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Abstract. Respiratory rate (RR) estimation using Photoplethysmogram (PPG) signals has the 

advantage of high usability and wearability. However PPG sensor is very sensitive to motion 

artifacts, resulting that the RR features derived from the four respiratory-induced variations 

(intensity, frequency, amplitude and pulse width) of PPG may present significant inconsistency 

values. To address this problem, we propose an adaptive fusion approach based on Kalman 

Filter (KF) to adaptively fuse the RR features in the PPG signals. The model applies the 

relationship of inter-feature coherence and intra-feature statistical changes to identify the 

measurement process and the four RR state processes of the KF for the four variations intensity, 

frequency, amplitude and pulse width, respectively. The fusion of the four estimated RRs from 

state space of the KF is performed according to the instant Kalman gain and feature consistency 

metric. The experimental results of 42 subjects show that the proposed adaptive fusion model 

can effectively improve the estimation accuracy, especially when the four RR features are 

significantly diverse.  

Keywords:  adaptive fusion, Kalman filter (KF), photoplethysmography (PPG), respiratory rate 

(RR) 

1 Introduction 

Ambulatory monitoring of respiratory rate (RR) has the advantage of long-term state-of-health (e.g. 

patient care) monitoring [1]. Recently, it has been found that RR can be used for mental state recognition, 

such as depression, stress and emotional states [2-3]. Photoplethysmography (PPG) measures the pulse 

wave caused by periodic pulsations in arterial blood volume by infrared light-emitting diodes and photo 

detectors. Non-invasive, high availability and low cost, making it a popular sensor kit for portable 

devices. PPG is widely used to heart rate monitor and is gradually validated to contain various 

respiratory-modulated signals which can be used for respiratory activity monitoring [4-8]. Respiration 

has been exploited to modulate the PPG in several ways: Respiratory sinus arrhythmia (RSA) 

phenomenon will lead to respiratory-induced frequency variation (RIFV) in the PPG signal. The variation 

of intrapleural pressure causing the exchange of blood circulation results in respiratory-induced intensity 

variation (RIIV). Beside, the decrease in cardiac output influences the change of peripheral pulse strength 

and causes the respiratory-induced amplitude variation (RIAV). In [9], the relationships between 

respiratory rate and the three respiratory-induced variations (called RR variations) in PPG were 

investigated and compared. Combining these RR variations to improve accuracy for respiratory rate 

estimation has also been validated. For instances, Johansson [10] combined the three RR variations using 

feed-forward neural network model to monitor RR. While PPG signals record using pulse oximetry, the 

interaction of Infrared light with biological tissue can be quite complex and may involve scattering 

absorption and reflection [11]. If the recording data involved in physical motion artifacts, it will result in 
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strong baseline drift or distortion, and unable to be restored effectively. In practical, the pulse wave 

morphology is completely superimposed by disturbances or distorted caused by incomplete signal 

reception, causing it impossible to restore. While it is almost impossible to remove the motion artifacts 

(MAs), many recent algorithms choose to neglect the low signal quality segments [12-14], and the RR 

estimations were performed only on good-quality segments. In general, accurate RR estimates from short 

PPG segments has been well-validated. However, practical applications require long-term ambulatory 

monitoring. In this case, MAs are inevitable. Therefore, recent challenge is on the robust RR estimation 

in the presence of MAs. To address such an impending demand, several algorithms have been proposed 

based on finding a more robust approach for combining respiratory modulate information in PPG. The 

approach in [12] is to find the most trustful intervals during PPG recording so that mean fusion of the 

three RR variations (RIIV, RIAV, RIFV) can be utilized to enhance RR estimation accuracy. Their 

approach first discards the low signal quality intervals (artifacts), and then neglect the windows in which 

the standard deviation among the three variations is higher than 4. However, the occurrence of the latter 

is very high causing most of the windows are removed (totally 45.5%). Accordingly the output will be 

strongly discontinuous. The approach in [14] utilizes multiple autoregressive models (based on Burg’s 

algorithm) with different model orders to estimate the dominated frequency among the three RR 

variations to estimate RR. The idea is to find the most reliable RR estimate in the three RR variations 

within a relatively good signal quality window (about 10% data are discarded). However, by using this 

method, there are 3×17 AR models need to be estimated within a window. If the overlapping ratio of 

sliding window is high, such approach will be very time consuming. Besides, as discussed in [14], 

different window sizes used for estimating RR can result in substantially different accuracy levels. 

