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Abstract. In this paper, we explore two key problems in time series motif discovery: releasing 

the constraints of trivial matching between subsequence with different lengths and improving 

the time and space efficiency. The purpose of avoiding trivial matching is to avoid too much 

repetition between subsequence in calculating their similarities. We describe a limited-length 

enhanced suffix array based framework (LiSAM) to resolve the two problems. We first convert 

the continuous time series to the discrete time series using the Symbolic Aggregate 

approXimation procedure, and then introduce two covering relations of the discrete subsequence: 

α-covering between the instances of LCP (Longest Common Prefix) intervals and β-covering 

between LCP intervals to support the motif discovery: if an LCP interval is βuncovered, its 

instances form a motif. The βUncover algorithm of LiSAM identifies the β-uncovered l-intervals, 

in which we introduce two LCP tabs: presuf and nextsuf to support the identification of the α-

uncovered instances of an l-interval. Experimental results on Electrocardiogram signals indicate 

the accuracy of LiSAM on finding motifs with different lengths.  

Keywords:  motif discovery, suffix array, time series 

1 Introduction 

Discovering motifs for time series is an important and tough task. It has been proved that the 

subsequence clustering is meaningless in unsupervised data stream mining area, and the motif grouping 

in the discrete data stream mining has been applied as a replacement of the subsequence-clustering in the 

real-time series [1]. In this paper, we focus on two primary issues in the time series motif discovery: 

reducing the computational complexity and avoiding unexpected repetitions among different motifs and 

among instances of one motif. 

The subsequence trivial matching [2] and the overlapping among different motifs [3] are two types of 

motif repetition issues in the literature. To avoid trivial matching, some methods assumed that the 

instances of a motif do not overlap with each other at all [4]. We believe that, however, a more flexible 

and user-manageable mechanism is necessary to control the numbers and styles of the discovered 

patterns. 

Enhancing the time and space complexity, and at the same time, guarantying an expected accuracy is 

always one of the top topics in data processing. Some motif discovery researchers used approximate 

solutions to get an acceptable computational complexity [5]. In this work, we propose an unsupervised 

Limited-length suffix array based Motif Discovery algorithm (LiSAM) for continuous time series, which 

is time and space efficient, and supports approximately discovering motifs in different lengths. We first 
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convert the continuous time series to the discrete time series by using the Symbolic Aggregate 

approXimation procedure (SAX) [6], and then identify the different-length motifs based on the discrete 

time series. Our illustration of discrete motif discovery is on the basis of an exact substring matching 

procedure, however, we can easily embed the existing approximate substring matching methods, such as 

[7-8], in LiSAM. The distinctive contribution of LiSAM is as below: 

‧ LiSAM can discover motifs in different lengths (e.g., maxLength to minLength provided by users), 

avoid the unexpected trivial-matching by allowing user-defined overlapping degree (represented as α) 

between the instances of motifs, and support discovering motifs that overlap with each other in a 

specified degree (β). It can either be an automatic or semi-automatic algorithm by either manually 

setting all the parameters or by using default parameters (e.g., set 
1
| |

2
maxLength T=  is a time series), 

minLength = 2, α = 0 and β = 0). 

‧ We conduct extensive experiments based on both synthetic time series datasets to evaluate the 

performance of LiSAM. Experimental results show the high accuracy of LiSAM and its applicability in 

the pattern recognition of data streams such as ECG. 

2 Related Work and Background Knowledge 

2.1 Related Work  

There has been a large amount of effort on exploring approximately accurate and fast motif discovery 

algorithms in continuous time series. The SAX [9] (Symbolic Aggregate approXimation) method was 

proposed to symbolize the continuous time series. The SAX method can lower bound the distance 

between the original time series based on the symbolized time series. Because of its time efficiency, it 

supports a streaming time series conversion. Based on the SAX, Moskovitch et al. [10] present a 

classification framework for clustering multivariate time series, which first transforms continuous time 

series to symbolic time series; then discovers frequent occurrence patterns based on data mining 

techniques; and at last designs classifiers based on the identified patterns. Floratou et al. [11] 

concentrated on improving the accuracy of motif discovery in continuous sequential data. They proposed 

a suffix tree based algorithm FLAME to find different motifs with high accuracy. As motif discovery is 

an unsupervised process, it is difficult to manually determine the lengths of the motifs in a time series. 

