, compare the result with stopping

criterion. The whole procedure will stop if the result is better than criterion, otherwise continue to

Journal of Computers Vol. 29, No. 6, 2018

249

generate another feature subset to select feature. Finally, validate the subset that has been selected.

Generation procedure search feature subset of Android app, the search algorithm is divided into

complete, heuristic and random. The best first search, which is a greedy complete algorithm, is chosen

for its backtracking. Pick N features with highest score from feature set as subset, add it into an unlimited

length priority queue, then take out the subset with highest score from the queue, and enumerate all the

feature sets produced by adding a feature to the subset and add them to the queue.

Evaluation function includes filter and wrapper. The first measures the feature subset by analyze the

interior characteristics regardless of classification selection. Therefore, a wrapper evaluation method

called “WrapperSubsetEval” is used with three subsequent classification algorithms. Then calculate

prediction performance of this algorithm on the feature subset, and evaluate the feature subset that

provided by generation procedure [22].

The most common stopping criterion are execution time, evaluate times and threshold setting. We set

standard deviation to 0.01, if the evaluation procedure exceeds this value, it will stop searching. Because

the accuracy doesn’t differentiate classes and treats malware and benign apps equally, it is set as the

measure used to evaluate the performance of attributes combinations.

3.3 Machine Learning Algorithm

For Android malware detection, commonly used machine learning algorithms include decision tree,

Bayesian network, naïve Bayes, random tree, random forest, support vector machine and so on. In order

to obtain a faster classification model with higher detecting efficiency, it is important to choose an

appropriate algorithm.

Random forest. Alam [23] and Glodek [6] et al. get good accuracy and classification results by

proposing malware detection approaches using Random Forest, give us insights into data processing and

parameter selection. After using “WrapperSubsetEval” with Random Forest classification algorithm and

25 iterations, we got a feature set containing 6 attributes for classification analysis.

Random Forest is constructed by a multitude of classification and regression tree (CART), and output

the classification result of each sample by taking a vote. When sample the training set with replacement

for the current tree, about one-third of the available data are left out of the sample. So every tree in forest

is built on the other two-third, and the out-of-bag (OOB) data is left for running internal classification

error as trees are added to the forest. Breiman [24] gives experimental results that the OOB error is

unbiased.

Support vector machine. On the basis of statistical learning theory, Vapnik Chervonenkis (VC)

dimension and structural risk minimization (SRM), nonlinear support vector machine (SVM) maps

original finite-dimensional space into a much higher-dimensional space nonlinearly with proper kernel

function. By constructing hyperplanes, it allows sample data to be analyzed with linear discriminant

function in higher-dimensional space, minimizes the empirical risk and confidence interval

simultaneously.

In order to map low-dimensional sample data to a high-dimensional space, the Radial Basis Function

(RBF) is used to get an optimal performance because the less parameter requirement and the ability to

reduce complexity of the model.

 ()
2

k , i
x x

i
x x e

γ− −

= (5)

After test analysis on probability detection, it shows that good statistical regularities can be got with

small sample size when 0.06γ = . And a feature set that contains 8 attributes for classification analysis

was got by using “WrapperSubsetEval” with SVM classification algorithm.

Naïve bayes. Naïve Bayes algorithm is widely employed in many fields, it calculates the priori

probability of sample’s classes and the conditional probability vector of feature vector for every class

based on some features. Then it computes the posterior probability of samples in the test dataset and

classifies the sample with maximum posterior probability.

Given an Android app dataset E , { }1 2
, , , ,

n
X X X=E C� , where

1 2
, , ,

n
X X X� are feature variables,

and
i
x is the value of

i
X , C is the class variable, { }1 2

, , ,
m

c c c=C � . Assume that each feature is

conditionally independent of every other feature, based on Bayes’ theorem, the probability that sample

Android Malware Detection Based on Static Behavior Feature Analysis

250

{ }1 2
, , ,

n
x x x=

i
I � belong to

j
c is

 () () ()1 2 1 2
| , , , , , , |

j n n j j
P c x x x P x x x c P c= ×� � (6)

and ()jP c is the prior probability of class
j

c , ()1 2
, , , |

n j
P x x x c� is the likelihood which is the

probability of predictor given class, and ()1 2
| , , ,

j n
P c x x x� is the posterior probability of class

j
c . Then

the class
j

c that has maximum posterior probability will be chosen for this sample
i
I . After combining

the “WrapperSubsetEval” and Naïve Bayes classification algorithm without substituting Kernel density

estimation for normal distribution, we got a feature set containing 9 attributes for the next classification.

4 Ensemble Machine Learning

In this section, to verify the proposed static behavior analysis system and the Android malware detecting

model, we implemented static analysis and feature engineering on the dataset that contains 191 malware

and 196 benign Android app. Then the result data was loaded into WEKA to apply machine learning with

different classification.

4.1 Experiment Results

In the machine learning process, 10-fold cross-validation was used for the above Random Forest, SVM

and Naïve Bayes classification. Android static behavior data was randomly partitioned into 10 equal size

subsets, a single subset was retained as the validation data for testing the model, and the remaining 9

subsets were used as training data in turn.