In this study, we proposed an adaptive fusion approach based on Kalman Filter (KF) to dynamically 

fuse four RR feature sequences according to their inter- and intra- characteristic relationships for robust 

RR estimation. The four RR feature sequences are derived from four RR variations which extracted from 

pulsatile component of PPG waveform. The four RR variations include the three variations (RIFV, RIIV, 

and RIAV), that are commonly used in the literatures (e.g. [12, 14]), and a PPG pulse width based 

variation (PWV) [15]. MAs in PPG signal would raise the deviation level between feature sequences and 

distorted physiological response within each feature sequence. Moreover, different feature sequences 

may be subject to different levels of abnormal disturbance.  

Suppose there are several feature time series in the system. And there is a sequence formed by inter-

feature relationship, and another sequence describes the changes/variation state of a feature (intra-feature 

variation). Let both sequences be the measurement and state process of a KF, respectively. The KF can 

adaptively control the process state by minimizing the error covariance from state and measurement 

sequence. Blending factor of the filter will be reveled in the Kalman gain, which can be used to 

understand how strong the priori estimated state maintains the control process so as to obtain the instant 

quality of the intra-feature in state process corresponding to measurement (inter-feature). By this concept, 

the state (controlled) space of the KF is formulated to describe the models of the RR feature sequences 

according to each intra-feature variation. The measurement process of the KF is the coherence state of 

the four RR features. While the four RR features are highly consistent, this implies RR values in these 

features are reliable. Then the mean fusion is employed to fuse the four estimated RR in state space, 

however, if the four features present inconsistence, the filter will find the most trustful estimated RR in 

state space through Kalman gain. To address the problem of severe distortion data, the PPG pulse waves 

which detected having low signal quality are eliminated from the accuracy evaluation. 

The rest of this paper is structured as follows. Section 2 describes the preprocessing of PPG signal 

including PPG pulse segmentation and RR feature extraction. Section 3 introduces the algorithm 

designed to adaptive fuse the four RR features to provide improved robustness of RR estimation. The 

experiment data are described in Section 4. The evaluation of our method and comparison are discussed 

in Section 5. Finally, we presented the conclusion in Section 6. 

2 Preprocessing of PPG Signal 

2.1 PPG Pulse Segmentation  

The PPG signal consists of DC component and pulsatile component (AC). To extract the AC component, 

a Low-Pass Filter with 8
c
f =  Hz is applied to obtain a smoothed PPG signal. Then a Low-Pass Filter 
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with 0.5
c
f =  Hz is applied to estimate the DC trend. The pulsatile AC component 

t
S  is then obtained by 

subtracting the DC trend from the smoothed PPG signal. Subsequently, a pulse segmentation procedure is 

applied to partition each of the pulse waves from 
t

S . The procedure is based on detecting the rising edge 

of each pulse wave(e.g. [16, 18]), as follows: 

‧ Find the zero crossing points in the first-order derivative of 
t

S , denoted as 
i
p .  

‧ The interval between point 
1i

p
−

 and 
i
p  is accepted as a rising period of a pulse wave, if in the 

conditions that 
1

0
i
p

S
−

≤  and 0
i
p

S > , the intensity of the rising edge is larger than a certain percent of 

the moving average of the pulse wave intensity. 

2.2 Respiratory Rate Feature Extraction 

Four respiratory-induced variations (RIFV, RIIV, RIAV, and PWV) from PPG signals are extracted in 

the computing of respiratory rate. Let the time points of onset and peak of the i-th PPG pulse waves be 

denoted as the pairs 
, , 1,...

