
Journal of Computers Vol. 30 No. 1, 2019, pp. 1-14

doi:10.3966/199115992019023001001

1

Services Preloading Scheme Based on Improved

Threshold-PST in IOV

Wei-Hao Dong1, Zhen-Jiang Zhang2*, Jing He3,4, Bo Shen5

1 Department of Electronic and Information Engineering, Key Laboratory of Communication and Information

Systems, Beijing Municipal Commission of Education Beijing Jiaotong University, Beijing 100044, China

15120062@bjtu.edu.cn

2 Department of Software Engineering, Key Laboratory of Communication and Information Systems,

Beijing Municipal Commission of Education Beijing Jiaotong University, Beijing 100044, China

zhangzhenjiang@bjtu.edu.cn

3 Institute of Information Technology, Nanjing University of Finance and Economics, Nanjing 210023, China

lotusjing@gmail.com

4 School of Software and Electrical Engineering, Swinburne University of Technology, Victoria 3122, Australia

5 Department of Electronic and Information Engineering, Key Laboratory of Communication and Information

Systems, Beijing Municipal Commission of Education Beijing Jiaotong University, Beijing 100044, China

bshen@bjtu.edu.cn

Received 9 January 2018; Revised 22 January 2018; Accepted 22 January 2018

Abstract. As one of the core technologies of the internet of things and smart city, internet of

vehicles (IOV) has been rapidly developed in recent years. And it has been playing a great role

in improving urban traffic conditions. However, with the increasing size of vehicles and the

types of applications, some bottlenecks have appeared such as high heterogeneity, poor mobility

support and lack of extensibility. So how to develop the new generation of IOV has become one

of the most important research topics. In this paper, we apply the software-defined network

(SDN) and cloud computing to the heterogeneous IOV to bridge the gaps. The proposed

architecture includes four layers, which can provide flexibility, scalability and mobile support

which didn’t exist in traditional ways. Moreover, a services preloading scheme based on

trajectory prediction is proposed for effective resource management to minimize communication

cost and transmission delay. In order to improve the effectiveness of the scheme, the improved

threshold probability suffix tree algorithm is designed by training the historical trajectory and

making the real-time prediction. We also evaluate the proposed approaches by experiments. The

effectiveness and the efficiency are validated by the results.

Keywords: IOV, services preloading, software-defined network, trajectory prediction

1 Introduction

With the continuous improvement of communication technology, intelligent city has been vigorously

developed [1]. Vehicles are considered to be the next intelligent solution that could have a significant

impact on people’s lives. The internet of vehicles (IOV) is a typical application of the Internet of Things

(IOT) in the field of Intelligent Transportation Systems (ITS). It can provide a variety of services, such as

crash warning [2], traffic jam detection [3] and so on. Although the IOV has a very good development

prospect, there are still a lot of problems, such as poor mobility support and lack of extensibility. It is

mainly caused by the lack of uniform standards of communication equipment and protocols [4-5]. At the

* Corresponding Author

Services Preloading Scheme Based on Improved Threshold-PST in IOV

2

same time, the emergence of new technologies and architectures provides an opportunity to improve

these problems.

Several new architectures have been developed for the IOV, such as mobile priority network [6] and

nebula [7]. Software definition network (SDN) [8] has become a hot topic because of its separation of

control and data plane [9-10]. We are confident that it will greatly reduce the gap between application

requirements and current limitations with its advantages. At the same time, cloud computing also

provides an opportunity for the development of the IOV [11-12]. It allows users to easily access the cloud

computing center from anywhere, anytime over the internet. Recently, it has gradually been used for data

processing, storage and analysis in the internet of vehicles.

In this paper, we mainly focus on the following works: Firstly, we combine soft defined network,

cloud computing with IOV to carry out a new architecture. Then, with the advantages brought by this

architecture, we propose a services preloading scheme based on trajectory prediction. Finally, we set

experiments to prove the accuracy of the trajectory prediction algorithm and the promotion of the

services.

2 SDC-IOV Architecture

As shown in Fig. 1, the traditional IOV is mainly composed of vehicles, application servers and roadside

units (RSU), providing vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I) and vehicle-to-base

station (V2B) communication [13].

