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Abstract. IoT Applications coordinate the interaction of business services and IoT Devices, that 

automate business processes. The trend in building IoT Applications is to deploy their services 

on cloud platforms, which allow applications to take advantage of the cloud platform 

capabilities (e.g., large and dynamic storage and processing capacities). However, in spite of the 

growing number of IoT Applications, currently, their implementation is realized in an ad-hoc 

manner, without taking into account the heterogeneity of cloud platforms and IoT Devices. In 

this context, the interoperability among business services, IoT Devices and cloud resources 

available is a primary concern. In this article, we propose an Architecture Description Language 

(ADL) to specify the integration and interaction between IoT Devices and application services 

deployed in cloud environments, independently of their technologies. In addition, we propose an 

intelligent automation tool that provides: (i) a graphical editor for the ADL, and (ii) an 

automated code generator, that uses the architectural descriptions to generate software artifacts 

that implement the integration and interaction between the application services and IoT Devices. 

To illustrate the use of this ADL, the implementation of a Geographic Information System that 

supports the analysis of spatial data collected by air quality sensors, with geo-services deployed 

in the Google Cloud platform, is presented.  

Keywords:  architecture description language, cloud computing, GIS, IoT, model driven 

development, SoaML 

1 Introduction 

The trend in building information systems is to deploy their services on cloud platforms, using their large 

storage and processing capacities [1]. Cloud platforms enable developers to build applications that make 

a dynamic use of resources (e.g., hardware, software, networks, execution environment). In this context, 

applications use cloud resources according to their actual requirements, facilitating the payment based on 

consumption metrics (pay-per-use) [2]. On the other hand, applying IoT principles enables developers to 

build applications (IoT Applications) that interact with IoT Devices (things) in order to optimize or 

automate business processes and improve their accuracy. For example, processes involving data 

collection in Geographic Information Systems (GIS) are automated by using sensing devices managed 

through Internet [3]. 

Building IoT Applications deployed in a cloud computing platform not only presents challenges 

related to the technological heterogeneity of both cloud resources and IoT Devices [4], but also due to the 

lack of standards and development approaches. Heterogeneity of cloud environments generates a close 

dependence between service implementation and cloud provider technologies, limiting the portability 

between providers. Similar dependencies exist with IoT Device technologies.  

There are proposals that integrate cloud computing and IoT paradigms in the development of GIS. 
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Some suggest application architectures whose components are deployed in the cloud [1, 5-6]; while 

others use sensors under the IoT paradigm to perform data collection tasks [3, 7-9]. With regards to 

heterogeneity, proposals like [10-12] tackle it by proposing model driven development approaches; 

however, none of these proposals supports the design of the application architecture and the interaction 

between business services and IoT Devices. Developers need approaches that support the architectural 

design of IoT Applications and the implementation of interaction between business services and IoT 

Devices [3, 13].  

The Model-Driven Development (MDD) approach proposes the use of models throughout the software 

development process, increasing the level of abstraction and allowing the generation of code through the 

application of successive model transformations. In this paper we propose an Architecture Description 

Language (ADL) for IoT Applications, which extends the ADL for Incremental Integration of Cloud 

Service Architectures (DIARy-ADL) [14]; providing it with the flexibility to describe specific 

characteristics of any domain, including the IoT domain. The ADL for Cloud IoT Applications support a 

MDD approach, where architectural models created with this editor are the input of model-to-text (M2T) 

transformations that generate software artifacts that implement the integration and orchestration between 

application services deployed in cloud environments with IoT Devices. This ease the integration of cloud 

application services with third party services, as well as with IoT Devices, enabling these devices to be 

connected to the Cloud. The applicability of this proposal is illustrated through the development of a GIS 

application, whose architecture consisted of geo-services deployed in the Google Cloud platform, and air 

quality sensors that support the data collection process under the IoT paradigm. 