Against this problem, Yingchareonthawornchai [12] used a compression-based method to discover motifs 

with variable lengths. The proposed method also supports the motif evaluation and ranking in terms of 

their importance to the time series. Xie and Wang [13] developed an algorithm ADCMCST that supports 

the approximate construction of tree networks of wireless sensor networks, in order to balance the node 

payload and enhance the network lifetime. AdaBoost is a popular classification method in pattern 

recognition area. Wen et al. [14] introduced an advanced learning schema based on AdaBoost 

classification algorithm for vehicle detection, which reduces the complexity of time-consuming. 

2.2 Background: Enhanced Suffix Array  

We briefly introduce the frequently used symbols and the basic concept of the enhanced suffix array in 

this section. Readers can refer to [15-16] for more details. We first introduce and list the symbols and 

their definitions in this paper in Table 1.  

A suffix array of S is an integer array (suftab) having values k ∈ [0, n]. An enhanced suffix array 

(ESA) is a suffix array with a number of additional supporting arrays, where two of them (lcptab and 

bwttab) will be used in this paper. We use an example of Sexamp = aceaceacece to describe the ESA that is 

shown in Table.2. The suftab keeps the starting positions of suffixes of S in ascending lexicographic 

order. The definition of lcptab is in Table 1. From Table 2, lcptab[0] = 0 and lcptab[n] = 0. 

To group the suffixes that have the longest common prefixes, the concept of LCP interval is proposed. 

We describe below the definition of an LCP interval.  
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Table 1. Symboles and definitions 

Concepts Definitions 

T a continuous time series 

Σ a finite ordered alphabet 

Σ* strings over Σ 

Σ+ Σ* without null 

S a discrete time series over Σ with length |S| = n 

~ ~∈Σ, ~ >σ, ∀σ∈Σ 

S [i, j] substring of S between positions i and j 

suftab [suf] suffix array table of S 

presuf [pre] the suffix index of the previous position of the current suffix in suftab 

nextsuf [next] the suffix index of the next position of the current suffix in suftab 

Ssuftab[i] the ith suffix of S, i∈[0, n] 

lcptab [i] Longest common prefix (LCP) of Ssuf[i-1] and Ssuf[i]  

bwttab [i] (bwt) S [suftab[i]-1], if suf [i] > 0; null, if suf [i]=0 

l� - interval, l� - [i, j] an LCP interval from index i to index j with length � 

l - [l, l] singleton interval (SI): Ssuf[l] 

NSI non-singleton interval 

m� - [i, j] m-interval: instances of l� interval forming a motif 

Table 2. An enhanced suffix array 

index suf lcptab bwt Ssuf[i] 

0 0 0 null aceaceacece~ 

1 3 6 e aceacece~ 

2 6 3 e acece~ 

3 1 0 a ceaceacece~ 

4 4 5 a ceacece~ 

5 7 2 a cece~ 

6 9 2 e ce~ 

7 2 0 c eaceacece~ 

8 5 4 c eacece~ 

9 8 0 c cece~ 

10 10 0 c e~ 

11 11 0 e ~ 

 

Definition 1. Given S and its Enhanced suffix array, an interval [i, j] of index (see Table 2), where i, j ∈ 

[0, n] and i < j, is a LCP interval with LCP length �  if the following conditions are satisfied: (1) lcptab[i] 

< � ; (2) lcptab[k] ≥ � ,∀k ∈ [i + 1, j]; (3) lcptab[k] = �  if ∃k ∈ [i + 1, j]; (4) lcptab[j + 1] < � . The 

LCP interval [i, j] with LCP length �  can be represented as l
�

- [i, j]. 