Fig. 1. Two-layer structure of traditional IOV

In this paper, we introduce SDN and cloud computing into the traditional IOV and propose a new

architecture naming software-defined cloud internet of vehicles (SDC-IOV). This architecture is divided

into four layers as shown in Fig. 2.

Cloud services layer. Different from the traditional dedicated deployment of the application servers, we

deploy a unified cloud server on the top layer. It is composed by high-performance server clusters, which

can store and analyze a variety of data and provide different services.

Control layer. In this layer, we regard the OpenFlow switches as controllers. The data is forwarded

according to the flow tables. Because the controllers have the latest global view of the entire network, it

can convert the policy applied in the cloud services layer (for example, path selection or access control)

to rules in a particular switch so that the controllers can provide custom network for applications, which

is not possible in traditional networks.

Infrastructure layer. We further divide the traditional data layer into two parts. This layer only includes

access point (AP), roadside units, base stations and ordinary switches and servers without cars. They play

a different role in the communication process and a car can be connected to multiple infrastructures at the

same time.

Journal of Computers Vol. 30 No. 1, 2019

3

Fig. 2. Four-layer architecture of SDC-IOV

Vehicle cloud layer. Vehicles are divided into different sets according to certain principles. The vehicles

in the same set can build up a small cloud through V2V communication. They are regarded as mobile

cloud sites.

Compared with the traditional architecture, the new architecture we proposed has brought many

unique advantages. We emphasize the following points:

Heterogeneous network integration. With the network virtualization and abstraction, all vehicles,

roadside units and wireless infrastructures in the IOV can be regarded as SDN devices and managed by a

unified interface, which significantly improves the heterogeneity.

Improve network resource utilization. Through the control center in cloud services layer and

centralized control switches in control layer, we can customize the network and allocate network

resources effectively. In addition, the control plane can also adjust the wireless transmission power,

change the coverage area and reduce the probability of packet collision by the coordination of the

transmission range.

Fast configuration. The control plane can adaptively choose protocols and adjust their parameters

according to the rapidly changing external environment. In this way, existing vehicular communication

protocols can be better utilized.

3 Services Preloading Scheme

3.1 The Latency of SDN in IOV

Although the SDN has a strong compatibility with the traditional network, due to the different design

concepts, the structural differences between them have different effects in the practical application. In the

traditional network, the transmission and control of data are done in the same plane. Each router not only

needs to be responsible for forwarding data but also needs to control data forwarding. However, SDN

sets up the control plane by separating control functions from the routers. The routers and switches in the

data layer only need to forward data while the control of the network is done by OpenFlow switches in

the control layer. The data in the network is forwarded based on the flow table in the switches. Therefore,

the transmission of data in the network requires the interaction between the control plane and the data

plane, and the corresponding delay is shown as follows:

 { }s s_c c c_s1 c_s2 c_snT = t +t +t +max t ,t ,...,t . (1)

Services Preloading Scheme Based on Improved Threshold-PST in IOV

4

In the above formula,
s
t indicates that the processing delay of the first data packet in the switch which

mainly includes the retrieval and maintenance of the flow tables.
_s c

t indicates the time taken by the

switch to send the controller a Packet-in message indicating that the first data packet is received. It is

mainly affected by the distance between the controller and the switches. The controller needs to establish

a processing solution for the first data packet to determine the transmission mode of the following data

packet, and the delay is shown as
c
t .Finally, after the controller sets up the control information, the flow

table needs to be delivered to each underlying switches. This process is performed simultaneously so the

delay should be the longest time for the sending process, as shown in the formula.

According to the above analysis, when the first data packet enters the network, the establishment of the

flow table will result in the much higher delay than the subsequent data transmission [14]. Studies have

shown that the average length of data streams in the network is 20 packets. Therefore, the delay caused

by the interaction between the control plane and the data plane can’t be ignored. This situation will be

more prominent in the IOV. On the one hand, the number of nodes is large and the real-time services

demanding is high. So a huge amount of data needs to be deal with, which usually requires multiple data

streams. On the other hand, the prominent feature of vehicles as nodes is strong mobility. Whenever a

vehicle drives to a new node, service acquisition needs to be repeated. This not only needs the forwarding

between the underlying devices, but also needs the data transmission with the upper application, which

greatly affected the real-time services. In order to improve the above problem, this paper proposes a new

service preloading scheme.