The remainder of the paper is structured as follows: Section 2 discusses existing proposals for IoT 

Applications development. Section 3 introduces the proposed ADL for IoT Applications. Section 4 

presents an example to illustrate the feasibility of the ADL, and finally, Section 5 presents the 

conclusions and further work. 

2 Related Work 

Approaches to the interoperation with IoT Devices are proposed in [7] and [9], specifically, the 

implementation of Open Geospatial Consortium (OGC) standards-based data acquisition architecture, 

which defines mechanisms that allow the interaction of sensors and web services through interfaces and 

messages types. On the other hand, [3] and [15] propose an application architecture and protocols to 

support the integration of IoT Devices with services deployed in the cloud environments. However, these 

proposals do not provide mechanisms to support the architectural design of applications that interact with 

IoT Devices, nor mechanisms to handle the heterogeneity of IoT Devices during implementation and 

deployment. The application architectural design of IoT Applications is supported by [16], which 

proposes to use the architectural style Service Oriented Architecture (SOA) in order to deal with the 

interaction of application services and IoT Devices. However, does not support other development 

activities like implementation and deployment of application services on cloud environments.  

The development of IoT applications is being supported by methods, programming languages and 

frameworks that address the heterogeneity of devices [17]. These approaches provide developers with a 

wide range of tools that allow the creation of IoT applications in an automated way. The MDD approach 

has been used in several studies to provide automation mechanisms on implementation code generation. 

For instance, [10-12] propose approaches and tools to raise the abstraction level of the IoT Application 

architecture, allowing the implementation of development automation mechanisms. Although these 

works deal with the heterogeneity of IoT Devices, they do not provide mechanisms that allow modelling 

the complete architecture of a system involving both IoT Devices and services deployed in cloud 

environments, lacking of solutions that support designing the interaction between them. 

With regard to proposals that support architectural descriptions, we have identified ADLs for 

describing applications whose services will be deployed in cloud environments. Perez and Rumpe 

propose cloudADL [18] as the core element of a model based methodology for engineering cloud 

services. This methodology describes high-level cloud application architectures as interactive systems; 

however, the technological requirements specific for the cloud environment must be specified by using 

other architecture description languages, which poses new challenges to the architects that have to deal 

with the integration of different languages. StratusML [19] has been proposed as a modelling framework 

and domain specific modelling language for cloud applications. It provides multiple views and different 
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layers to address the cloud stakeholder’s concerns, facilitates the visual modelling of adaptation rules and 

actions, and enables de generation of cloud artifacts (e.g., code, configuration). However, these proposals 

do not provide a solution for specifying characteristics of non-cloud architectural elements such as IoT 

Devices. Additionally, the learning and adoption of these languages requires from designers an additional 

effort. In order to facilitate both the cloud artifacts generation in later development activities and the 

interoperation between application services and IoT Devices, ADLs should allow architects to describe 

non-functional requirements at a high abstraction level as well as interaction protocol between services 

and IoT Devices. 

3 ADL for IoT Applications in the Cloud 

IoT Applications are generally composed of Web services [20], where principles of the architectural style 

SOA enable the integration services considering the heterogeneity of IoT technologies [16]. These 

principles promote the design and implementation of weakly coupled services; minimizing dependences 

among them by encapsulating particularities of implementation, requiring only a well-defined interface 

for communication between services. From a development point of view, service based applications are 

usually developed incrementally by building reusable services that may interoperate with each other. 

The DIARy-ADL, an architecture description language for the incremental development and the 

dynamic architectural reconfiguration of cloud applications, allows developers to specify not only the 

architectural elements belonging to a software increment and the interaction protocol among services, but 

also the architectural impact of integrating these elements into the current application architecture. 

DIARy-ADL promotes the application of MDD and SOA principles and supports the specification of 

cloud domain non-functional requirements by using high abstraction level concepts, enabling the 

generation of implementation and deployment artifacts according to the architectural impact. However, it 

takes into account a fixed amount of requirements limited to services in the cloud domain. 