{ , }
o i p i i N
t t

=

, and the correspond value denoted as 
, ,

1,...
{ , }

o i p it t i N
S S

=

. The four 

respiratory-induced variations are defined as  

, , 1
RIFV

i p i p i
t t

−

= − ,  

,

RIIV
p ii t

S= ,  

, ,

RIAV
p i o ii t t

S S= − ,  

and 
, , 1

PWV
i o i o i

t t
−

= − . 

The resulting four time-series are then resampled to original sample rate (referred to as a tachogram). 

In this study, RR is estimated using instant respiration rate estimation derived from each respiratory cycle 

in the four variations. The advantage of using instant RR estimation is that the coherence between 

respiration and PPG derived signal can be compared cycle by cycle [17]. As such, the effect of window 

size can be prevented [18]. To estimate instant RR features, a band pass filter is applied to the four 

tachograms. Then the valley-peak pairs can be extracted as the procedures described in Section 2.1. After 

the valley-peak pairs detected, the instant RR feature sequences can be estimated by calculating the 

distance between adjacent peaks. Since the normal range of adult breathing rates is between 0 and 60 

breath/minute, the four derived RR feature sequences are then interpolated (and resampled) at 1 Hz, [19]. 

The results from the four derived RR feature sequences are denoted as W

n
R , I

n
R , A

n
R  and F

n
R , 

respectively. Besides, in order to estimate motion artifact effect, we further estimate the instant valley to 

peak distance from above detected valley-peak pairs, referred to as the amplitude varying activity in the 

four RR variations and denoted as W

n
A , I

n
A , A

n
A , F

n
A . 

3 Adaptive Filter for RR feature Fusion 

3.1 Process Model Description  

Let us assume that the four RR feature sequences are dynamic system with a process model (also called 

control process) as following 

 
1 1n n n n− −

= Φ + +x x u w , (1) 

and only a noisy linear combination Π  of the system states 

 
n n n
= +z Πx v   (2) 

can be measured. The 
1n−

x  here is the state vector representing the estimated RR at the previous time step 

1n −  which with a state transition matrix Φ  relates to the current state 
n

x . 
1n−

u  is the control input to 

the state 
n

x , which is the increase rate of RR. Let T

n n n
E ⎡ ⎤= ⎣ ⎦Q w w  and T

n n n
E ⎡ ⎤= ⎣ ⎦R v v  be the process 

noise covariance and measurement noise covariance, respectively. The goal of KF is to produce the 

optimal estimate ˆ
n

x  of 
n

x  that is corrected for the measurement 
n

z . The state space is formulated from 
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the four instant RR features. Thus, the input vector 
1n−

u  is the increase rate of RR from the four RR 

features, W

n
R , I

n
R , A

n
R , F

n
R , defined as 

 

1

1

1

1

1

W W

n n

I I

n n

n A A

n n

F F

n n

R R

R R

R R

R R

−

−

−

−

−

⎡ ⎤−
⎢ ⎥

−⎢ ⎥=
⎢ ⎥−
⎢ ⎥

−⎢ ⎥⎣ ⎦

u . (3) 

Φ  in (1) is a 4 4×  identity matrix, which assume there is no state transition correction. Assuming that in 

the ideal condition, the state estimates have the vector form , , ,

T
W I A F

n n n n n
R R R R⎡ ⎤= ⎣ ⎦x .  

When the four respiratory-induced variations are disturbed by motion artifact, the noise covariance, 

n
Q , in the state process will be raised. Since the disturbance may affect the signal frequency and 

amplitude variance, 
n

Q  can be estimated by calculating the instant frequency/amplitude change, the brief 

procedures are depicted in Fig. 1. Let { }
n

Rδ
�  and { }

n
Aδ

�  be sequence of the estimated change rates with 

respect to the frequency and amplitude of the respiratory-induced variation, respectively, { }, , ,W I A F∈� , 

defined as 

 

Fig. 1. The procedure of process noise covariance Qn estimation 

 ( )n n
R H Rδ = Δ

� �  where 
1n n n

R R R
−

Δ = −
� � �  (4) 

