
Journal of Computers Vol. 30 No. 2, 2019, pp. 150-157

doi:10.3966/199115992019043002013

150

A Method of Piecewise Hash for Fuzzy Hashing

Tian-zhou Li1*, Bo Shen1,2, Kun Mi3, Yi-Chih Kao4, Yong Cui5

1 School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China

17120189@bjtu.edu.cn

2 Key Laboratory of Communication and Information Systems, Beijing Municipal Commission of Education,

Beijing 100044, China

bshen@bjtu.edu.cn

3 Beijing Thunisoft Company, Beijing 100084, China

kunmi70@sina.com

4 Information Technology Service Center, National Chiao Tung University, Taiwan

ykao@mail.nctu.edu.tw

5 Beijing Thunisoft Company, Beijing 100084, China

cuiyong@thunisoft.com

Received 6 December 2018; Revised 6 February 2019; Accepted 6 March 2019

Abstract. The fuzzy hash algorithm was originally applied to computer forensics and then widely

used in the fields of malicious code detection, homologous similar file detection and electronic

data forensics. The primary process of fuzzy hash algorithm divides the detected file into some

fragments with fixed length and calculates the hash value of each fragment by rolling hash com-

pose a fingerprint of the file. The length of fragment is associated with the file size, which

means for a large file the fragment will be long and for a short file it will be short. This paper

introduces a new fragmenting rule and a method of preprocessing files to overcome the

weakness and enhance the efficiency of processing small files. Experimental results indicate that

the pro-posed method has better performance.

Keywords: file fragmentation, fuzzy hash, weak hash

1 Introduction

With the advent of the information age, information retrieval, and information security testing have

played an essential role in fields of communication. For virus prevention, malicious code detection, and

data leakage prevention. It is necessary to diagnose files’ homologies by combining whitelists and

blacklists. These problems can be attributed essentially to the nearest neighbor search problem in high

dimensional space. Therefore, using a hash algorithm will improve the process of diagnosing more

quickly and efficiently. Essentially, these problems can be attributed to the nearest neighbor search

problem in high-dimensional space. The application of hash algorithm in solving these problems can

significantly improve the efficiency of file comparison, reduce the required storage capacity and reduce

the complexity of comparison operations.

To be more specific, hash algorithm takes an arbitrary length of data as input and shrinks it down into

a small and fixed hash value. Furthermore, this sort of symbol is related to every byte; and it is difficult

to find reverse law to figure out inputs through outputs. That suggests when the original file changes, its

hash value will also change. This is widely used for quick searching of the original information, and

password comparison. According to different applications, hashing algorithms can be divided into index

hashing, encryption hashing and locally sensitive hashing.

* Corresponding Author

Journal of Computers Vol. 30 No. 2, 2019

151

As an efficient approximate nearest neighbor search algorithm, locally sensitive hashing can

effectively overcome the dimensionality disaster in high-dimensional data search [1]. It has achieved

many results in plagiarism detection, classified file discovery, web page duplication, malicious code

detection and other applications. When comparing file similarity in these applications, it is expected that

the same source files with similar content but not identical data can have similar or identical hash values.

Because the comparison process is very similar to the qualitative comparison process of fuzzy logic, the

hash algorithm with this characteristic is also called the fuzzy hash.

A file is intentionally or unintentionally changed, for example, the author changes the text content, the

malicious code changes automatically, the transmission error, the disk storage error, etc. How to

determine the similarity of documents, and whether they are homologous are crucial problems in all

fields. In order to solve these problems quickly and efficiently, in 2006, Jesse Kornblum proposed the

CTPH [2] (Context Triggered Piecewise Hash) algorithm. The CTPH algorithm first-ly uses a weak hash

to compute and segment the local content of the file, under certain circumstances, and then computes a

hash value for each piece of the file using a strong hash. Combining some portions of hash values and

conditions of segmentation construct a result of fuzzy hashing.