3.2 Basic Model and Operating Mechanism

Service preloading refers to load the relevant flow table in advance to the underlying transmission

equipment so the information transmission will be smooth by the use of new communications technology.

The solution is based on the ideal assumption that, knowing the transmission requirement of services,

flow tables matching the data transmission is pre-loaded on all underlying devices so that it doesn’t

require the deployment of control layer for the first packet. Users can get services directly. However, this

extreme mechanism is not allowed in the real world. Firstly, the performance of switches in the software

defined network is limited by the size of the flow tables. However, the number and types of vehicles in

the car networking are numerous so the unified deployment of service preloading will seriously affecting

the forwarding function of the switches. On the other hand, the unified deployment will also limit the

flexibility of the network. The global view has become dispensable which does not meet the requirements

of the internet of vehicles. Therefore, one of the main points of whether the program can be established is

how to preload the services flexibly and properly.

One of the most important features of SDN is network programmability. The control system can be

divided into two operation modes: reactive and proactive. The reactive mode is a passive network

behavior. Only when the data flow enters the network, the corresponding flow tables will be established.

When the first packet of the data stream appears, the switch will process and generate a corresponding

message to the controller. The application running on the controller will interpret the message and

generate control instructions which will be passed to the underlying devices participating in the

transmission. So the matching flow tables will be passively installed on the devices. In the proactive

mode, the application in controllers can be customized and control message can be proactively generated

and sent to the underlying devices by artificial settings. Therefore, the data stream can be forwarded

directly according to the generated rules.

The nodes in IOV are vehicles and users’ mobile devices most probably. Compared with the nodes in

traditional sensor network, they have a unique characteristic of predictable trajectory. Because their

movement is often limited by the distribution of the traffic network in real world. By the analysis of

movement patterns and historical trajectory information of vehicles, the future trajectory can be

effectively predicted. This feature has been widely used in the field of transportation, such as driving

route planning and radio advertising on board. Currently, researchers have developed macroscopic and

microscopic models of trajectory prediction [15], providing the theoretical basis for IOV. At the same

time, cloud computing is applied in our software-defined network architecture, which can efficiently

handle and store a large amount of vehicle trajectory information steadily. The excellent computing

ability not only speed the analysis of vehicles’ trajectory, but also make the prediction results more

accurate and credible compared with traditional applications.

Journal of Computers Vol. 30 No. 1, 2019

5

Exactly based on the above situation and characteristics of c software-defined cloud internet of

vehicles, this paper presents a new services preloading scheme based on vehicle trajectory prediction. In

this project, we can predict the most probable driving route in a certain coming period of time by

processing the trajectory information of the vehicle. Then, referring to the coverage of the underlying

communications devices, the related devices on the predicted path are preloaded with the flow tables

required for obtaining the services by the active deployment of the control layer. In this case, when the

vehicle travels to this node, there is no need to repeat the process of requesting connection establishment

to the control layer. When the first data packet is transmitted to the switch, the matched flow table

already exists so the data streams can be forwarded directly. Thus the transmission delay is reduced and

the quality of services is improved.

The model of our scheme is shown in the Fig. 3. The vehicle at node A obtains the real-time traffic

information service from node C through the network connection and there is matching flow tables in the

corresponding switches. When the vehicle moves, through the processing of the trajectory information by

the cloud servers, the most possible destination can be predicted, which is node B. So, through preloading

the flow tables matching the connection between node B and C by controllers, the car can get the real-

time traffic at C directly according to the flow tables without communicating with the control layer again.

Fig. 3. The work mode of service preloading

It should be noted that, in order to ensure the performance of the switches, the timeout cleaning is used

in our scheme. The essence of the new service preloading scheme in this paper is to preload services on

the most probable path. It is not guaranteed to be completely accurate, the performance of switches will

be affected by the additional installation of flow tables over time. By setting a timeout for flow tables,

they will be deleted if they are not activated within this period. This period can be adjusted according to

the actual traffic conditions.

