
Journal of Computers Vol. 30 No. 2, 2019, pp. 55-67 
doi:10.3966/199115992019043002005 

55 

Event-based Feature Synthesis:  

Autonomous Data Science Engine 

Thirat Limsurut1*, Warasinee Chaisangmongkon2 

1 Institute of Field Robotic, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand 

terus.limsurut@mail.kmutt.ac.th  

2 Institute of Field Robotic, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand 

warasinee.cha@mail.kmutt.ac.th  

Received 15 December 2018; Revised 15 February 2019; Accepted 15 February 2019 

Abstract. In this paper, we develop the autonomous data science tool to allow artificial 

intelligence to solve data science problems. Data exploration and feature extraction are the most 

time-consuming steps in a data science process. We develop an event-based feature synthesis 

algorithm, which can automatically recognize relationships between different entities and events 

presented in the data, extract important features using statistical and mathematical functions, and 

filter out only features of high importance. Our algorithm can generate features for data science 

problems with single and multiple data tables and use them to fit random forest classifier. To test 

the robustness of our autonomous data science engine (ADE) framework against well-

established Deep Feature Synthesis (DFS) framework, we put our data science bot to test in 

public data science challenges and assess the usefulness of our feature sets. ADE can achieve 

high accuracy scores in several competitions, for example, it can predict targets at the accuracy 

as high as 89.5%, beating 74% of human participants in Employee Access Challenge (Kaggle, 

2013). In MOOC dropout prediction (KDD 2015), features from ADE can augment features 

from DFS framework and improve accuracy from 85.3% to 86.3%.  

Keywords:  automated machine learning, classification, data science, feature engineering 

1 Introduction 

Data science is a process of discovering insights and predicts future events from historical data. The 

construction of predictive models in data science process can be roughly broken down into 4 stages: (1) 

data exploration, where data are visualized and data scientists perform statistical analysis to understand 

data. (2) predictive problem formulation, where data scientists ask what can be predicted to provide 

insights that drive business decisions. (3) feature engineering, where raw datasets are transformed into 

features to be used in predictive modeling. (4) model fitting and selection, where several predictive 

models are fitted and evaluated; the best model will be selected for application. 

Let us look at a well-known data science problem as an example. A retail grocery store wants to 

understand customers’ purchase behaviors and offers the right discount coupon to the right customers. 

The store manager might look into customers’ purchase and coupon redemption history in to discover 

insights that drive their offer decisions. Data scientist may explore the data in visualization software and 

develop a model to predict whether a given customer will use a discount coupon for a given product. To 

this end, data scientists have to engineer some features that might influence offer acceptance; for example, 

whether the customer has purchased the product before, or how well the product sold compared to 

products of the same category. Then these features will be entered into a predictive model, such as 

decision tree, to foretell customer’s behavior upon receiving coupon offering (to use or not to use 

coupon). 
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Event-based Feature Synthesis: Autonomous Data Science Engine 

56 

This paper tackle feature engineering problems, which is one of the most time-consuming steps in data 

science pipeline. We propose a new way to create features automatically; improving on the algorithm of 

the previous research work of automated feature generation and evaluates our feature constructions 

benchmarked by previous work.  

We observed multiple data science problems and how data scientists approach feature engineering. 

There are a few common thought processes, which are based on how software applications are often 

designed. First, each data record represents an event that occurs in the real world. Each table contains 

records of events of the same type. For example, customer history table contains records of customer 

acquisition events, while purchase transaction records contain information about single purchase events. 

Second, each event involves one or more actors or entities and their properties. For example, a customer 

acquisition event may involve a single entity (customer) along with properties of the entity, such as 

customer age, customer gender, etc. A purchase transaction event involves the interaction between 

several entities (customers, products, coupons) and may contain properties of an entity (such as product 

categories and product brands). Third, each event may contain a dynamic property that changes from 

interaction to interaction. For example, at a given transaction, customer A may buy product B at a given 

price, while in another transaction where customer A interacts with product B, the price might change. 