For evaluating the predictive accuracy of classifiers, true positive rate (TPR), false positive rate (FPR)

and area under curve (AUC) were used to describe the classifier. TPR is the rate of detecting malware

instance as malware correctly, FPR is the rate that classifier classify benign app as malware falsely, AUC

is the area under the ROC curve, also the composite indicator of TPR and FPR. The nearer an AUC value

approximates to one, the higher its malware detection rate is.

In Fig. 4, we show the direct classifying result with different classification algorithms after implement

the Android static behavior analysis without the feature engineering. It can be seen, static feature

captured by the proposed static behavior analysis system can describe app samples very well. For

algorithms RF, SVM and NB, the value of TPR are 0.974, 0.974 and 0.953 respectively. Apparently, the

classifiers of this paper can obtain good classified effect on app dataset, and has high sensitivity and

specificity. RF minimizes correlation between each tree and increases the classification accuracy by

randomly selecting features at every node to branch. Moreover, the introduction of randomness avoids

over fitting problem of the RF and improve the anti-noise ability. SVM can better solve the smaller

samples, nonlinear, high dimension, local minimum and so on practical problems on limited training

dataset, which optimizes the generalization capability of classifier. NB classifier has high learning and

classification efficiency on small-scale dataset.

Fig. 5. Classification result without feature project

Journal of Computers Vol. 29, No. 6, 2018

251

Then the feature extraction and selection were applied with PCA and “WrapperSubsetEval” to test

each classification algorithm. Results are shown in Table 1, where RF0, SVM0 and NB0 are classifiers

on raw feature set created by static behavior analysis system, RF1, SVM1 and NB1 are tested on dataset

resulted by feature extracting process, RF2, SVM2 and NB2 are trained on dataset resulted by feature

engineering.

Table 1. Classification result of different classifiers

Classifier Dimension TPR FPR Precision Recall F-Measure MCC AUC

RF0 29 0.974 0.025 0.975 0.974 0.974 0.949 0.998

SVM0 29 0.974 0.026 0.974 0.974 0.974 0.948 0.995

NB0 29 0.953 0.046 0.954 0.953 0.953 0.908 0.988

RF1 21 0.951 0.049 0.951 0.951 0.951 0.902 0.992

SVM1 21 0.964 0.036 0.964 0.964 0.964 0.928 0.994

NB1 21 0.925 0.076 0.926 0.925 0.925 0.851 0.966

RF2 6 0.961 0.039 0.961 0.961 0.961 0.923 0.994

SVM2 8 0.974 0.026 0.974 0.974 0.974 0.948 0.974

NB2 9 0.948 0.052 0.948 0.948 0.948 0.897 0.978

From Table 1 we can see, dataset created by PCA fails to get a good classification results compared to

two other datasets. For the results of RF1 and NB1, various indicators are falling apparently. According

to our analysis, PCA is an unsupervised learning method, doesn’t take into account the categorization

information which are not available for PCA in the training data. Besides, noise samples influence the

classification effect, but the dimension reducing goal is achieved after feature extraction. Subset that

displays a substantial correlation with class and small correlation between each feature is selected from

high-dimension feature set automatically by feature selection. Not only the dimension of new subset is

decreased significantly, but also the classification of RF2, SVM2 and NB2 are improved obviously. The

classification results of SVM2 are elevated to SVM0’s, which means we get the same high classification

accuracy on dataset with 8 features as 29 features. For NB2, feature engineering makes a negative impact

on it because Naïve Bayes algorithm assume each feature is conditionally independent. And RF2 obtains

a high classification efficiency on sample dataset in lowest dimensional feature space.

4.2 Experiment Analysis

From the above experiment it can be concluded that the Android static behavior analysis system we

proposed can describe features of sample app adequately and effectively. Classification results of feature

extraction by PCA and feature selection by Wrapper indicate that too many feature could cause the curse

of dimensionality, complicate the model and decrease the accuracy and extend capability. Feature

extraction searches feature subsets by testing repeatedly, constructs and evaluates the model

automatically to obtain an objective subset with best predication ability. Although feature engineering

has an impact on the accuracy of classifier, it greatly reduces the dimension of dataset and improve the

efficiency of classification. Whereas the raw dataset without feature extraction and selection has more

information to describe sample and has an edge in classification. And classifiers constructed with

Random Forest algorithm not only have high TPR but also low FPR, and can detect benign app

accurately, barely classify malicious app as benign, it has good sensitivity and specificity.

There are significant performance differences between different classification algorithms. We also

tested other classifications in the experiment, but parameters, configurations and usages presented in this

paper are the most typical ones and have fine classifying ability, then other algorithms will not enumerate

here.

5 Conclusion

In this paper, we proposed a static behavior analysis system to capture raw features of Android

application, and processed it with the help of feature extraction and selection, then there was a feature

subset used for machine learning, finally, performance of three classification algorithms are tested.