CTPH is the first file comparison algorithm to achieve implementation of fuzzy hashing. This

algorithm could figure out the similar relationship between the original files and its partial changes,

including modifying, adding, and deleting multiple contents. The fuzzy hash was originally applied to

computer forensics [3]. Immediately, the anti-virus field discovered its beauty and tried to use it for the

detection of malicious code [4-6]. Nonetheless, the result and effect of comparison among relatively

small files or those files that are specially processed are unsatisfactory. In this paper, we aim to solve

problems above by extracting fragmentation conditions and preprocessing files by special information

extraction [7].

2 Locality-Sensitive Hashing

LSH (Locality Sensitive Hashing) refers to the use of a specific hash algorithm to locate high-

dimensional data into low-dimensional space to search similar sets of data rapidly with the higher

possibility [8]. As a highly efficient approximation nearest neighbor search algorithm, local sensitive

hash can effectively overcome dimensional disasters in high-dimensional data search [9]. Since Locality-

Sensitive hashes has the similar processes compared to the definitive comparison of fuzzy logic, LSH

could also called fuzzy hashes.

In many areas, the data we need to deal with are often massive and have high dimensions. Comparing

the similarity of data needs to find the nearest neighbors in high-dimensional space. However, for the

high-dimensional space nearest neighbor search problem with data set size N and dimension 3D ≥ ,

there is no nearest neighbor search algorithm with space complexity of N at linear multiple level and

time complexity of N at logarithmic level, so many researchers turn to search for approximate solution

of nearest neighbor search problem [10]. INDYK et al. proposed a locally sensitive hashing algorithm,

and proved that after the pretreatment process with time complexity of 0(1)
dN , the searching point’s ε -

nearest neighbor can be obtained with approximate linear time complexity
1

1()O dN ε+ . [11]

The basic idea of LSH: After the two adjacent data points in the original data space are transformed by

the same mapping or projection, the probability that the two data points are still adjacent in the new data

space is very high, while the probability that the non-adjacent data points are mapped to the adjacent

range is very small. If we do some hash mapping on the raw data, we hope that the two adjacent data can

be hashed into the same room with the same room number. After hash mapping all the data in the original

data set, we get a hash table. These original data sets are scattered into the room of the hash table. Each

room will fall into some raw data and belong to the same room. The data is likely to be adjacent, and of

course there are non-adjacent data that is hashed into the same room. Therefore, if we can find such hash

functions, so that after the hash map transformation of them, the adjacent data in the original room falls

into the same space, then it is easy to make a neighbor search in the data set. However, we only need to

hash the query data to get its room number, then take out all the data in the room corresponding to the

room number, and then perform linear matching to find the data adjacent to the query data.

In other words, we divide the original data set into several sub-sets by hash function mapping

A Method of Piecewise Hash for Fuzzy Hashing

152

transformation, and the data in each sub-set are adjacent and the number of elements in the sub-set is

small. Therefore, the problem of finding adjacent elements in a large set is transformed into the problem

of finding adjacent elements in a small set, which obviously reduces the computational complexity.

If a family of functions F : ,x y is any two data points in the high-dimensional space, and its distance

measurement function is (,)d x y , which satisfies any hash function on F :

1 1

2 2

(,) , then (() ()) .

(,) , then (() ()) .

d x y d p h x h y p

d x y d p h x h y p

≤ = ≥⎧ ⎫
⎨ ⎬

≥ = ≤⎩ ⎭
 (1)

Where
1 2 1 2

,p p d d> < , function h is a hash function with local sensitivity, then the function family

1 2 1 2
(, , ,)F d d p p is sensitive [12].

Locally sensitive hashes maximize data similarity.

2.1 Implementation of Fuzzy Hash Algorithm CTPH

The fuzzy hash uses the idea of piecewise to maintain data similarity. Before this, Nick Harbour

proposed a piecewise hashing and implemented it in dcfldd [13]. The strategy is very simple, that is, to

segment every fixed length interval into pieces, calculate the hash value for each piece, and compare

these hash values together for similarity. The local modifications only impact results of some individual

fragment hashes, which ultimately enhances the efficiency of comparing similarities. However, it is

catastrophic to add or delete bytes. In order to solve this issue, CTPH determine whether segment or not

based on the characteristics of local data, instead of fixing the length of segmentation. That eventually

only cause an influence of local piecewise method, when there are local changes which includes

modification, inserting, and deleting, Meanwhile, it would extent to other pieces.