It is not difficult to see from the above mechanism of services preloading that simple preloading is a

kind of large-scale behavior of deploying services regardless of cost, which is not desirable in practice.

Therefore, our solution limit the size of services preloading by trajectory prediction. It will greatly reduce

the size of the flow tables. However, the accuracy of prediction has a great impact on the results. If the

prediction error is large, additional flow tables will affect the performance of switches and waste network

resources instead of improving the quality of services. Therefore, designing a prediction algorithm with

high accuracy and reasonable complexity is the key of the new service preloading scheme in this paper.

We conducted a follow-up study in the next section.

4 Improved Trajectory Prediction Algorithm

4.1 The Principle of PST Algorithm

In recent years, with the progress of technology, the GPS system in vehicles is more and more accurate,

which greatly promotes services based on the location of vehicles. Trajectory prediction has become one

Services Preloading Scheme Based on Improved Threshold-PST in IOV

6

of the hot spots in IOV and some progress has been made. Currently, the algorithms are mainly divided

into two categories, one of which is based on the regional division and the other based on processing

trajectory data set [16].

The essence of regional division is to divide the traffic network into connected regions according to

different methods and map the vehicles’ trajectories as the transformation between regions. In the paper

[17], the region is meshed and the size affects the accuracy of the prediction. Lei Zhang used k-means

clustering algorithm to track the region [18]. The algorithm has high accuracy but the region scalability is

poor. At the same time, such methods are predicting within a certain range and will have an impact on

the performance and cost of switches in IOV.

Another type is based on the trajectory data set processing. Since the trajectory can be regarded as a

discrete series of time-dependent locations, the sequential pattern analysis method is widely used for

moving object. However, most mining algorithms based on sequential patterns are modified on the basis

of association rules, and there is a problem that the complexity of prediction increases as the number of

trajectories increase. On the other hand, the Markov model has been verified to be more in line with the

law of vehicle movement [19]. This algorithm has high accuracy, but also has the problem of state space

expansion and more complicated training process. And if the parameters are not reasonable enough, the

prediction result will have greater errors.

PST (Probability suffix tree), which is actually a variable-length Markov model, is widely used to

establish statistical models for complex sequences. Compared with the traditional Markov model, it can

process high-order sequence information more effectively and improve the space expansion problem.

Definition 1 (k-Markov Chain). X is a set of states with a finite random variable sequence {
n

X , n = 0,

1, 2, …}. If there is k:

()

()

1 0 0 1 1 1 1

1 1 1 1 1

|

,

|

,
n n n n n

n n k n k n n n n

P X j X i X i X i X i

P X j X i X i X i

+ − −

+ − + − + − −

= = = …… = = =

= = …… = …… =

. (2)

We call this model {
n

X , n = 0, 1, 2, …} is k-Markov chain. The probability of the next state is

determined by the probability of the current state and the past (k-1) known states. In PST, k is dynamic

and adaptive, so it is also called variable length Markov model.

The structure of PST model is as follows: It’s a non-empty tree based on a sequence set and the edge is

marked with a character in the sequence set. The empty root node is represented by ROOT while other

nodes by a string which can be generated by traveling from the current node to the ROOT. There is a

probability distribution vector that gives the conditional empirical probability of the next character for

every node. Fig. 4 shows a PST model by learning the sample “IVOIOVIOV”.

Fig. 4. Probabilistic suffix tree model

Based on the above, we propose an improved PST algorithm with threshold (Threshold-PST), which

can fully exploit and train user’s historical information and make the prediction dynamically. The

thresholds make the model more reasonable, which could reduce the computational complexity.

We simplified the traffic network and made the following definitions:

Journal of Computers Vol. 30 No. 1, 2019

7

Definition 2 (Traffic direction graph). It consists of roads, intersection units (IU) and topologies

between them. We define G=<C, R> denotes the traffic direction graph, where C={
n
c , n = 0, 1, 2 …}

denotes the set of IUs and R={
n
r , n = 0, 1, 2 …} represents the collection of roads (see Fig. 5).