An LCP interval tree indicates the embedding and enclosing relations between LCP intervals. We 

describe an example of LCP tree of Sexamp in Fig. 1. We can see that the root of the LCP tree covers all the 

suffixes of Sexamp. The child intervals are the intervals embedded in their father intervals. The leaf 

intervals do not enclose any NSI. A fast traversing procedure for LCP trees is defined in [16]. Note that 

in this paper we use l
�  to represent an l-interval with LCP length � , while use m

�  to represent a motif 

interval (Def.6) with LCP length � . In addition, we refer the normal ’LCP intervals’ to non-singleton 

intervals (NSIs). 

3 Problem Definition 

In this section, we introduce the basic concepts to be used in LiSAM. A continuous time series T is a 

sequence of real values that have temporal properties. To identify the motifs of a time series, previous 

work has given different forms of motif definitions [17]. We summarize these definitions and present a 

comprehensive motif concept in Definition 2. 
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Fig. 1. LCP tree of Sexamp 

Definition 2. A motif M of a time series T is a set of similar subsequence SQ = {sq0 ,..., sqn−1} such that n 

≥ 2, and ∀i, j ∈ [0, n−1], the length of |sqi| ≥ 2, |sqi ∩
 sqj| ≤ o, and Dis(sqi, sqj) ≤ d, where o is an 

overlapping threshold to constraint the overlapping length between two subsequence of M, Dis is a 

distance measure, and d ≥ 0 is a small value to guarantee a certain similarity among subsequence. We call 

a subsequence of M as an instance of this motif. 

Definition 3. Given two l-intervals 
1

l
�

- [i1, j1] and 
2

l
�

- [i2, j2], sk1(k1 ∈ [i1, j1]) is an instance of 
1

l
�

, sk2(k2 

∈ [i2, j2]) is an instance of 
2

l
�

, sz1 = |j1 − i1 +1|: (1) instance sk1 is α-covered by sk2 if 1
� < 

2
� , sk1 overlaps 

with sk2 at sub-string s’’, where s’’ ⊂ sk2 and s’’ ⊂ sk1, and |s’’| > α, 
1 1

1
| | * | |

2
k k
s sα≥ ≥ . Or else, sk1 is α-

uncovered by sk2; (2) Interval 
1

l
�

is β-covered by
2

l
�

, if h instances of 
1

l
�

are covered by the instances of 
2

l
�

, 

where (sz1 − β) < h ≤ sz1, and h is a pre-defined threshold. Or else, 
1

l
�

is β-uncovered (or uncovered) by 

2

l
�

. 

From the definition of l-interval, an l
�

-interval is composed of at least two suffixes that have the LCP 

of length � . Therefore, an l-interval can be seen as a pattern of S, and the LCPs of the l-interval 

correspond to the occurrences of the pattern. A pattern of S is defined as: 

Definition 4. Given an alphabet set Σ and an approximate time series S ∈ Σ∗ , a pattern of S is a time 

series pt that 1 | | | |,pt S pt S≤ ≤ ⊂ , and occurs k (k ≥ 2) times in S at positions {p1, ..., pk}, p1 ≠ ... ≠ pk, 

where a position is the start point of an occurrence of pt in S. 

In the above definition, we define that a pattern should occur at least twice in a time series. From the 

definition of l-interval, an l
�

-interval is composed of at least two suffixes that have the LCP of length � . 

Therefore, an l-interval can be seen as a pattern of S, and the LCPs of the l-interval correspond to the 

occurrences of the pattern. However, the requirement on the minimum occurrence times of a pattern 

varies in different situations. For example, in a very long S (e.g., ≥ 10 thousands), the element that 

repeats a small number of times (e.g., < 10 times) is meaningless for the time series analysis. Therefore, 

we define a general concept of an approximate motif of discrete time series as below. 