CTPH primarily uses a weak hash algorithm, with high conflict probability, to trigger piecewise

detection. And then, he segmentation position is determined by the scrolling block by rolling hashes.

Moreover, each length of pieces is adjusted dynamically by the sizes of scrolling blocks. Then using the

strong hash algorithm to calculate each fragment to acquire the hash value. In order to improve efficiency

and save storage space, CTPH compress the obtained hash values, shrinks them from high-dimension to

low-dimension, acquire a shorter value, and puts them together to form the file’s fingerprint.

Regarding CTPH detection, it uses a weak hash algorithm inspired by Adler-32 [14]. To increase

speed, CTPH uses a fixed-length scrolling block to calculate the text byte by byte. Mathematically, let

input n characters, the character input in the thi time is
i
b , when the size of the scroll window is s ,

when the thp character is sliced, the calculated hash value can be expressed as

1 2

(, , , ...,).
p p p p p s
r F b b b b

− − −

= (2)

Rolling the hash function F can eliminate the effect of one of them, so giving
p
r calculates

1p
r

+
by

removing the effect of
p s

b
−

, when the window moves backward by one bit,

 1 1 1 () 1(, , , ...,).
p p p p p s
r F b b b b

+ + − − +
= . (4)

The CTPH condition is determined by the file length n , the scroll block length s , and the minimum

piece length
min
b .

2

log
min

min 2

n

init
b b

⎢ ⎥
⎢ ⎥⎣ ⎦

= (5)

When implementing modulo operation of
p
r to

init
b , resulting of

1init
b

−

, it ought to be fragmented at

this position. Furthermore, the size of the total number of fragments is adjusted by the size of b .

After the condition is triggered, the fragment is subjected to calculate by using a strong hash operation

of FNV-1 [15]. As a result, a 32-bit hash value is obtained by only exacting and compressing the LS6B

(Least significant six bits).

Finally, matching score of two fuzzy hash values is computed by the weighted average distance. First

judge the change from
1
s to

2
s , at least how many steps to operate (including insert, delete, modify,

Journal of Computers Vol. 30 No. 2, 2019

153

exchange), and then give a weight to different operations, add the results, that is the weighted edit

distance. Next divide this distance by the sum of the lengths of
1
s and

2
s to make the absolute result a

relative result and then map it to an integer value of 0-100.

CTPH believes that when the score is greater than zero, it indicates that the two files are similar.

Especially the score is 100, the two files are exactly the same.

1 2

1 2

100 (,)
100

64()

Se s s
M

l l

⎛ ⎞
= − ⎜ ⎟+⎝ ⎠

 (6)

Where
1 2

(,)e s s is expressed as the weighted average distance of two fuzzy hash values,
1 2
,l l are the

length of
1 2
,s s , and the default value of s is 64.

After the proposal, Jason Sherman developed the ssdeep [16] tool to achieve the idea of CTPH

algorithm.

Fig. 1. Fuzzy hashing algorithm flow chart

2.2 Drawbacks of Fuzzy Hash

Comparing similar files can be achieved by calculating their fuzzy hash value. Nevertheless, it also arises

the following two drawbacks when analyzing the hash values according to real experimental statistics.

Fixed-length piecewise allow files with different lengths to have equal-length hash values; however,

comparing files with different lengths, it causes alignment errors. Moreover, when implementing longer

file comparison, it is necessary to process adjustments on the segmentations for serval times [17], which

eventually deteriorates and the accuracy of comparison.

When the size of input data is small specially less than 10KB, the algorithm is susceptible to unrelated

characters and content. For instance, if you add symbols (such as spaces) to the content of the file, the

fragmentation is affected accordingly.

When using weak hash to detect the trigger condition of fragmentation, the termination position of

fragmentation only depends on the value of s strings in the scrolling window before the termination

position, but has nothing to do with the characters outside the window, so it can not reflect all the file

contents in the fragmentation.