Fig. 5. Traffic direction graph

Definition 3 (Trajectory sequence). We define the nodes ordered by the passing time in the traffic

graph as trajectory sequences T =
1 2 i
c c c…… and the length of each trajectory is L. Traj =

1 2
{ , }

n
T T T…… is a set of trajectory sequences.

Definition 4 (Sub-trajectory sequence). The sub-trajectory sequence
1

() (1)
i i i n

Sub T c c c i n
+

= ≤ ≤…… is

a subset of the vehicle trajectory sequence, which indicates that the vehicle trajectory sequence removes

several earlier intersections.

4.2 Improved Threshold-PST Algorithm

4.2.1 Historical Trajectory Sequence Training

The historical trajectory sequence training is mainly based on constructing the tree. We define the depth

(H) of the tree is smaller than the length
max

(L) of the longest trajectory sequence
1max
T . We need to

traverse all the trace sequences in the sample set starting with the minimum length. The steps to construct

the PST are as follows:

Tree initialization. We firstly assume that the tree contains only root node. The probability distribution

vector of the root node is the relative frequency of each IU in the intersection node set, which we usually

call the unconditional empirical probability P ()
i
c , which is calculated as equation (3):

 ()

i
c

i

c

N
P c =

N
. (3)

Where
i
c

N represents the number of one IU in the sample set, and
c

N represents the number of all IUs.

In order to reduce the computational complexity, we introduce the unconditional confidence of the

node, a pre-set threshold
min
P . We consider the node whose unconditional empirical probability is bigger

than this threshold to be a candidate node and remove whose is less.

Tree iteration. After initialization we get an empty root node and a set of candidate child nodes. Then

we need to iterate until the depth reaches H.

Firstly, we take one node
l
T from the candidate set and calculate the probability vector of its

subsequent node. If there is an IU
m
c whose conditional probability (|)

m l
P c T is bigger than a certain

threshold, we add this node to the tree and represent it by
m l
c T . We call this threshold the conditional

confidence
min
P′ , which is calculated as follows:

 () m l
c T

m l

Traj

N
P c |T =

N
. (4)

Services Preloading Scheme Based on Improved Threshold-PST in IOV

8

Where
Traj

N denotes the number of intersections
m
c close to

l
T in the trajectory sample set and

m
c l

N T

denotes the times.

We remove some useless nodes and simplify the tree by setting the node unconditional and conditional

confidence. At the same time, taking the actual road conditions into account, the next candidate node of a

trajectory sequence must be adjacent to the last intersection unit in
l
T and the vehicle will be less

possible to repeat the current path. Therefore, it is not necessary to traverse n times (n is the number of all

IUs in the set) when calculating the probability distribution vector and we only need to traverse

(| () | 1)
l

S c − times, where
l
c denotes the last intersection in trajectory sequence

l
T and ()

l
S c represents

the set of the roadside units connected to
l
c . This method can effectively reduce the algorithm

complexity.

The vehicles’ trajectory information in the real world is constantly updated, so when a new trajectory

sequence appears, we consider the following two cases. If the length of new sequence is less than the

depth H, we use conditional confidence as a limit to update. If not, we take its sub-trajectory with length

H. The specific process of algorithm is shown in Table 1.

Table 1. Historical trajectory sequence training

Algorithm 1. Historical trajectory sequence training

1. C_set←Ø;//Candidate child nodes collection;

2. Threshold-PST←Root←Ø;//ROOT is empty;

3. initialize
root
P ;//Probability distribution vector ;

4. for all
i

C in C do

5. ()i

Root i
P P c= ;

6. if ()
i min

P c P≥ then

7. C_set.push(
i
c);

8. end if

9. end for

10. while C_set ≠ Ø //PST iteration;

11.
l
T = C_set.pop();

12. initialize
l
T
P ;

13. for all
m

C in
1

{ () }
l l

S c c
−

− do

14. (|)
l

m

T m l
P P c T=

15. if
l

m

T min
P P′≥ then

16. Threshold-PST←
l
T ;

17. end if

18. end for

19. if
m

L ＜ H then // New sequence is added;

20. for all c′ in
2

{ () }
l

S c c− do

21. if ((|)
H m min

Suh T c P′ ′≥ then

22. C_set.push(
m

c T′);