In order to identify the type of services that conform an IoT Application deployed in cloud 

environments, we built a GIS whose services were deployed in the cloud and whose data collection 

process was supported by IoT Devices, then analyzed its design and implementation needs. We used the 

lessons learned to provide mechanisms that facilitate the architectural design. The analysis also involved 

the revision of similar works [3, 9, 15], identifying that IoT Applications are generally composed by 

three types of services: 

‧ IoT Devices: Services offered by devices that within an application domain could automatically collect 

data, share information about their status, or run services with minimal human intervention. 

Increasingly, IoT Devices not only behave like simple sensors or actuators, but also provide restricted 

execution environments with limited processing, memory and storage capacities [21]. From the IoT 

perspective, each device is a potential provider of small services. 

‧ Business Services: Services that: (i) provide specific business functionalities; (ii) offer general 

functionalities such as information integration, data processing, or visualization; or (iii) act as clients 

consuming other services. It includes software developed by third parties, deployed in a cloud 

environment, and integrated as part of the application architecture. 

Cloud Resources: Technological resources offered as services by cloud providers (e.g., spatial 

database services provisioned in cloud environments, message queues). This kind of services may require 

the construction of another service, which acts as an intermediary for their access and management. 

3.1 Description Language Abstract Syntax 

In this paper, we propose the IoT-ADL, whose abstract syntax extends the DIARy-ADL abstract syntax, 

including concepts that allow the specification of IoT Applications’ architectures. IoT-ADL provides 

architects with the flexibility to specify non-functional requirements of services in any domain, including 

the IoT domain (e.g., low energy consumption, e-mobility, scalability, availability, resilience). 

Additionally, it includes UML concepts related to sequence diagrams, allowing the description of 

complex interaction protocols among the services that make up the application architecture. 

The IoT-ADL abstract syntax is specified by using the Ecore implementation of the EMOF [22] 

standard provided by the Eclipse Modelling Framework (EMF). Fig. 1 shows and extract of the IoT-ADL 

abstract syntax, where concepts inherit from the DIARy-ADL are depicted without background color; 
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whereas concepts proposed in this work are depicted with background color. The DIARy-ADL is based 

in SoaML [23], an OMG specification specifically designed for modelling SOA, facilitating service 

modelling and design activities; therefore its concepts, explained next, are similar to those proposed by 

SoaML.  

 

Fig. 1. Extract of the IoT-ADL metamodel 

‧ Services Architecture: Describes how a set of Participants work together providing and consuming 

services for a particular business purpose or process. Its inner parts are Participants, Service Contracts, 

and Role Bindings. The IoT-ADL uses it to describe a IoT Application architecture that could be 

deployed as an inter-cloud software architecture. 

‧ Participant: A participant may play a role of service provider, consumer, or both. According to the 

types of services identified in the previous section, the IoT-ADL allows architects to describe the 

following participants: Business Services, Cloud Resources, and IoT Devices. Architects specify the 

type of service through the attribute type corresponding to the related instance of the meta-class 

Service Template. 

‧ Service Contract: Represents an agreement that describe how the communication (interaction) between 

Participants will be stablished. A Service Contract definition includes the following inner parts: (1) 

Roles that Participants involved in a service must fulfil in order to interoperate, (2) Interfaces that must 

be implemented by Participants in order to fulfil a Role. Interfaces describe Operations (Messages and 

their corresponding Data Types) provided and required to complete the service functionality. (3) 

Interaction Protocol that describes the interoperation between Participants without defining their 

internal processes. Service Contracts are implemented and deployed as orchestration services. 

‧ Role Binding: Describes the Role that each Participant involved in a Service Contract plays. 

‧ Participant Use and Service Contract Use: Participants and ServiceContracts may be reused, therefore 

a Participant Use references a Participant involved in a specific service, whereas a Service Contract 

Use explicitly specifies the use of the interoperation described in a Service Contract. 