 ( )n n
A H Aδ = Δ

� �  where 
1n n n

A A A
−

Δ = −
� � �   (5) 

where (.)H  is the convolution operator which convolute sequence { }
n

RΔ
�  and { }

n
AΔ

�  with Hanning 

window function,  
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 2( ) sin
11

πκ

ω κ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

,  (6) 

Where 0,1,...,11κ = . Assuming that the features are independent of each other, the process noise 

covariance matrix of the state process can be defined as  

 

( )

( )

( )

( )

2

2

2

2

0 0 0

0 0 0

0 0 0

0 0 0

W W

n n

I I

n n

n
A A

n n

F F

n n

R A

R A

R A

R A

δ δ

δ δ

δ δ

δ δ

⎡ ⎤+
⎢ ⎥
⎢ ⎥

+⎢ ⎥
= ⎢ ⎥

+⎢ ⎥
⎢ ⎥
⎢ ⎥+⎣ ⎦

Q . (7) 

If the four RR features have the same values or are extremely consistent in the high PPG signal quality 

interval, the mean value of the four RR features should be very close to real RR. Thus, the measurement 

n
z  of the KF can be defined as 

 
1

4
n n

R

κ

≅ ∑z
� , if 0

n
Var R⎡ ⎤ ≅⎣ ⎦

� , { }, , ,W I A F∈� .  (8) 

As such, the relation matrix Π  between 
n

x  and 
n

z  can be formed as a constant matrix in the ideal 

condition (
n
=v 0 ): 

 [0.25,0.25,0.25,0.25]=Π , and 
n n
=z Πx . (9) 

If the value of 
n

Var R⎡ ⎤⎣ ⎦
�  is large, implying that respiratory rate among the four features are 

significantly inconsistent, 
n

z  will lose its representative as the real measurement. Accordingly, the 

measurement noise covariance of the KF can be defined as 

 [ ]
2

n n
Rdv=R , (10) 

and the variance metric is 

 ( )1

4 n
n n R

Rdv R µ= −∑ �

�

�

� , { }, , ,W I A F∈�  (11) 

where 
n

R
µ

�

 is the mean value of the 
n

R
�
� .

n
R

�
�  is the normalized value of 

n
R

�  and is normalized to [0, 1], 

corresponding to RR range between 4Hz to 60 Hz. The obtained 
n

Rdv  has the value between 0 and 0.5. 

3.2 Update Equations 

The time update equation of error covariance is  

 
1

T

n n n

−

−

= +P P ΓQ Γ , (12) 

where 
n

P  is the error covariance matrix. Γ  is a diagonal matrix, where the diagonal elements are the 

constant scale factor associating with the process noise covariance 
n

Q . The Kalman gain matrix, 
n

K , is 

computed by 

 
T

n

n T T

n n

−

=

+

P Π
K

ΠP Π VR V
,  (13) 

where [ , , , ]
W I A F T

n n n n n
K K K K=K . V  is a diagonal matrix, and the diagonal elements are the constant scale 

factor associating with the measurement noise covariance 
n

R . While the a priori estimate is predicted 
(

1 1
ˆ ˆ

n n n

−

− −

= +x x u ), the measurement innovation is given as  
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 ˆ

n n n
γ

−

= −z Πx . (14) 

Subsequently, the a priori estimate and error covariance are corrected by 

 ˆ ˆ

n n n n
γ

−

= +x x K , (15) 

 ( )T
n n n

−

= −P P I K Π . (16)

  

3.3 Fusion Policy and RR Estimation 

The fusion policy is based on the temporal coherence of the four RR variations. While the four RR 

features have high consistency, it involves that four estimated RR features in ˆ
n

x  are very close. In this 

condition when 
n Rdv

Rdv Th≤ , the final RR estimation is calculated by 

 ˆ( )
n n

RR mean= x , (17) 

where 
Rdv

Th  is the experience threshold value to determine the consistency quality of 
n

Rdv . However, if 

the four RR features are divergence (
n Rdv

Rdv Th> ), the measurement noise covariance will be high. The 

Kalman gain will adjust the filter tend to more “trust” a prior estimate of state process. Since the 

disturbances in the four features are different, resulting in different a posteriori estimated RR results in 

state space. In this condition, the “fusion” is to find the best estimated feature in state space. According to 