Fourth, some tables will contain main entity, where each record is uniquely identifiable with entity ID, 

while some tables might not have main entity. For example, one would expect that in customer 

information database, each record corresponds to a single customer, so customer is the main entity of this 

table. While in transaction database, each transaction involves a customer, a product, and a coupon, so 

there is no main entity. 

With this framework, we propose that every column in a database can be interpreted as one of the four 

types: 

‧ Main entity ID – e.g. customer ID in customer history table. 

‧ Entity ID – e.g. customer ID and product ID in transaction table. 

‧ Entity properties – e.g. customer age and gender in customer history table. 

‧ Event properties – e.g. product price in transaction table. 

We further observed that data science problems often prescribe that data scientists predict an outcome 

or a property of an event. For example, predicting coupon usage would amount to predicting the outcome 

of the interaction between customer entity, product entity, and coupon entity. In order for data scientists 

to predict the outcome successfully, they need to consider characteristics of all participating entities. In 

the coupon usage example, data scientists may want to know whether customers spend a lot at the store 

or not, whether the coupon is a good offer, and whether the product is popular. 

Based on this framework, we develop a method for computer to mimic human thought process during 

feature generation. Our paper is organized as followed. In section 2, we review related work, providing 

an overview of Deep Feature Synthesis [1] and other automated feature engineering [2-3], including 

feature selection algorithms [4] that inspired our research and auto-tune hyper parameter and model 

selection. Section 3 details the process of our framework and algorithm. In section 4, we explain the 

experiments used to test our algorithm in data science challenge problems and quantify the quality of our 

features compared to previous work and human data scientists. In section 5 and 6, we conclude our 

research and suggest future work. 

2 Related Work 

2.1 Autonomous Feature Extraction 

Previous works have investigated automated feature engineering problems. One important work that 

influences our paper is Deep Feature Synthesis (or DFS for short). DFS views feature construction 

process as a set of functions we can apply to different data portion. There are 3 types of features 

described by DFS: 

‧ Entity features (EFEAT), which are computed by so-called ‘transformative function’ for example 

transforming Date/Time feature into day-of-month, weekday, month-of-year features etc. 

‧ Direct features, (DFEAT) which are features that are transferred from one table through direct relation. 

For example, if in customer history table, customers ID always belong to a segment ID, you can 
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transfer segment property to customer property. 

‧ Relational features (RFEAT) which are features constructed by aggregating data from other tables that 

has many-to-one relationship follow the relation database. For example, when a customer ID appears 

on many records in transaction table, we can aggregate (sum, mean, max, count, etc. called 

aggregations function) with transactions and use the aggregated values as customer features. 

Other systems offered different views and strategies on automated feature generation problem. For 

example, one button machine (or OneBM) [2] extended DFS by using depth-first search to find complex 

relational graph from relation between data tables, incrementally join the table and apply a set of 

transformative functions to different types of data. OneBM can realize complex data types such as time 

series and sequence of categorical values, and include pre-defined functions for each type, yielding useful 

features for prediction. Another example is the so-called relational recurrent neural network (R2N for 

short) [3], which apply a set of recurrent neural network to learn transformation functions and embedding 

features. R2N can deal with unstructured by embedding any data into a space of numeric vectors.  

This paper explores a simple concept of event-based feature generation which exploits human-like 

intuition to build feature sets. Our approach is based on DFS, but less complex and more interpretable 

than OneBM.  

2.2 Feature Selection 

In most autonomous feature engineering systems, as massive number of features is generated, therefore 

feature selection is a crucial process to avoid overfitting and reduce memory usage. We utilized a 

software package called Boruta [4]. The algorithm implements wrapper method for feature selection, by 

creating ‘shadow features’ by shuffling values in each column and checking whether the real feature has 

higher importance than the shuffled feature, based on a random forest model [5]. Boruta is effective and 

simple as it requires no parameter tuning. Boruta will finally outputs ranks of all features, and we can 

simply eliminate non-important features using a rank threshold. 