‧ The attribute Architectural Impact in Role Binding, Participant Use and Service Contract Use allows 

architects to specify the impact of integrating those architectural elements into the current IoT 

Application. Possible values are: Reference – used to tag elements already existing in the current 

application architecture that will interact with architectural elements of an increment, and will not 

change after integration –. Add – used to tag new elements to be integrated into de current architecture. 

Modify – used to tag elements already existing in the current Cloud Application Architecture whose 

implementation will change after integration –. Finally, Delete. 

IoT-ADL extends DIARy-ADL abstract syntax and includes concepts to allow architects to specify 

non-functional requirements besides the cloud domain. IoT-ADL allows architects to define Service 

Templates (see Fig. 1) for each Participant and ServiceContract according to the attribute Service Type 

(i.e., Business Service, Cloud Resource, IoT Device, and Service Contract). Service Templates are 

composed by Service Specifications, which declare at a high abstraction level the service non-functional 

requirements. Architects assign values to non-functional requirements (Service Specification Value) for 
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each Participant Use and Service Contract Use according to their corresponding Participant and Service 

Contract.  

3.2 Description Language Concrete Syntax and Semantics 

Concrete syntax descriptions provide a notation that facilitates the construction, presentation, and 

maintenance of models in a language. Different notations can be provided (e.g., graphical, textual, 

tabular); in this context, a graphical editor (see Fig. 2) will reduce the perceived complexity of creating 

architectural models and manages their definition. We used Obeo Designer [24], an Eclipse plug-in to 

create the IoT-ADL editor (see Fig. 2). The editor was implemented following a multi tab design, where 

each tab is dedicated to describe an architectural element type: Service Templates (see Fig. 2(a)) IoT 

Application Architecture (see Fig. 2(b)), Service Contracts, Participants, Role Bindings, Interactions, 

Interfaces, and others. The editor includes a tool bar (or palette) that changes according the architectural 

element being specified (see Fig. 2(c)). In order to make interpretation of architectural models easier, the 

editor helps architects to identify the Service Type assigned to a Participant by using different graphical 

notations. For example, Fig. 2(b) shows the graphical notation used for Participants: Administrator whose 

type is Business Service, Sensor whose type is IoT Device, and Spatial Database whose type is Cloud 

Resource. Additionally, Service Contracts elements are depicted as ellipses whereas Role Bindings are 

depicted as lines that link Service Contracts with their involved Participants. 

 

Fig. 2. IoT-ADL editor: IoT application architecture model 

4 Using the IoT ADL 

The IoT-ADL supports the activities described next. 

4.1 IoT Application Architecture Specification 

This activity is aimed at supporting architects in identifying the services that will conform the IoT 

Application as well as to describe interactions among them. Architects design the IoT Application 

Architecture Model (see Fig. 2(b)) using the IoT-ADL editor (see Fig. 2) creating instances of the IoT-

ADL metamodel (see Fig. 1). 

Architects begin by declaring Service Templates for Participants and Service Contracts. For example, 

Fig. 2(a) shows that, every time an architect assigns the template Business Service Template to a service 

(Participant) she/he will have to specify whether services are expected to require highMemory, 

highProcessing, parallelProcessing, or scalability support. Architects define at least a Service Template 
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per Service Type. 

In the next step architects, identify the services that will conform the application and model them as 

Participants; assigning them a Service Template, which determine Participants’ Service Type. Next, 

architects identify interaction needs among Participants, model them as Service Contracts, and assign 

them a Service Template. Architects specify Service Contracts by describing their inner parts: Roles, 

Interfaces, Interaction Protocol. Interface operations are described on the basis of standards; for instance, 

operations for sensor data collection could be described according to the Sensor Web Enablement (SWE) 

[7] standard. The Interaction Protocol among Participants that will play a Role is described by using a 

sequence diagram whose life lines are the Interfaces corresponding to each Role. 