(12) and (13), the state in state space with relative low noise interference (refer to (6)) will obtain lower 

Kalman gain value. Such relationship is used to determine the most trustful estimated RR feature among 

ˆ

n
x
�  as the final RR estimation, that is 

 
*

ˆ

n n
RR x=

� , (18) 

where  

 { }* argmin
n

K=

�

�

� , { }, , ,W I A F∈� . (19) 

4 Experimental Data 

PPG data set were acquired from 46 healthy adults. For four of these subjects, the reference respiration 

was invalid in most portions due to measurement deviation by sensor displacement. The durations of 

available data recorded from 42 subjects are each between 70min~86min. During the experiment, a pulse 

oximeter attached to the subject’s left hand. The reference respiration signal (ground truth) was acquired 

via an elasticized gauge attached circumferentially around the subject’s chest [3, 21]. In order to obtain 

respiratory activity data just like daily life, the subjects were asked to watch several emotional movies [3], 

to speak and interact with a computer, and to move body or swung hand. Fig. 2 shows the recorded PPG 

of a subject containing motion artifacts with a strong baseline wander (DC component shift).  

 

Fig. 2. The recorded PPG containing motion artifacts with a strong baseline wander (3 minutes of data) 
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5 Results and Discussion 

5.1 Signal Quality Metric  

To identify artificial and low-quality periods of the PPG signals, a modified version of [20] is used to 

estimate PPG wave signal quality ( SQ ). The steps involve in estimating SQ  of PPG pulse waves are 

described as follows: 

Step 1: Benchmark Estimation 

Calculate the squared value of the first-order derivative for each PPG pulse wave. 

‧ Calculate the average wave length of all pulse waves in long-term data, denoted as L. Subsequently, 

resample each pulse wave into fixed length L.  

‧ Align each pulse wave by subtracting its onset point value. 

‧ Estimate the median pulse wave from all the pulses of the individual data as the benchmark waveform, 

denoted as 
k

χ . 

Step 2: Estimate signal quality for each PPG pulse wave  

‧ The cross correlation coefficient criterion is used to matching of the benchmark with all of the pulse 

waves: 

 ( ) ( )
1/ 2

2 2

1 1 1

ˆ ˆ

L L L

i i

i k k k k

k k k

SQ χ χ χ χ

−

= = =

⎛ ⎞
= ⋅ ⋅⎜ ⎟

⎝ ⎠
∑ ∑ ∑   (20) 

where ˆ i
k

χ  denotes the i-th pulse wave. If i SQ
SQ Th< , the pulse wave is considered of low quality, where 

SQTh  is an experience threshold.  

5.2 Evaluation 

In long-term monitoring, it is inevitable to contain disturbed intervals in the reference respiratory signals. 

To obtain the ground truth data for performance comparison, we applied the method introduced in 

Section 5.1 to measure the quality of the reference respiration signal collected from elasticized gauge. 

The quality is denoted as resp

n
SQ . The respiration waveform with 0.85

resp

n
SQ ≥  is considered to be the 

ground truth. As a result a total of 15.4% data ( resp

n
SQ  0.85< ) in our database has been excluded from 

accuracy evaluation. The low quality PPG signal intervals (SQ<0.85) are also neglect (8.4% in average).  