2.3 Automated Machine Learning 

There are a wide range of algorithms that perform automated hyperparameter tuning such as Auto-Weka 

[6] and Auto-Sklearn [7]. These tools apply tree-based Bayesian optimization methods [8] to search for 

the space of learning algorithms and optimize their hyperparameter settings. Another interesting 

approach is tree-based Pipeline Optimization Tool (TPOT) [9], which is based on genetic programing 

(GP) [10]. First, TPOT splits data to training and validation data for cross-validation [11]. Next, TPOT 

applies GP algorithm to generate random tree-based pipelines. For each generation, the algorithm tries to 

select the top pipelines, maximizing classification accuracy and minimizing the number of operators. 

After that, TPOT copies the selected pipelines to create the next generation of pipelines. The process is 

repeated until TPOT reaches the limit number of generations. 

3 Implementation 

Our Autonomous Data Science Engine (ADE) follows a typical data science workflow as shown in Fig. 1. 

The process starts from exploring the data to decipher data structure (Data Explorer), following by 

transforming raw data into more generic data form (Data Preprocessor), and automatically generating 

massive amount of features (Feature Extraction). Then, we eliminate redundant features (Feature 

Selection) then use the remaining features to predict the target (Prediction). 

 

Fig. 1. The basic workflow of ADE 
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3.1 Data Explorer 

Data exploration consists of 4 sub-processes: variable type confirmation, data type recognition, entity 

recognition, and table relationship mapping.  

Variable Type Confirmation. Most data science software libraries can detect variable types 

automatically during data reading process. These automatically generate data types are often wrong or 

unfitted to the predictive analytic problem at hands, for example integer variable can be mis-encoded as 

floating if the number have floating point although it’s zero. We implemented a rule-based algorithm to 

confirm data type for every single column. In our scheme, columns can be classified into 5 variable types: 

integer (Int), real numbers (Float), string (Object), Boolean and Date/Time. Fig. 2 displays the algorithm 

we used for variable type confirmation. 

 

Fig. 2. Variable type confirmation algorithm 

Data Type Recognition. After variable types are controlled, we then need to classify each column based 

on their characteristics, e.g. how they should be considered in a data science problem. We classify each 

column into 6 types: Numeric, Date/Time, Boolean, Category, and Text. Fig. 3 shows data type 

recognition algorithm 

 

Fig. 3. Data type recognition algorithm. NU is number of unique values within a column. NUR is NU 

divided by the number of rows in the column. th is a threshold variable used to split between category 

and numeric/text data types (in this paper th = 0.25). Dotted line shows that Integer and Object variable 

types go through the same logical process which output Numeric and Text features respectively 
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Due to Float and Date/Time already get correct type in variable type confirmation, so we can 

determine Float and Date/Time variable features are Numeric and Date/Time data. In the same way with 

another data type, we can detect each type of data by condition of variable types.  

Entity Recognition. Our event-based framework defines a role for each column in the table. The four 

possible roles are: 

Main Entity (M). It is any column that satisfies 3 requirements: (a) data type must be ID; (b) each row in 

the column must be unique; (c) if there are more than two tables the set of IDs in the column must appear 

in another data table. For example, acquire valued shoppers dataset [18] in Fig. 4, customer-offer history 

contains customer ID and repeater label (the target labels that indicate which customer are highly 

probability to repeat purchase). ADE define customer ID is a main entity in this table because each 

record corresponds to a unique customer, but customer ID is not the main entity in transaction table, 

since the customer ID column there is not unique. Not every table will possess a main entity.  

 

Fig. 4. The example of Main Entity Table which generated by direct features (DFEAT) and generate 

features by Relation between tables (RFEAT). For example, “Sum of purchase amount in category” was 

created by summation (aggregation function) of purchase amount in each group of Category from Main 

Entity Table like a “Market share” that grouped by Product ID and “Market share in category” which was 

generated from devided (mathematic function) “Market share” by “Sum of purchase amount in category” 

Entity (E). It is similar to main entity in that the column must have ID data type, though ID must not be 

all unique. For example, customer ID in transaction table is an entity, not main entity. 

 Entity Property (PM). It is any column that conveys property of a main entity. For example, birthdate is 

a property of customer ID. Each unique entity ID is associated to only one value of entity property, e.g. a 

customer ID cannot have two different birthdates. 