23. end if

24. end for

25. else if
m

L ＞ H

26. for all c′ in
2

{ () }
l

S c c− do

27. if ((|)
H m min

P Suh T c P′ ′≥ then

28. C_set.push((()
H m

c Suh T′);

29. end if

30. end for

31. end if

32. end while

33. return Threshold-PST;

Journal of Computers Vol. 30 No. 1, 2019

9

4.2.2 Real-time Trajectory Prediction

After the historical trajectory training, we obtain a complete tree for real-time vehicles’ trajectory

prediction. We firstly get the current trajectory information to build the sequence
c
T . Starting from the

root node, we aim to find the matching node in reverse order of the current trajectory sequence. If we

can’t make it, we should use the sub-trajectory sequences of
c
T followed by

2 3
(), (),

c c
Sub T Sub T

4
()

c
Sub T because of the less impact of information long time ago. The most likely next destination is the

intersection unit corresponding to the maximum probability in the probability distribution vector at the

matching node. The specific process of algorithm is shown in Table 2.

Table 2. Real - time trajectory prediction

Algorithm 2. Real - time Trajectory Prediction

1. for i=1 to l do

2. Q = get tree node that match ()
i c

Sub T ;

3. if Q is not empty then

4. (|)
Q i
P P c Q= ;

5. end if

6. end for

7.
next
c = arg max(

Q
P);

8. return
next
c ;

Through these two algorithms, we can achieve trajectory prediction and complete service preloading.

5 Simulation and Performance Analysis

In this paper, we propose a new architecture called SDC-IOV and a services preloading scheme based on

trajectory prediction. We need to verify the accuracy and complexity of the algorithm and the superiority

of service preloading respectively.

5.1 Trajectory Prediction

In order to verify the superiority of the Threshold-PST algorithm, we design experiments from three

aspects of accuracy, time complexity, space complexity. We compare our algorithm with Markov

algorithm, random guessing method and the traditional PST algorithm. We use the method described in

[20] to simulate a traffic scene using a traffic simulator. The experimental parameters are as Table 3.

Table 3. Experimental parameters

Parameters Value Description

N 100 Number of intersection units

M 10000 Number of trajectory sequences

L 1~15 Length of trajectory sequence

min
P 0.0005 Unconditional confidence

′
min

P 0.005 Conditional confidence

In the experiment, 10000 trajectory sequences are randomly divided into five groups evenly. Four

groups are used to train and one to predict, which is repeated for five times.

The comparison of the four algorithms’ accuracy is shown in Fig. 6. It can be seen from the

experimental results that the accuracy of the algorithm is nearly the same when the length of the

trajectory is one and when the length is two, the accuracy of our algorithm, traditional PST and Markov

algorithm is obviously increased. When the length is longer, due to the adaptive adjustment, our

algorithm and traditional PST have better performance while Markov model has small up and down

fluctuations. At the same time, because this paper deletes some useless nodes by setting the confidence,

Services Preloading Scheme Based on Improved Threshold-PST in IOV

10

the accuracy is improved compared with the traditional PST algorithm, which is the best in all three

algorithms.

Fig. 6. Trajectory prediction accuracy

Then, the comparison of time complexity is carried out. In the experiment, the running time is used as

a reference and the performance of the algorithms is observed by processing different sequence, as shown

in Fig. 7. The result shows that our algorithm and traditional PST algorithm outperform the Markov

algorithm in time consumption and the gap will gradually increase as the sequence length increases. This

is because the Markov algorithm is solved by the transfer matrix, so the time complexity is 3()O kn , k is

the order of Markov. While the two PST algorithms use the current trajectory sequence to match the tree

model, so the time complexity is O(LM). At the same time, due to the confidence, there is a slight

improvement in time performance of Threshold-PST model compared with traditional PST.

Fig. 7. The time consuming comparison of multiple trajectory prediction algorithms

Journal of Computers Vol. 30 No. 1, 2019

11

Finally, taking the system memory occupied during the operation of algorithms as a reference, this

paper designs the experiment to compare the space complexity. Experimental results show that the

system memory occupied by the three algorithms is basically the same when the sequence length is 2 (see

Fig. 8). But the performance of the Threshold-PST algorithm and the traditional PST algorithm is much

better than that of the Markov as the sequence length increases. Meanwhile, our algorithm has a weak

advantage. By theoretical analysis, we know that the space complexity of the Markov model is 2()O kn .