The obtained RR estimation is compared with the reference RR. The performance was assessed by 

calculating the mean absolute error (MAE) in breaths/min and is defined as  

 lg

1

1
RR RR

N
ref a

n n n

n

MAE
N

=

= −∑ .  (21) 

The RR estimation performance of the proposed model was compared with that obtained using mean 

[12] and median fusion, and another window based fusion method (referred to AR-fusion in the paper) in 

[14] which has been introduced in Section 1. In order to make a fair comparison with the AR-fusion 

algorithm, the window size for AR model is set as 15 seconds (4 breaths/min), with 1sec shift [19]. With 

the 15 second window size, there are possibly 1~15 breath cycles for a healthy adult. In order to achieve 

the same comparison criteria, the dominant frequency within the window from reference respiratory 

signal is used as the ground truth of RR. Since our method uses four RR variations, the AR-fusion 

method was implemented with both three variations (without PWV) and four variations (with PWV), 

respectively. Furthermore, the accuracy is calculated when the PPG 0.85SQ >  and ground truth 

available. 

5.2 Results and Discussion 

Fig. 3(a) shows the RR estimation results obtained for a 400-second PPG segment using proposed model 

and mean fusion approach. The corresponding values of 
n

Rdv , 
n

SQ  and resp

n
SQ  are shown in Fig. 3(b) to 
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Fig. 3(d). Consider in the high signal quality interval, when 
n

Rdv  is small which will involve with small 

n
R  in the KF. This implies that the four RR features appear to have close values, resulting in similar 

value in diagonal elements of 
n

Q . It can be seen that in Fig. 3(a), the final RR estimation of the filter 

(mean value of the four estimated RR features) is very close to the result of mean fusion.  

1750 1800 1850 1900 1950 2000 2050 2100 2150
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20

30

40

R
R

 

 Ref Resp Mean KF

 

(a) Comparison of KF model, mean value of the four RR features, and reference respiration, respecitvely 
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R
d
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0.5

1

S
Q

 

(c) SQn values of PPG signal 

1750 1800 1850 1900 1950 2000 2050 2100 2150
0.5

1

S
Q

r
e
s
p

Time(sec)  

(d) SQ values of reference respiration 

The red lines in (b), (c), (d) indicate the corresponding threshold values 

Fig. 3. The results for a 400-second PPG segment 

As described in (13), Kalman gain is adjusted by 
n

R  and 
n

P . In our modal, we assume that the 

relationship between states n and n-1 does not change with time ( I=A ). Accordingly 
n

P  will be directly 

affected by 
n

Q . When the value of 
n

R  becomes larger (affected by 
n

Rdv ), the element of Kalman gain 

vector will adjust depending on the instant frequency/amplitude change of the corresponding respiratory-

induced variations. For instance, when 
n

Rdv  becomes larger and the instant activities of PWV is 

relatively small, this implies that PWV may be subjected to relatively small disturbed. As such, there is 

relatively small ( )
2

W W

n n
R Aδ δ+  value in 

n
Q , which results in relative small W

n
K  value in 

n
K . If W

n
K  is 

the smallest value in 
n

K , the corresponding estimated RR feature ˆW
n
x  will be selected as final RR 

estimation. 

In order to investigate the fusion performance, Fig. 4(a) and Fig. 5(a) show the results of RR 

estimation from the four features, mean fusion, KF fusion, and reference signal. It can be seen that even 
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if the signal has a high SQ (>0.85), as shown in Fig. 4(b) and Fig. 5(b), the four features are still 

significantly different. By using our fusion approach, the filter in most of the time can achieve highly 

accurate estimate (shown in blue dotted line) compared to the mean fusion (red dotted line). As can be 

seen from these figures, if the four RR features are all far from the ground truth, the proposed method 

cannot effectively reduce the error. This is because that our approach is to find the best estimated RR 

feature in state space as the representative. This is the limitation of our method. 