Event Property (PE). It is other columns that are not main entity, entity or entity properties. The values in 

these columns often change event by event. For example, even when customer ID and product ID are the 

same in two records, purchase price can change. 

Our algorithm finds main entities and entities first before classifying the remaining columns as entity 

properties or event properties. 

Table Relationship Mapping. For each pair of data tables Di and Dj, this process will determine a value 

R(i, j) which classify relationship between two tables into forward (FW) versus backward (BW) 

relationships. Two data tables have a forward relationship if their linked keys have one-to-one or one-to-

many relationship. For example, in Fig. 4, product history table has forward relationship with customer 

history table since the two tables are linked on Offer ID with one-to-many relationship. On the other 

hand, transaction table has backward relationship with Main Entity Table, as they are linked by customer 

ID with many-to-one relationship. Table 1 shows the process of determining R(i, j). Table relationships 

determined in this step will dictate the table merging process in the feature extraction step. 
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Table 1. Pseudo code for generate relation 

Pseudo code: Generating relation table 

1. Function Make_Relation_Table (Di, Dj) 

2.     K = 
i j

F F∩  

3.     if K ≠ ∅  then 

4.         if (
i

M K⊂ ) then 

5.             R(i, j) = FW 

6.         else if (
j

M K⊂ ) then 

7.             R(i, j) = BW 

 

Where Di is the data table in the dataset, Fi is the set of all feature names in Di, Mi is the set of main 

entities in Di and R(i, j) is relation between data table i and j. 

3.2 Data Preprocessing 

We applied standard data preprocessing procedures such as missing value imputation and data 

standardization. We eliminate columns with more than 10% missing values. Then we standardize all 

columns of Date/Time (using yy/MM/dd for dates and hh/mm/ss for times), Boolean (using true and 

false), and Categorical (encoding category labels as integers) data types. 

3.3 Feature Extraction 

The feature extraction process can be described as 3 separate sub-processes. (1) Main Entity Table 

generation. (2) Feature generation using transformative, aggregation, and mathematical functions. (3) 

On-the-fly feature selection. The feature extraction workflow is shown in Fig. 5. 

 

Fig. 5. The method in feature extraction process 

Main Entity Table Generation. To mimic how a data scientist would approach a given problem, ADE 

must first orient itself to the data science problem at hands. ADE will find a Main Table which is the 

table where target entity and target labels are defined. Going back to acquire valued shoppers prediction 

example as depicted in Fig. 4, ADE would identify customer history table as the Main Table because this 

table consist of the entity (customer ID) would constitute target entities and repeater label column will be 

flagged as prediction target. 

Once the Main Table is located, we merged tables with forward relationship with Main Table to form 

Main Entity Table. This merging process is similar to the approach proposed in Deep Feature Synthesis, 

ensuring that static properties of all entities are gathered in a single table for the feature generation 

process. For example, in Fig. 4, the Main Entity Table is constructed by merging customer history table 

with product history table. Other tables will be flagged as Event Table.  

Feature Generation. After the Main Entity Table has been constructed, we are ready to generate some 

features. In the feature generation process, we apply 3 types of functions to the dataset.  
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Transformative Functions. These functions transform a feature in the Main Entity Table and create new 

feature(s). For example, from a Date/Time we can transform to Day, Month, Year, Weekday, Hour, and 

Minute. The set of transformative functions we used are included in Table 2. 

Table 2. Aggregation function in each type of data 

Type of data Transformative function 

Date/Time day, month, year, hour, minute, weekend, weekday 

Text length of sentence, number of words, number of importance words 

 

We apply pipeline of text mining [12] to extract feature in text data type. Where number of importance 

words is the new function which we create to deal with Text data type in general form such as description. 

This function will count the most frequency N words in features to transform features in Text data type. 

Aggregation Functions. The power of event-based approach lies in the choice of aggregation procedures. 