However, our algorithm and traditional PST algorithm are predicted by constructing a tree model, so the

space complexity is O(M). Therefore, our algorithm is slightly better in space complexity than the other

two algorithms.

Fig. 8. The memory usage comparison of multiple trajectory prediction algorithms

5.2 Service Preloading

In this paper, the new service preloading model is mainly to alleviate the interaction delay between

control plane and data plane. By predicting the trajectory, the real-time services are ensured. So delay is

taken as the basis to measure the service quality and the number of flow tables as a standard for switches’

performance in the experiment.

The experiment is run on 8-core Cpu and 32Gb memory computers with Ubuntu system. In order to

verify the superiority of service preloading, we use Mininet to construct a soft defined network

environment to simulate different switch hops and amount of vehicles. Then we observe the number of

flow tables and transmission delay.

In the experiment, the scheme in this paper will be compared with the fully preloading scheme and the

free response model. The fully preloading scheme is one of the worst deployment schemes. The idea is to

make preloading in all switches. While the free response mode is currently used in most practical ways. It

can be seen from the Fig. 9 that the number of flow tables increases with the number of vehicles in all

three modes. However, the fully preloading scheme obviously increases fast. The main reason is that the

flow tables are preloaded in each switch. So with the increasing number of vehicles, the scale of the flow

meter will increase rapidly. However, compared with the free response mode, the proposed scheme has a

slight decrease. The main reason is that the two flow tables in the traditional progress of service request

and service reception are reduced to one. When the service request sent by the vehicle arrives at the

corresponding switch, the matching flow tables are already loaded, which deletes the process of sending

the service request to the cloud. Thus the performance of switched is guaranteed. This situation will

become more and more evident as the number of vehicles increases. Therefore, our scheme can improve

the performance to a certain degree compared with the traditional ways.

Services Preloading Scheme Based on Improved Threshold-PST in IOV

12

Fig. 9. Number of flow tables

Next, when the number of vehicles is fixed, we observe the delay of obtaining service by simulating

different hops. The result is shown in Fig. 10. This paper mainly contrasts with the traditional free

response mode. The results show that although the communication delay increases with more vehicles in

the network, the delay of services preloading scheme in this paper is always lower than the free response

mode. The main reason is that the proposed scheme is based on the prediction of vehicle trajectory. And

the required services are preloaded on the driving route in advance, which simplifies the process of

connection establishment. And experimental data shows that with the increase of the number of switches,

the network topology will be more complicated and the gap between two modes will also become larger

and larger.

Fig. 10. Transmission delay of different hops

To sum up, on the one hand, the Threshold-PST algorithm has certain advantages in accuracy, time

complexity and space complexity. On the other hand, service pre-loading based on trajectory prediction

can improve the performance of switches. In different scenarios, the communication delay is the best.

Therefore, the scheme in this paper can be well adapted to the computing environment in IOV under the

condition of complex traffic network and more intersection nodes. So its validity and superiority are

proved.

Journal of Computers Vol. 30 No. 1, 2019

13

6 Conclusion

This paper proposes a new architecture based on SDN and cloud computing which can improve the

heterogeneity and strengthen the mobile support of traditional IOV. The resource utilization is also

improved. At the same time, we propose a services preloading scheme based on trajectory prediction.

The scheme regard trajectory prediction and service preloading as the core mechanism in order to limit

the size of flow tables and reduce the transmission delay for performance optimization. In order to

improve the validity of the scheme, this paper adopts the improved threshold probabilistic suffix tree

algorithm. And its computational accuracy and complexity are improved compared with other methods.

Finally, the advantages of our method are proved by the experimental simulation and services preloading

scheme is proved to be effective.

We admit that there are some limitations in this paper. For example, the construction of traffic map

can’t fully reflect the characteristics of IOV and the data used for the simulation is simulated. We will

focus on it in the future. At the same time, we believe that considering more factors, such as vehicles’

type and speed, is an important research direction.