2630 2640 2650 2660 2670 2680 2690 2700 2710 2720 2730

10

20

30

40

R
R

 

 
PWV RIIV RIAV RIFV Ref Resp mean KF

 

(a) The RR estimates from four features, mean fusion, KF fusion, and reference respiratory, respectively 

2630 2640 2650 2660 2670 2680 2690 2700 2710 2720 2730
0.6

0.8

1

S
Q

Time(sec)  

(b) corresponding SQ 

Fig. 4. The RR estimation results for a 100-second interval of subject#02 
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R
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(a) 

2030 2040 2050 2060 2070 2080 2090 2100 2110 2120 2130
0.6

0.8

1

S
Q

Time(sec)  

(b) 

Fig. 5. The RR estimation results for a 100-second interval of subject#02 

Table 1 shows the comparison result of the MAE performance for 42 subjects. The mean value using 

our method is 3.12 breaths/min, which is superior to the other three fusion methods (mean, median, AR-

fusion). It also has the lowest maximum error 4.12 breaths/min and minimum error 1.87 breaths/min. 

Table 1 also shows that, regardless of which fusion method is used, the estimation results of respiratory 

rate among subjects are very different. The minimum MAE obtained using our method comes to 1.87 

breaths/min and the maximum is 4.12 breaths/min.  
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Table 1. Performance of each fusion algorithm individually using mean absolute error (MAE) 

 Fusion methods (MAE) 
Respiratory- 

induced variations (MAE) 