The byte-by-byte scrolling operation is only applicable to English files. When calculating Chinese

Input file

Detect trigger conditions

to determine file shard

location

Calculate every

fragment hash value

Compression mapping

of each hash value

Connect all compressed

hash values

Output the file’s fuzzy

hash value

A Method of Piecewise Hash for Fuzzy Hashing

154

characters with 2~4 bytes each character, there will be a case where one Chinese character is divided into

two different fragments.

3 Improvement Approach

This paper overcomes the above shortcomings by using preprocessing of files and special information

extraction.

First, because of the effects of special characters and extraneous content, the file needs to be

preprocessed by culling spaces, carriage returns, and irrelevant content; such as the “//” comment symbol

and the following content while diagnosing malicious code.

Additionally, if the input file is small, the number of shards should not be limited. Thus, the previous

fixed-length hash value transfers to variable-length hash value. On the other hand, changing the

piecewise strategy and triggering only by special information also improve the process.

Last but not least, the FNV-1 is still applied to calculate the strong hash, as well as LS6B is

implemented to obtain the fingerprint information, and the similarity is compared by the weighted

average distance.

3.1 Special Information Trigger Fragmentation Strategy

In natural language, words are the least carrier of semantics. In this report, words are considered as the

condition for the length of files. By extracting the keywords of the text, the fragmentation symbol is

located to the keyword and triggers the frag-mentation.

In the text, the symbol can represent the pause or the end of a sentence, and the symbol has the same

effect in the code. Therefore, some specific symbols can be used as the condition to trigger the

fragmentation.

Different information can be established to trigger fragmentation according to the size of the

comparison file. For example, when the input file is small, the segmentation can be triggered by a pause

or a final symbol [18], such as “,”, “.”, “?”, etc. Thus, the text can be compared to an exact sentence.

When the input file is too large, the fragment is triggered by the number of occurrences of the keyword.

To be more specific, a threshold s can be set. When the number of occurrences of the keyword in the

scroll block h≥s, the fragment is triggered. What is more, the first symbol representing the termination

that appears after symbolling the keyword triggers segmentation condition.

3.2 Special Method

The file input is processed first, irrelevant content is removed, and then keywords are extracted. Since

this paper is to test the text, TextRank [19] method is applied in key-word extraction. Implementing

TextRank takes full advantage of context to extract keywords. When the key words are extracted, sub-

slice and marker are added. This article is adding “.” for the flag bit. Take “.” for special information as a

condition for piecewise. Finally, the segmented pieces can be computed by FNV-1 hash operation,

following with LS6B calculation to construct a fingerprint information.

4 Specific Method

As shown in Fig. 2, the file input is processed first, irrelevant content is removed, and then keywords are

extracted. Since this paper is to test the text, TextRank method is applied in keyword extraction.

Implementing TextRank takes full advantage of context to extract keywords. When the key words are

extracted, sub-slice and marker are added. This article is adding “.” for the flag bit. Take “.” for special

information as a condition for piecewise. Finally, the segmented pieces can be computed by FNV-1 hash

operation, following with LS6B calculation to construct a fingerprint information.

Journal of Computers Vol. 30 No. 2, 2019

155

Fig. 2. improved hashing algorithm flow chart

5 Experimental Results and Analysis

In the previous test of ssdeep, it was found that the performance was poor when the input file was small.

Therefore, this paper randomly selects the worst-performing from 5KB to 8KB in the ssdeep test,

randomly modifies the 1-100 words in the text, and calculates the fuzzy hash value to compare with the

original file fuzzy hash value. The comparison is shown in Fig. 3 to Fig. 6.

Fig. 3. Comparison of scores when input file 5KB size

Fig. 4. Comparison of scores when input file 6KB size

Input file

Preprocessing files to

remove extraneous

content

Word segmentations

Extract keywords

Calculate the

fragment hash value

Connect the hash

value to the fuzzy hash

value

A Method of Piecewise Hash for Fuzzy Hashing

156

Fig. 5. Comparison of scores when input file 7KB size

Fig. 6. Comparison of scores when input file 8KB size

It illustrates from the figure that when the modified place is greater than a certain value, ssdeep will

determine that the two files are completely dissimilar. The reason for the analysis is that when the file is

small, and place where the random modification is made everywhere. Although it is only the replacement

of the vocabulary, this has affected the overall location of fragmentation. That ultimately affects the

result of the judgment. Nonetheless, by using improvement approach, although the modification could

affect the whole situation to some extent, those segmentation based on the special information can only

be influenced by modifications where locates in the same place. Therefore, the performance will be

improved to some extent without impacting overall segmentations.