In our coupon offer prediction example shown in Fig. 4, a human data scientist might aggregate amount 

of purchase in each product category as this feature would convey the power of each coupon and help 

predict whether the coupon would get used. For ADE to capture those types of features, we applied 

aggregation process as depicted in Fig. 6. The algorithm merges other tables with the Main Table. Then, 

the algorithm will take the merged table, group records by entities and categorical variables in the Main 

Entity Table and aggregate the remaining features with a set of aggregation functions depending on the 

data types of those features. The set of aggregation functions we used are included in Table 3. 

  

Fig. 6. The flow chart to generate features. Let’s start with grouping main entities, entities and entity 

properties in Main Entity Table then aggregate with features in each type of data (gray box) by 

aggregation function (blue block) 

Table 3. Aggregation function in each type of data 

Type of data Aggregation function 

Numeric mean, min, max, sum median, mode, standard deviation, zero-count  

Categorical count, mode, number of unique, zero count, last  

Boolean percent true 

Date/ Time  average time, last 

 

In this process, we will generate a large number of new features. The number of features generated can 

be determined by a few variables: x is the number of features in Main Entity Table which used for 

grouping operations; xtype is the number of features that passes through a given aggregation function in 

each type; fntype is the number of aggregation functions for each type; gmax is maximum number of 
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element for grouping (for example, if algorithm can group by 2 categories, gmax would equal to 2). The 

number of features created from each type, x'type is given by: 

 
max

.

type type type

x
x x fn

g

⎛ ⎞
′ = × ×⎜ ⎟

⎝ ⎠
 (1) 

Mathematical Functions. In our coupon offer prediction example shown in Fig. 4, a human data scientist 

might think to create another feature which captures market share of each product in its own category. 

This is accomplished by dividing two aggregated features (sum of purchase amount grouped by product 

divided by sum of purchase amount grouped by product category). To capture these features, we create 

additional features by applying addition, subtraction, multiplication, and division to every pair of numeric 

features after the aggregation processes. After this operation, the number of features generated can by 

computed similarly to Equation 1 by setting gmax = 2 and setting fntype to be the number of mathematical 

functions used. 

On-the-fly Feature Selection. As a large number of features are generated, we need to eliminate some 

features right after its creation to save storage space and computational load. To eliminate useless 

features rapidly, we computed Chi-Squared value for discrete features and ANOVA f-value for numerical 

features and sort features based on scores. Then, the algorithm will compute Pearson correlations among 

features from highest scores to lowest scores. For any feature pairs with higher than 0.7 correlations, the 

feature with lower score will be eliminated. On-the-fly feature selection is performed after each loop of 

aggregation (once after features are generated by grouping 1 column and again after grouping by 2 

columns) and after mathematical feature generations if the number of features generated are more than 

150 features. 

3.4 Modeling 

Lastly, all generated features will be cleaned before the modeling process. For numeric features, we 

impute missing values by zeros. For categorical and Boolean features, we create a new category for 

records with missing values. For Date/Time features, we simply eliminate the original feature and rely 

solely on the transformed features. We assign these steps were done after aggregation process, since 

including it prior may propagate errors through the aggregation process. After all features are processed 

we repeated on-the-fly feature selection process and, to reduce the number of features further, we utilized 

a software package called Boruta to perform wrapper feature selection method with random forest 

ensemble for all experiments and select features with highest importance. The final numbers of features 

range from 30-100 depending on the size of dataset because we need to use number of features from 

ADE close to DFS in experiment. Then the features are fed into random forest using scikit-learn library 

with number of estimators = 1000. 

4 Autonomous Data Science Engine: Experiment 

We assess the usefulness of features generated from ADE by putting it to test in 5 public data science 

competitions which are all binary classification problems. For each competition, we pass the training 

dataset into ADE to perform variable type confirmation, data type recognition, entity recognition, table 

relationship mapping, data preprocessing, feature extraction, feature selection, and random forest model 

fitting. Then we applied fitted process and models to the test dataset.  

For small prediction problems with only one table in the dataset, we selected Employee Access 

Challenge (Kaggle, 2013) and Santander customer satisfaction (Kaggle, 2016). For larger problems 

with multiple tables in the datasets, we selected Facebook Recruiting IV Human or Robot (Kaggle 

2015), Donorchoose Application Screening (Kaggle 2018), and MOOC dropout prediction (KDD 

cup 2015). 