Subj. KF Median
Mean 

(4)**
 

Mean

(3)*
 

AR (4)**
 

AR(3)*
 

PWV RIIV RIAV RIFV 

01 4.04 7.46 8.43 10.17 5.33 6.31 4.24 12.98 7.62 10.92

02 2.14 3.01 3.39 3.99 2.67 3.16 2.59 4.97 3.77 5.00 

03 3.26 3.72 3.94 4.20 3.04 3.23 3.90 5.29 3.97 4.92 

04 4.12 5.90 6.69 7.87 5.96 6.97 4.44 11.43 7.49 6.92 

05 4.01 4.30 4.38 4.55 4.93 5.24 4.64 5.71 4.84 4.98 

06 2.04 2.02 2.14 2.41 2.13 2.40 2.22 3.81 2.80 2.77 

07 3.62 4.91 5.56 6.47 4.05 5.09 4.13 10.03 5.97 6.21 

08 4.11 3.91 4.19 4.75 4.90 5.67 4.32 8.61 5.65 4.52 

09 3.26 3.72 3.94 4.20 3.04 3.23 3.90 5.29 3.97 4.92 

10 3.88 4.09 4.17 4.52 3.71 4.47 4.11 6.23 5.22 4.73 

11 4.10 4.55 4.67 5.24 3.78 4.97 4.42 6.81 5.45 6.84 

12 2.38 3.69 4.62 5.53 2.65 3.92 3.10 9.16 4.70 4.70 

13 2.59 3.20 3.50 4.05 2.49 3.22 2.95 5.83 3.90 4.58 

14 3.97 5.57 6.19 7.23 4.60 5.37 4.13 8.93 6.26 8.43 

15 1.93 2.20 2.37 2.60 1.90 2.28 2.43 4.19 2.77 2.84 

16 3.82 4.98 5.42 6.05 4.44 4.79 4.63 8.26 5.71 6.40 

17 3.88 3.68 3.70 4.05 3.87 5.14 3.89 5.61 5.23 4.61 

18 2.59 3.53 4.20 4.87 3.40 4.07 3.08 7.68 4.40 4.31 

19 3.63 4.48 4.78 5.53 4.18 5.02 3.94 7.41 5.45 6.09 

20 2.59 3.58 4.01 4.72 2.95 3.61 3.11 6.67 4.64 5.10 

21 3.37 3.96 4.23 4.77 3.52 3.99 3.61 6.67 4.96 4.76 

22 4.00 4.90 5.40 6.20 3.86 4.86 4.70 7.82 5.69 7.94 

23 3.23 4.21 4.51 5.40 3.75 4.37 3.23 6.60 5.15 6.74 

24 3.91 5.80 6.49 7.44 4.74 5.57 4.85 10.78 6.40 7.34 

25 2.78 2.75 3.03 3.43 2.83 3.34 3.12 5.20 3.59 4.27 

26 2.72 2.98 3.28 3.85 3.25 4.00 2.85 5.50 4.07 4.88 

27 2.85 3.70 4.02 4.51 3.17 3.32 3.29 5.29 4.22 5.39 

28 2.09 2.67 2.96 3.46 2.19 2.71 2.38 4.03 3.52 4.80 

29 3.19 4.18 4.59 5.28 3.84 4.28 3.58 6.05 4.49 7.06 

30 2.11 2.71 3.13 3.57 2.37 2.61 2.56 5.32 3.18 3.74 

31 2.65 3.53 3.79 4.18 2.96 3.08 3.72 4.61 3.94 5.65 

32 2.77 5.13 6.14 7.58 3.83 5.11 3.02 9.55 5.66 9.14 

33 2.25 2.61 3.05 3.50 2.10 2.32 2.81 3.80 3.21 5.40 

34 3.53 4.00 4.15 4.55 3.80 4.60 3.92 6.04 4.93 5.03 

35 3.39 3.44 3.61 4.04 4.60 4.85 3.70 6.58 4.55 3.94 

36 2.44 3.46 4.01 4.64 2.95 3.55 2.95 6.27 3.84 5.26 

37 2.98 4.16 4.74 5.43 2.83 3.31 3.53 7.33 4.79 5.83 

38 2.48 3.52 3.96 4.33 3.04 3.14 3.56 5.06 3.71 5.73 

39 2.56 3.84 4.77 5.77 3.61 4.22 3.04 8.37 4.88 6.23 

40 4.00 3.23 3.42 3.93 2.65 7.11 3.07 6.00 4.25 5.00 

41 3.86 3.67 3.77 4.22 3.26 3.81 3.63 5.74 4.85 5.22 

42 1.87 2.41 2.86 3.33 1.89 2.28 2.32 4.26 2.88 4.71 

Mean 3.12 3.89 4.29 4.91 3.45 4.16 3.51 6.71 4.68 5.57 

ST.D. 0.72 1.06 1.21 1.49 0.94 1.20 0.71 2.09 1.12 1.55 

Max. 4.12 7.46 8.43 10.17 5.96 7.11 4.85 12.98 7.62 10.92

Min. 1.87 2.02 2.14 2.41 1.89 2.28 2.22 3.80 2.77 2.77 

Note. *3 variations:RIAV, RIIV, and RIFV. **4 variations: 3 variations+PWV. 

 

Possible factors that lead to accuracy errors may be: The different wearing condition (position or style) 

between subjects can be one of the reasons, since the contact between sensor and skin may affect signal 

received. And the different physiological condition between subjects may also cause different respiratory 

modulated in these RR features. The use of instant RR estimate method can specifically track the change 

rate along each respiratory cycle, but the four RR features may have different latency time responses to 

respiratory activity. Some subjects are more obvious, while some are relatively less obvious. If the 
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latency is not obvious, it will not affect the fusion results. Instead, this will lead to addition estimation 

error. This study also found that PWV, the variation of PPG pulse width, performs better accuracy 

comparing with the other three respiratory-induced variations (as shown in Table 1. Hence while the four 

RR features are inconsistent, the KF mostly selects the state of PWV as the final RR estimation (as 

shown in Fig. 4 to Fig. 5). This also proves that PWV has better robustness among the four variations. 

6 Conclusions 

PPG signals are very easily disturbed by the artifacts, resulting in the difficulty of using PPG for 

respiratory rate estimation. The proposed model based on KF adaptively fuses four RR feature sequences 

which derived from the four respiratory-induced variations in noisy PPG. The KF model is formulated by 

utilizing the relationship of inter-feature coherence and individual feature variations to identify the 

measurement and state process of the KF model respectively. The quantity of inter-feature divergence 

and the frequency/amplitude instant variation of the RR feature sequences are utilized to estimate 

measurement and state process noise covariance, respectively. The KF will accordingly find the optimum 

estimated state. The final RR estimation is obtained by adaptively fusing estimated RR states of the KF 

according to the consistency level of the four RR features. The experimental results show that the 

proposed adaptive feature fusion approach can significantly improve the accuracy of RR estimation using 

PPG. 
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