Experiments showed that this analysis can detect Android’s unknown malicious applications effectively

Android Malware Detection Based on Static Behavior Feature Analysis

252

and accurately, and the classifiers are also lightweight. Dynamic behavior analysis solve the obfuscation,

encryption code and other problem that only can be detected at runtime in the process of static analysis,

and multi-class features of Android malware need to be taken into account in reality. Hence the next step

is to add dynamic behavior analysis to our work for a better detecting accuracy and performance. In

addition, we used the classic classification methods to do malware detection test, so we will optimize the

classification algorithm to construct a more complete Android malware detecting model.

Acknowledgements

This research is supported by the Fundamental Research Funds for the Central Universities, No.

W17JB00060.

References

[1] IDC, Smartphone OS Market Share. <http://www.idc.com/promo/smartphone-market-share/os> , 2016.

[2] 360 Internet Security Center, China Internet Security Report in 2016. <http://bbs.360.cn/thread-14837467-1-1.html>, 2016.

[3] Smartphone OS market share 2017 q1. <htt/ps://www.idc.com/promo/smartphone-market-share/os>, 2017.

[4] W. Enck, M. Ongtang, P. Mcda-Niel, On lightweight mobile phone application certification, in: Proc. the 16th ACM

Conference on Computer and Communications Security, 2009.

[5] H.U. Wenjun, S. Zhao, J. Tao, X. Ma, L. Chen, A detection method and system implementation for android malware, Journal

of Xi’an Jiaotong University 47(10)(2013) 37-43.

[6] W. Glodek, R. Harang, Rapid permissions-based detection and analysis of mobile malware using random decision forests, in:

Proc. IEEE Military Communications Conference, 2013.

[7] Y. Zhou, H. Zhang, X. Zhang, P. Li, Malware detection based on Android permission information, Application Research of

Computers 32(10)(2015) 3036-3040.

[8] J. Sahs, L. Khan, A machine learning approach to Android malware detection, in: Proc. European Intelligence and Security

Informatics Conference, 2012.

[9] S.Y. Yerimas, S. Sezer, G. McWillrams, I. Muttik, A new Android malware detection approach using bayesian classification.

<https://arxiv.org/abs/1608.00848>, 2013.

[10] B. Arslan, S. Gunduz, S. Sagiroglu, A review on mobile threats and machine learning based detection approaches, in: Proc.

International Symposium on Digital Forensic and Security, 2016.

[11] DCCI, The report on Chinese Android mobile phone’s privacy and security in 2016. <http://www.dcci.com.cn/media/

download/2716b7369ac4a744c842683ecla89e718c74.pdf>, 2016.

[12] A. Shabtai, Y. Fledel, Y. Elovici, Automated static code analysis for classifying Android applications using machine

learning, in: Proc. International Conference on Computational Intelligence and Security, 2010.

[13] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten, The WEKA data mining software: an update,

Acm Sigkdd Explorations Newsletter 11(1)(2009) 10-18.

[14] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, K. Rieck, C. Siemens, DREBIN: Effective and Explainable Detection of

Android malware in Your Pocket, Internet Society, San Diego, CA, 2014.

[15] J. Li, Y. Zhang, X. Chen, Y. Xiang, Secure attribute-based data sharing for resource-limited users in cloud computing,

Computers & Security 72(2018) 1-12.

[16] G. DATA, 8400 new android malware samples every day. <https://www.gdatasoftware.com/blog/2017/04/29712-8-400-

Journal of Computers Vol. 29, No. 6, 2018

253

new-android-malw are-samples-every-day>, 2017.

[17] V. Chandola, A. Banerjee, V. Kumar, Anomaly detection: a survey, ACM Computing Surveys (CSUR) 41(3)(2009) 15.

[18] Z. Li, L. Sun, Q. Yan, W. Srisa-an, Z. Chen, DroidClassifier: efficient adaptive mining of application-layer header for

classifying android malware, in: Proc. 2016 International Conference on Security and Privacy in Communication Systems,

2016.

[19] W. Wang, X. Wang, D. Feng, J. Liu, Z. Han, X. Zhang, Exploring permission-induced risk in android applications for

malicious application detection, IEEE Transactions on Information Forensics and Security 9(11)(2014) 1869-1882.

[20] H. He, E. A. Garcia, Learning from imbalanced data, IEEE Trans. Knowl. IEEE Transactions on Knowledge & Data

Engineering 9(2008) 1263-1284.

[21] A. Jindal, A. Dua, K. Kaur, M. Singh, N. Kumar, S. Mishra, Decision tree and SVM-based data analytics for theft detection

in smart grid, IEEE Transactions on Industrial Informatics 12(3)(2016) 1005-1016.

[22] R. Kohavi, G.H. John, Wrappers for feature subset selection, Artificial Intelligence 97(1-2)(1997) 273-324.

[23] M.S. Alam, S.T. Vuong, Random forest classification for detecting Android malware, in: Proc. Green Computing and

Communications, 2013.

[24] L. Breiman, Random forests, Machine Learning 45(1)(2001) 5-32. doi: 10.1023/A:1010933404324

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