For each dataset, we made small adjustments in ADE configurations due to computational limits. 

These configurations will be described as the results of each competition are presented.  
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4.1 Prediction Performance for Single-table Problems 

Employee Access Challenge (Kaggle, 2013) [13]. Competitors predict whether employees should have 

access to resources using 9 features such as titles, roles, manager ID, etc. 

All original features in this dataset are of categorical data type. Therefore, we perform one-hot 

encoding on original features and top 35 features generated from ADE using Boruta (rank threshold = 30) 

before random forest model fitting. After that we filtered features with Chi2 scores and keep only top 500 

features and then pass it through Boruta to keep features with ranks from 1-200. 

Santander Customer Satisfaction (Kaggle, 2016) [14]. Competitors predict whether customer is happy 

or unhappy with their banking experience from 370 customer features. Due to large number of features, 

we select 42 top features using Boruta (rank threshold = 40) before passing the dataset to ADE process. 

Table 4 compares number of features and the accuracy scores between baseline and ADE. Fig. 7 

shows performance comparison between ADE and human data science competitors. 

 

Fig. 7. The AUC scores and percentile of participant in single-table dataset (top): Employee Access 

Challenge and Santander Customer Satisfaction and multi-tables dataset (bottom): Facebook Recruiting 

IV, Donorchoose application screening and KDD cup 2015. Where Red line is the score by ADE, black 

line in single-table dataset is the score using original features and in multi-tables dataset using DFS 

Table 4. Summary of the score of prediction in 2 datasets from single-tables problems 

Employee access challenge Santander-customer-satisfaction Datasets 

Result N S N S 

No synthesis (baseline) 201 0.8826 42 0.7680 

Synthesis (ADE) 204 0.8950 49 0.7907 

 

Where N is the number of selected features that are entered into random forest and S is the accuracy 

score. 

ADE process produces better result than baseline; 1% improvement for Employee Access Challenge 

and 3% improvement for Santander Customer Satisfaction. However, these small improvements can 

result in dramatic improvement in competition ranking as shown in Fig. 7, especially in Employee 

Access Challenge, ADE boosted competition ranking from 64th percentile to 74th percentile. These 

improvements were achieved with no model tuning, so better performance can be attained with more 

tuning. 

4.2 Prediction Performance for Multi-table Problems 

Facebook Recruiting IV Human or Robot (Kaggle, 2015) [15]. Competitors predict whether the 

auction participants are human or robot from bid data, device, time, countries, and a series of behavioral 

logs. 
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Donorchoose Application Screening (Kaggle, 2018) [16]: Competitors predict whether project 

proposal will be approved using metadata about project, teacher, and school and text project descriptions. 

MOOC Dropout Prediction (KDD cup, 2015) [17]: Predict whether a student will drop out from an 

online learning platform using several databases from student info to course info and all online activities. 

For multi-table problems, we can use DFS as a benchmark. We passed the datasets into ADE and DFS 

to extract features.  

For each competition, we compare the prediction performance among baseline, ADE, and DFS feature 

sets. We also examine the difference in performance when adjusting gmax variable in the ADE feature 

generation process and assess the performance when ADE feature sets are combined with DFS feature 

sets. Table 5 summarizes the results of the experiments.  

Table 5. Summary of the score of prediction in 3 datasets from multi-tables problems 

Facebook  

recruiting IV 

DonorChoose application 

screening 

MOOC dropout  

prediction 

Datasets 

 

Method N S N S N S 

Original 11  18  13  

DFS 20 0.9094 30 0.6130 48 0.8531 

ADE (gmax = 1) 10 0.8539 49 0.6802 46 0.8596 

DFS–ADE (gmax = 1) 22 0.8907 30 0.6929 94 0.8632 

ADE (gmax = 2) 11 0.8882 49 0.6759 28 0.7960 

DFS–ADE (gmax = 2) 24 0.9114 25 0.6801 66 0.8520 

 

The results of experiments show that although we cannot definitively conclude that ADE yields better 

feature sets than DFS, ADE feature set can always help enhance the accuracy of the model.  