Definition 5. Assume u = S[a, b] (a ≤ b) is an instance of an l-interval l
�

-[i, j] of S. Given a lower bound 

mint (minT ≥ 2) of the pattern occurrences, if ε = j – i + 1 ≥ minT, and l
�

is uncovered by any other l-

intervals of S, it is an approximate motif of S, represented as mf = < � ; P = {p1, ···, pε}>, where �  = b – a 

+ 1 (l ≥ 1) is the length of mf, pi is the start index of the occurrences of u in S, and ε is the size of the 

motif mf. 

In the following description, a motif of S refers to an approximate motif. The relation between an l-

interval and a motif of S is defined as an m-interval. 

Definition 6. For an l-interval l
�
-[i, j] of S, if the instances of l

�
is one-to-one matched to the occurrences 

of a motif mf = < � ; suftab[i], ···, suftab[j] >, then l
�

is an m-interval, represented as m
�

-[i, j]. 

In the following sections, we refer an m-interval to a motif. 
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4 Limited-length Suffix-array-based Motif Discovery 

4.1 Identify β-uncovered l-intervals for Discrete Time Series 

In this section, we first discuss the determination of the β-uncovered intervals with an assumption that α 

= 1 for the α-covering relation between instances. In section 4.2, we introduce the α-covered algorithm 

and illustrate how to interactively perform the β- and α-uncovered algorithms to identify the motifs. 

In ESA, identifying LCP intervals is a bottom-up traversing process. When an LCP interval is being 

processed, its child intervals have been identified, so the child intervals can support the determination of 

β-covering of the LCP interval. We distinguish the case of an LCP interval having a single character (the 

singleChar interval) with the case that the interval is comprised of more than one character (the 

multiChar interval). We give Lemma 1 to identify the β-uncovered multiChar intervals. 

Lemma 1. Given an multiChar LCP interval l
�

- [i, j], its child intervals Θ, and the lower bound of the 

occurrence times of motifs minT ≥ 2, let λ = j − i + 1, l
�  is β-uncovered by other l-intervals if any of the 

following conditions is satisfied: 

(1) |Θ| = 0, λ = minT and bwttab[i, j] are pair-wise different, i.e., bwttab[i] ≠ ... ≠ bwttab[j]; 

(2) |Θ| = 0, and ∃σ1 ≠ ... ≠ σγ, σ1, ..., γ ∈ bwttab[i ... j], minT + 1 ≤ γ ≤ λ; 

(3) |Θ| > 0, ∃
1

l
�

- [w1, z1], 
1

l
�  

∈ Θ and λθ = z1 −w1 +1 ≥ minT, and ∃r1 ... rk ∈ [w1, z1] and h1 ... hk ∈ [i, 

j] but ∉  [w1, z1] that bwttab[r1] ≠ bwttab[h1], ..., bwttab[rk] ≠ bwttab[hk], k ≥ minT. 

(4) |Θ| > 1, ∃
1

m
�

- [w1, z1], ..., 
k

m
�

- [wk, zk] ∈ Θ, k ≥ minT, and 
1

m
�

,...,
k

m
�

are β-uncovered. 

Proof of Lemma 1.  

(1) |Θ| = 0, so the characters after the LCP subsequences of l
�

are pair-wise different, i.e., S[suftab[i] + 

� ] ≠ S[suftab[j] + � ]. Meanwhile, λ = minT and bwttab[i] ≠ ... ≠ bwttab[j]. So the instances of l
�

are not 

covered by any longer repeated sequences in S. Hence, l
�  is β-uncovered. 

(2) if γ > minT, then at least minT + 1 characters in bwttab[i, j] are different (assume bwttab[k1] ≠ 

bwttab[k2]); and as Θ = 0, the k1th and k2th LCP subsequences are not covered by any longer 

subsequences of its child intervals. So l
�

is β-uncovered. 