Acknowledgements

This research is supported by the National Natural Science Foundation of China under grant 61271308

and the Fundamental Research Funds for the Central Universities, No.W17JB00060.

References

[1] S. Li, L. Xu, S. Zhao, The internet of things: a survey, Information Systems Frontiers 17(2)(2015) 243-259.

[2] H. Qin, Z. Li, Y. Wang, X. Lu, W. Zhang, G. Wang, An integrated network of roadside sensors and vehicles for driving

safety: concept, design and experiments, in: Proc. IEEE International Conference on Pervasive Computing and

Communications, 2010.

[3] Z. He, J. Cao, X. Liu, High quality participant recruitment in vehicle-based crowdsourcing using predictable mobility, in:

Proc. 2015 IEEE Conference on Computer Communications, 2015.

[4] IEEE Standards Association, IEEE 802.11p-2010-IEEE Standard for International technology-Local and metropolitan area

networks-Specific requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)

Specifications Amendment 6: Wireless Access in Vehicular Environments, July, 2010.

[5] M. Chen, Y. Zhang, L. Hu, T. Taleb, Z. Sheng, Cloud-based wireless network: virtualized, reconfigurable, smart wireless

network to enable 5G technologies, Mobile Networks & Applications 20(6)(2015) 704-712.

[6] National Science Foundation, MobilityFirst Future Internet Architecture Project Overview. <http://mobilityfirstwinlab.

rutgers.edu/>.

[7] NEBULA.

[8] C. Chaudet, Y. Haddad, Wireless software defined networks: challenges and opportunities, in: Proc. IEEE International

Conference on Microwaves, Communications, Antennas and Electronics Systems, 2013.

[9] M. Mendonca, K. Obraczka, T. Turletti, The case for software-defined networking in heterogeneous networked

environments, in: Proc. 2012 ACM Conference on CONEXT Student Workshop, 2012.

[10] I. Ku, Y. Lu, M. Gerla, R. L. Gomes, F. Ongaro, E. Cerqueira, Towards software-defined VANET: architectures and

services, in: Proc. 13th Annual Mediterranean Ad Hoc Networking Workshop, 2014.

[11] M. Eltoweissy, S. Olariu, M. Younis, Towards autonomous vehicular clouds, in: Proc. International Conference on Ad Hoc

Services Preloading Scheme Based on Improved Threshold-PST in IOV

14

Networks, 2010.

[12] D. Bernstein, N. Vidovic, S. Modi, A cloud PAAS for high scale, function, and velocity mobile applications - with

reference application as the fully connected car, in: Proc. fifth International Conference on Systems and Networks

Communications, 2010.

[13] K.M. Alam, M. Saini, A.E. Saddik, Toward social Internet of vehicles: concept, architecture, and applications, IEEE Access

3(2015) 343-357.

[14] K. He, J. Khalid, S. Das, A. Akella, L.E. Li, M. Thottan, Mazu: taming latency in software defined networks, CS Technical

Reports, 2014.

[15] P.N. Pathirana, A.V. Savkin, S. Jha, Location estimation and trajectory prediction for cellular networks with mobile base

stations, IEEE Transactions on Vehicular Technology 53(6)(2014) 1903-1913.

[16] M. Morzy, Mining frequent trajectories of moving objects for location prediction, in: Proc. International Conference on

Machine Learning and Data Mining in Pattern Recognition, 2007.

[17] R. Li, F. Li, X. Li, Y. Wang, QGrid: Q-learning based routing protocol for vehicular ad hoc networks, in: Proc.

PERFORMANCE Computing and Communications Conference, 2014.

[18] L. Zhang, B. Yu, J. Pan, GeoMob: a mobility-aware geocast scheme in metropolitans via taxicabs and buses, in: Proc. IEEE

INFOCOM, 2014.

[19] J. Krumm, A Markov model for driver turn prediction, Sae World Congress 22(1)(2008) 1-25.

[20] Y. Liu, T. Yan, R. Zhang, Protein sequences analysis based on smoothed PST, in: Proc. International Conference on

Bioinformatics and Biomedical Engineering, 2009.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