For DonorChoose application screening and MOOC dropout prediction problems, the accuracies are 

better when gmax = 1 compared to the cases where gmax = 2, although the features in the first case is a 

subset of the features in the latter case. This shows that model performance depends a lot on the feature 

selection process, since features generated from gmax = 2 processes should be dropped out if it worsens 

model prediction, resulting in similar performance for any value of gmax. 

To understand how ADE and DFS features complement each other, we explore the correlations 

between two feature sets in DonorChoose application screening competition. The correlation distribution 

is shown in Fig. 8. The result shows that feature sets from ADE and DFS are rarely correlated, with 

correlation values peaking at zeros. This is one main reason why ADE features enhance model prediction. 

 

Fig. 8. Distribution of correlation values between DFS and ADE feature sets in DonorChoose application 

screening challenge 

To understand how ADE and DFS features complement each other when they are merged, we examine 

the quality of features that DFS and ADE generate from DonorChoose application screening dataset 

(using gmax = 1 for ADE). For each feature, we assess feature importance values from random forest 

model, Chi2 scores (for categorical features) and f-values from ANOVA (for numerical features). Fig. 9 

shows these scores ranked from the highest to the lowest, color-coded by feature origins (original feature 

sets, or DFS, or ADE). The results show that although features from DFS are ranked first in all 
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measurements, ADE contributes more features in the top rank, boosting the quality of the feature set 

when performing prediction.  

 

Fig. 9. Feature importance, chi2 and ANOVA f-values for each feature in Donorchoose application 

screening dataset 

This result highlights one important difference between DFS and ADE. DFS generates features from 

grouping by entity ID only but does not consider group-by operations for entity properties like ADE. 

This could be the reason why DFS cannot achieve high accuracy in many of these experiments. For 

example, in DonorChoose application screening challenges, based on proposals that teachers submitted to 

receive support for needed resources for their class projects, the algorithm must predict the chance that 

the applications will be approved. In this prediction, the features that are ranked the highest from DFS are 

the quality of project description (whether your descriptions are common length or exceptionally 

detailed). Interestingly, the standard deviation of resource prices is also ranked high, indicating that 

projects that require variety of resources with some expensive items in the list often do well. These 

features are properties of the project, which is the main entity ID. In contrast, ADE can produce 

additional features that come from grouping other entity properties. For example, the top-ranked features 

from ADE reflect the quality of resource descriptions and teacher prefixes. These secondary features 

reflect additional information about the projects that help model make more accurate predictions.  

5 Conclusion 

We have presented an automated feature engineering framework that executes data science workflow 

autonomously from data exploration to model fitting. Our system improves upon the previous work in 

various ways. First, ADE can generate new features even for single-table problems, improving model 

accuracy compared to vanilla model fitting. Second, ADE executes group-by and aggregate operations 

beyond main entity level and create an uncorrelated feature sets to augment DFS framework. Third, ADE 

added many transformative functions that allow us to generate numeric features from text features. 

The main challenge in this work is computational resource limit, as we need to create lots of features 

to find good ones. We handled this challenge by applying on-the-fly feature selection algorithm. Future 

works can address the problem with more robust feature selection algorithm and implement parallel 

feature extraction processes. Furthermore, better model performance can be achieved with an additional 

automated model tuning algorithm. We decided to omit that to get a clear evaluation of feature generation 

algorithm. In general, the use of automated tuning algorithm might exacerbate another key challenge with 

automated machine learning, which is overfitting. As feature selection and model selection process are 

done recursively algorithm is likely to overfit the validation dataset as well as the training set. Therefore, 

the fitting process requires dataset size to be large enough. 

In conclusion, our work demonstrates a new approach to feature engineering that significantly 

improves the previously presented framework and allows organizations to tackle machine learning 

problems at lower lead time and lower cost. This work has made a significant step towards the 

development of an autonomous data scientist, by which great business and data-analytic challenges can 
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be solved with relatively low effort required from highly valued workforce members, freeing their time 

for greater emphasis on the human-centric and creative aspects of their endeavors. 
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