(3) assume l
�  have one child interval cθ, where λθ ≥ minT, i ≤ wθ ≤ zθ ≤ j and λ > minT. (a)Assume λ − 

λθ = 0, then l
�

= cθ, cθ is not a child interval of l
�

. Assumption (a) is not true. (b) Assume λ − λθ < minT, 

then there are λ − minT instances of l
�  covered by the instances of cθ, so interval l

�  is covered by interval 

cθ, and l
�

is not a motif. Assumption (b) is not true. (c) as λ − λθ ≥ minT, then there are at least minT 

instances of l
�  that are not covered by the instances of cθ. In addition, ∃σ1 ≠ ... ≠ σγ, σ1, ..., γ ∈ bwttab[i ... 

j], minT < γ ≤ λ, based on the proof of (3), l
�  is β-uncovered.  

(4) if k = minT, as 
1

m
�

, ..., 
k

m
�

 are k motifs, the subsequences in all of the minT intervals are pairwise 

different, so the interval l
�

, where �  < 
1
� , ..., 

minT
� , cannot be covered by any of {

1

m
�

 (as ∀|
t

m
�

| ≥ 

minT, t ∈ [1, k], t ≠1), ..., 
minT

m
�

}, that is, the interval l
�

cannot be individually covered by any of its k 

child motifs. So l
�

is β-uncovered. 

For singleChar intervals, the problem of determining their motif property is to avoid finding a shorter 

singleChar motif covered by a longer singleChar motif. Lemma 2 shows how to determine if a 

singleChar interval is β-uncovered. 

Lemma 2. Given a singleChar interval l
�

- [i, j] that its LCP subsequence, i.e., S[suftab[i], suftab[i] + �  

− 1], is only comprised of one character (assume σ), 

(1) if l
�  does not have child intervals, i.e., |Θ| = 0 and ∃σ1 ≠ ... ≠ σγ, σ1, ..., γ ∈ bwttab[i ... j], minT + 1 ≤ 

γ ≤ λ, then l
�

is β-uncovered; 

(2) if |Θ| > 0 and θ - [w, z] ∈ Θ, that ∃σ’
1 ≠ ... ≠ σ’

λ ≠ σ and σ’
1… λ ∈ bwttab[w’ ... z’], where z’ - w’ + 1 

≥ 2, λ > 0, [w’ ..z’ ] ⊂ [i ... j] and [w’ ... z’ ] is β-uncovered by [w ... z]; 
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Proof of Lemma 2. 

(1) As l
�  does not have child intervals, l

�
 cannot be covered by an interval comprising LCP 

subsequences of u’ = S[suftab[k1], ..., suftab[k1] + �
” − 1], where k1 ∈ [i, j], �

’ > � . In addition, as ∃σ1 

≠ ... ≠ σγ, σ1, ..., γ ∈ bwttab[i ... j], minT+1 ≤ γ ≤ λ, l
�

cannot be covered by an interval comprising LCP 

subsequences of u” = S[suftab[k2] − 1, ..., suftab[k2] − 1 + � ” − 1], where k2 ∈ [i, j], � ” > � . So l
�  is a β-

uncovered. 

(2) Assume u = S[suftab[i] … suftab[j] + θ − 1] is the prefix of l
�

, and u’ = S[suftab[w] ... suftab[w] + 

θ − 1] is the prefix of lθ, and assume ∃σ1 ∈ bwttab[w ... z] and ∃σ2 ∈ bwttab[w’, z’ ] that σ1 ≠ σ and σ2 ≠ 

σ, then (1) any child interval lθ cannot cover l
�

, since z’ −w’ +1 ≥ 2; (2) we prove that under condition 2 in 

Lemma 2, if l
�  is a singleChar interval with LCPs like

1
,...,x xµ =

�
, then not ∃lθ (the strings of its 

singleChar LCP 
1
,..., ( )x x

θ
μ θ= > �  that cover l

�
. Assume exist such lθ, then the strings of the LCP of lθ 

include all the stings whose prefixes with length θ are u’, i.e., ∃k(= z − w + 1) subsequences u ⊂ S, and 

there must be η(= k ∗  (θ − 1)) bwttabs that bwttab[r1] = ... = bwttab[rη] = σ, η = z’ – w’ + 1 and k + η = j 

− i + 1; which means there must not exist σ’
1, …,

 

λ ≠ σ, λ > 0 in bwttab[w’, z’]. This is contradicting with 

condition 2 of Lemma2, so the second statement (2) is correct. Combining statements (1) and (2), the 

singleChar interval l
�

is β-uncovered given condition 2 of Lemma 2. 