6 Conclusion

This paper further enhances the fuzzy hashing method by extracting special information to trigger

fragmentation rules and preprocessing the files. Moreover, it also improves the efficiency of the smaller

files with poor performance under ssdeep. How to improve the process of large files is still a conception.

The future work is to further refine the conception and figure out a way to apply files of various sizes in

the near future.

Acknowledgements

This research was funded by the National Key Research and Development Program of China, grant

number 2018YFC0831300, and the Fundamental Research Funds for the Central Universities, grant

number 2017JBZ107.

Journal of Computers Vol. 30 No. 2, 2019

157

References

[1] J. Zamora, M. Mendoza, A. Héctor, Hashing-based clustering in high dimensional data, Expert Systems with Applications

62(2016) 202-211.

[2] J. Kornblum, Identifying almost identical files using context triggered piecewise hash-ing, Digital Investigation 3(3)(2006)

91-97.

[3] B. Harald, B. Frank, Security aspects of piecewise hashing in computer forensics, in: Proc. 2011 Sixth International

Conference on IT Security Incident Management and IT Forensics, 2011.

[4] R. Daniel, Automated malware similarity analysis, in: Proc. 2009 Black Hat 2009.

[5] A.P. Namanya, Q.K.A. Mirza, H. Almohannadi, J. Pagna-Disso, I. Awan, Detection of malicious portable executables using

evidence combinational theory with fuzzy hashing IEEE, in: Proc. 2016 International Conference on Future Internet of

Things and Cloud, 2016.

[6] Y. Li, S.C. Sundaramurthy, A.G. Bardas, X. Ou, D. Caragea, X. Hu, J. Jang, Experimental study of fuzzy hashing in

malware clustering analysis, in: Proc. 2015 The Workshop on Cyber Security Experimentation & Test, 2015.

[7] M. Datar, N. Immorlica, P. Indyk, V.S. Mirrokni, Locality-sensitive hashing scheme based on p-stable distributions, in: Proc.

2004 Twentieth Symposium on Computational Geometry, 2004.

[8] P. Indyk, R. Motwani, Approximate nearest neighbor: towards removing the curse of dimensionality, Theory of Computing

604-613(11)(2012) 604-613.

[9] J. Zamora, M. Mendoza,A. Héctor, Hashing-based clustering in high dimensional data, Expert Systems with Applications

62(2016) 202-211.

[10] J.-F. Wang, Hash-based nearest neighbor search, [dissertation] Hefei, Anhui: University of Science and Technology of

China, 2015.

[11] P. Indyk, R. Motwani, Approximate nearest neighbors: towards removing the curse of dimensionality, in: Proc. 30th

Annual ACM Symposium on Theory of Computing, 1998.

[12] H.-Y. Di, J. Zhang, Y. Yu, L.-Y. Wang, Research on document comparison algorithm based on modiifed fuzzy hash,

Information Network Security 2(11)(2016) 12-15.

[13] N. Harbour, dcfldd. < http://dcfldd.sourceforge.net/>, 2016.

[14] Wikipedia, Adler-32. < http://en.wikipedia.org/wiki/Adler-32>, 2018.

[15] Wikipedia, Fowler, Noll–Vo hash function. <https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_

function>, 2018.

[16] S. Jason, ssdeep. < http://ssdeep.sourceforge.net>, 2018.

[17] F. Breitinger, H. Baier, Performance issues about context-triggered piecewise hashing, in: Proc. 2011 International

Conference on Digital Forensics and Cyber Crime, 2011.

[18] B. Say, An information-based approach to punctuation, in: Proc. 1997 Fourteenth National Conference on Artificial

Intelligence and Ninth Conference on Innovative Applications of Artificial Intelligence, 1997.

[19] R. Mihalcea, TextRank: bringing order into texts, Emnlp 32(2004) 404-411.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