Once architects have described Participants and Service Contracts, they use them to describe the IoT 

Application Architecture (see Fig. 2(b)). Therefore, they create Participant Use and Service Contract Use 

elements and link them by using Role Bindings, specifying the Role that each Participant Use will play in 

the Service Contract Use in which it is involved. As IoT-ADL inherits DIARy-ADL, refer it for a deeper 

understanding of modelling software architectures.  

Finally, architects analyze the nature of the work that each Participant/ServiceContract in the IoT 

Application Architecture model performs, and specify the non-functional requirements defined in the 

Service Template assigned to each Participant and Service Contract. Architects complete this step by 

giving values to the non-functional requirements declared in the Service Template’s Service 

Specification. The specified values will be used for developers to take implementation and deployment 

decisions in further development phases. 

4.2 Implementation Code Generation 

This activity is aimed at supporting developers in generating the implementation code that orchestrate or 

coordinate the interaction among the IoT Application’s Participants, as well as the implementation code 

that allows each Participant to interact. In this activity, developers create and execute M2T 

transformations that take as input the IoT Application Architecture Model and, according to the 

Architectural Impact specified, intelligently generate, modify, or delete the implementation code. This 

work extends the DIARy software infrastructure by providing M2T transformations plugins. Developers 

create these plugins the first time a new target technology is required, then reuse them. The steps to 

execute in this activity are. 

‧ Generate Interaction Protocol: In this step, developers execute M2T transformations that generate, 

modify, or delete artifacts that implement the orchestration among Participants involved in a Service 

Contract. Transformation rules take as input the inner parts of Service Contracts generating an 

orchestration implementation from descriptions of Interaction Protocol (sequence diagram) and 

Interfaces. The generated artifacts will be deployed as an orchestration service, allowing the 

interaction and integration of the services involved in a Service Contract. Additionally, transformation 

rules generate a configuration file corresponding to orchestration services containing entries with 

information on the endpoints through which invoke operations of the Participants to be orchestrated. 

‧ Generate Service Implementation Code: In this step, developers execute M2T transformations that 

generate, modify, or delete artifacts that implement the architectural element of type Interfaces 

corresponding to the Role each Participant plays. The generated artifacts implement the services 

offered for Participants and allow them to play a part of interactions. 

4.3. Provisioning and Deployment  

In this activity, developers take decisions related to execution environments to be provisioned in order 

satisfy the non-functional requirements specified for services offered by Participants and Service 

Contracts. Non-functional requirements are specified at a high abstraction level in instances of Service 

Specification Value concepts in the Application Architecture Model. Execution environments are 

provisioned either in the cloud or in IoT Devices depending on the Service Type. In the case of IoT it is 

necessary to assembly the electronic components and to install the software related to IoT Devices. In the 

case of cloud platforms, the provisioning of virtual cloud resources is performed. 

Once execution environments have been provisioned, developers deploy services offered by 

Participants and Service Contracts in the corresponding cloud environment. Each service must be 
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accessible through access points in the form of a URL. It is important to make the necessary 

configurations to guaranty that all the URLs can be accessed via Internet, especially in the case of IoT 

Devices. To accomplish this, mechanisms such as public IP, domains, or VPNs can be implemented to 

connect cloud services to IoT services. 

5 Illustrative Example 

In this Section, an excerpt of an example is presented, that illustrates the use of the IoT-ADL. An 

environmental control company needs to implement an information system for analyzing air quality 

spatial data. For this, it decides to automate the process of collecting data of CO2 levels by using geo-

positioned sensors, requiring manage data over Internet. The services’ nature requires high storage and 

processing capabilities. To achieve this, the company has proposed the application architecture shown in 

Fig. 2(b), where the application services will be deployed using infrastructures provided by cloud 

providers. 

5.1 IoT Application Architecture Specification 

To design the application architecture, the previously mentioned editor was used. First, the Participants 

or services required are identified. Services of type: (i) Business Services, such as SOS services to 

manage observations collected from sensors (sosServices), WPS services for spatial processing 

(wpsServices) and WMS Services for map visualization (wmsServices); (ii) Cloud Resource services, 

such as Spatial Database Services (spatialDB); and (iii) IoTDevices for the collection of information by 

sensors (iotDevice). Next, the Service Contracts are defined.  