5 Performance Evaluation 

In this section, we present the experimental results to show the efficiency of LiSAM. Our experiments 

are conducted on a windows 64-bit system with 3.2GHz CPU and 4 GB RAM, and is implemented by 

Java. 

We extract patterns from six different ECG data streams, repeat each pattern 30 times and insert the 

repeated patterns to Gaussian white noise data streams separately. The information of the extracted 

patterns and the parameter settings is shown in the top part of Table 3. The first three datasets are from 

the UCR Time Series Classification Archive [18], and the other three are from the Physionet [19]. 

Particularly, the nL is the length of a piece of noise subsequence between two pieces of a pattern. We use 

the fixed-length intervals (i.e., length of noise subsequence) between two pattern subsequences to make 

the annotation of the pattern instances easy. Column sL sets the parameters of the SAX-based symbol 

conversion, representing the length of a subsequence that corresponds to a symbol. Columns maxM set 

the upper bounds of the lengths of the discovered patterns. The lower bounds of the lengths of the 

discovered patterns for all datasets are set as 10. 

Table 3. Dataset settings & old and InDis performance  

Datasets nL sL maxM old inDis 

ECG200 50 2 100 0.9892 0.0076 

ECGfivedays 50 2 140 0.9924 0.0076 

ECGtorse 100 10 1640 0.9947 0.0068 

ECGtwa01 150 3 300 0.9933 0.0086 

ECGsvdb800 150 2 170 0.9939 0.0112 

ECGmitdb100 150 2 150 0.9966 0.006 

LTDB14134 - 2 150 - - 

SVDB800 - 2 150 - - 

AHADB0001 - 2 120 - - 

CARTI01 - 2 100 - - 

 

We use old (see equation 1.) to measure the accuracy of the discovered motifs, which represents the 

overlapping degree between the inserted pattern (pi) and the discovered pattern (dj):  

 
( , )

( )

i j i j
overlap p d

old
length plantedPattern

=

∑ ∑
 (1) 
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The old values for each of the simulated ECG time series are shown in Table 4. We can see that the 

proposed motif discovery algorithm can identify the inserted patterns with very high accuracy (all over 

0.9). We compare the shapes of the planted patterns and the discovered motifs in each of the six time 

series in Fig. 2. In addition, we use the average pair-wise distances among instances (represented as inDis) 

of a motif to measure the dis-similarity degree of the instances of one discovered motif (e.g., motif m), 

which is calculated as:  

 

Fig. 2. Planted patterns and discovered motifs 

 
,

( , )
( )

. * .

i j i j
dis m m

inDis m
m len m size

=

∑
 (2) 

where mi and mj represent the ith and jth instances of m; and m.len is the length of this motif; m.size is the 

number of its instances, and dis is the Euclidean distance function. The average inDis value of each time 

series is shown in Table 4, and the distance distribution of each instance pair of the most frequent motif 

for each dataset is shown in Fig. 3. We can see that the instances of one motif for each datasets are very 

close to each other, all of which have less than 0.1 average instance dissimilarities. 

6 Conclusion and Future Work 

In this paper, we proposed an algorithm LiSAM to resolve two important problems in discovering 

approximate time series motif: releasing the constraints of trivial matching between subsequences with 

different lengths and improving the time and space efficiency. We proposed two covering relations: α-

covering between instances of l-intervals and β-covering between l-intervals to support the motif 

discovery. We use the LiSAM algorithm to identify the β-uncovered l-intervals, and we introduced two 

LCP tabs: presuf and nextsuf to support the identification of the α-uncovered instances of an l-interval. 
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Fig. 3. Distance distribution of instance pairs of the most frequent motif for six datasets 
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