Fig. 3 shows the interaction protocol description corresponding to the Service Contract SOS, whose 

messages where defined according to the SOS standard that is part of the OGS main standard SWE. 

 

Fig. 3. Interaction protocol 

5.2 Implementation Code Generation 

After designing the application architecture, developers create M2T transformations to generate the 

implementation code of Participants and ServiceContracts. Acceleo, an Eclipse plug in, was used to 

create M2T transformations. Software artifacts related to Participant architectural elements were 

generated according to the Participant’s Service Type, which are compatible either with a cloud provider 

technology or with a IoT Device technology. Software artifacts (e.g., Interfaces, Interaction Protocol) 

related to Service Contract architectural elements were generated as workflows according to a cloud 

provider technology. M2T transformations generated software artifacts as follows: Python scripts 
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compatible with Raspberry Pi devices, to be executed in the cgi-proxy mode of Apache, for IoT Devices; 

PHP files for BusinessServices; Data access source code, which enables access to database resources in 

Google Cloud Platform, for CloudResources; and Workflows (orchestration code) in PHP for 

ServiceContracts. 

5.3 Running M2T Transformations 

Google Cloud in IaaS mode was provisioned and used for hosting services (BusinessServices and 

CloudResource participants). The CloudSql Google Cloud platform service and its corresponding data 

access service was deployed.  

Raspberry Pi 2 Model B device was selected for IoTDevice service type. The Raspbian operating 

system was installed with an apache server configured with a cgi-proxy running Python code. This IoT 

Device retrieves information from the MQ-135 sensor, using the ADC Converter MCP-3002 for analog 

reading. Service Contracts must be able to access the IoT Devices, therefore a VPN has been 

implemented on the virtual machine instance of the service contract, providing the ability to access the 

IoT Device through an IP. For the BusinessService participants with the parameter isExternal = false and 

the ServiceContract has been deployed in the cloud platform services in IaaS mode. The hardware and 

software requirements have been defined based on the tasks that the service has to fulfill. 

6 Conclusions 

Building IoT Applications to be deployed in the cloud is becoming a common practice; however, their 

development is realized in an ad-hoc manner, without taking into consideration the heterogeneity of 

cloud environments and IoT Devices, limiting the interoperability and portability between cloud and IoT 

platforms.  

The proposed IoT-ADL, fills the gap in current development practices of IoT Applications deployed in 

cloud environments by providing a high-level and technology independent view of application 

architectures that describes the way application services and IoT Devices, that automate their processes, 

are integrated and interact. Additionally, IoT-ADL provides software architects with the flexibility to 

specify non-functional requirements of services in any domain, including the IoT and cloud domains. 

These specifications are used by developers to make decisions about the implementation and deployment 

in further development phases.  

The feasibility of this language was demonstrated by designing and implementing a Geographic 

Information System, with geo-services deployed in the Google Cloud platform, that provides support for 

analysis of spatial data collected by air quality sensors. The solution presented in this work can be used to 

support other cloud providers and IoT Devices by defining the corresponding model transformations.  

The main benefit of the proposed ADL is to allow specifying high level IoT and cloud nonfunctional 

requirements that must be taken into account for implementation and deployment. Additionally, the 

automation tool presented provides two main benefits: (1) a graphical editor to specify IoT Application 

architectures composed of IoT Devices, cloud services and business services; allowing the specification 

of interaction among them; and (2) a generating mechanism that uses the architectural descriptions to 

generate software artifacts that implement the integration and interaction between the application services 

and IoT Devices.  

As future work, we plan to empirically validate the proposed ADL. We also plan to extend this 

proposal for automating the deployment on IoT Devices and generating code for other cloud providers. 
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