
Journal of Computers Vol. 30 No. 3, 2019, pp. 28-43
doi:10.3966/199115992019063003003

28

The Implementation of a Secret Information Hiding Framework

Based on Hash Function and

Invisible ASCII Characters Replacement

Er-Zhou Zhu1, Zhu-Juan Ma2*, Hui Sun1, Feng Liu1

1 School of Computer Science and Technology, Anhui University, Hefei 230601, China

{ezzhu, sunhui, fengliu}@ahu.edu.cn

2 School of Economic and Technical, Anhui Agricultural University, Hefei 230036, China

zjmsjtu16@gmail.com

Received 10 August 2017; Revised 10 January 2018; Accepted 1 March 2018

Abstract. As the text document is widely and frequently used in the communication, the text-

based information hiding technology is still an important topic in computer security. However,

the current text-based information hiding techniques are suffered from some problems, such as

poor robustness, lower embedding rate and lower efficiency. Aiming at these problems, this

paper proposes a novel secret information hiding framework by integrating of the hash function

and the invisible ASCII character replacement technology. Under this framework, the encoded

secret information is firstly divided into groups with even number of “1”. Secondly, the SPs

(space characters) in each carrier segment are replaced with SOH (start of head) by our

replacement algorithm. Thirdly, the replaced segment is processed by hash function. Finally, the

information hiding process is completed by comparing the generated hash values with the

encoded secret information. Furthermore, by uti-lizing the hash collisions of the previous

segments, the framework is improved to enhance the security and the embedding rate. The

experimental results have demonstrated that the proposed framework holds high em-bedding

rate, strong robustness and high efficiency.

Keywords: character replacement, hash function, information security, text-based information

hiding

1 Introduction

Nowadays, the safety transmission of private information by the Internet attracts much attention from

both industry and research communities. In order to ensure the security of information transmission,

many information hiding technologies are proposed [1-2]. In general, there are mainly two kinds of the

information hiding technology, the digital watermarking [3] and the steganography [4]. Since the widely

and frequently usage of the text document in the communication, many works have been deployed on

embedding the secret information into the text-based documents.

According to the embedding styles, the text-based information hiding mechanisms can be divided into

two types: the format-based information hiding and the content-based information hiding. Specifically,

the format-based information hiding embeds the secret information into the carrier document by

adjusting its font, line space, word space, words count in one line, adding blank characters and so on [5].

The content-based information hiding is realized by processing the syntax [6] and semantic [7] of natural

languages. Meanwhile, most of these methods employ mathematical statistics, substitution table and

machine translation strategies.

Since the underlying natural language processing technology is far from mature by now, there are still

many obstacles to be resolved in this technology. On one hand, by the present language processing

* Corresponding Author

Journal of Computers Vol. 30 No. 3, 2019

29

algorithms, there is obvious distinction between the generated documents that carrying the secret

information and the original nature language documents. This difference can be easily distinguished by

unaided eyes. So, the documents that generated by the present algorithms cannot meet the practical

requirements from point views of syntax, semantic and statistical properties. On the other hand, the

complex features of natural language make it is a difficult work for constructing effective substitution

tables for the replacement-based hiding algorithms. In addition, most of the replacement-based hiding

algorithms are accomplished by a simple way, i.e. “0” represents replacement and “1” represents

unchanged or reverse. It is hard for this simple mode to resist attacks from detecting algorithms based on

statistic analysis.

In order to cope with issues existing in the current context-based information hiding algorithms, this

paper proposes an effective secret information hiding framework based on the hash function and invisible

ASCII characters replacement technologies. Generally speaking, the proposed framework has the

following new features:

Strong robustness. By introducing the word shift based information hiding method and setting the

restriction on the number of space symbols in each carrier segment, the proposed framework brings much

less “noise” to the carrier document. By the framework, the generated document exhibits nearly the same

effect with the original ones. As a result, the interceptor cannot easily detect the existence of the secret

information. Meanwhile, this framework needn’t to construct a substitution table, which eliminates the

safety risk brought by the table.

High embedding rage. In our framework, the hash function is employed to make the generated

document more difficult to be detected. However, this method brings inevitable hash collisions. Aiming

at this problem, in this paper, the hash collisions of the previously processed segments are used to

generate more available hash values for their subsequent segments. By doing this, the high embedding

rate is achieved.

High efficiency. The traditional information hiding technology has no strict restriction on the efficiency.

An information hiding algorithm is acceptable as long as it has high robustness and high embedding rate.

However, with the rapid development of mobile environment, it is urgent needs “good” (with relatively

lower runtime overhead) information hiding algorithms that can be deployed on the resource starvation

mobile platforms. By utilizing the simple secret information embedding and extracting strategies, and the

reasonable values of h (the secret information has to be split into groups with h bits) and k (there are k

space symbols in a given segment of the carrier document), the runtime overhead of our framework is

relatively lower than the ones of Singh [8] and Rahman [9]. The small runtime overhead makes our

framework is also applicable to the mobile platforms.

This paper is a continuation of the work presented in [10]. On the basis of that paper, we have made

tremendous improvements. The remainder of this paper is organized as follows. Section 2 discusses the

related work on the text-based information hiding technology. Section 3 briefly analyzes the invisible

ASCII characters. Section 4 discusses the implementation of the proposed framework. Section 5 gives its

improvement. Section 6 evaluates the experimental results. Finally, Section 7 briefly concludes the paper

and outlines our future works.

2 Related Work

As mentioned in Sect. 1, the text-based information hiding mechanisms can be divided into two types:

the content-based information hiding technology and the format-based information hiding technology.

2.1 Content-based Information Hiding

The content-based information hiding technique is realized by processing the syntax and semantic of

natural languages. Meanwhile, most of these methods employ the substitution table and machine

translation strategies.

The syntax-oriented method utilizes the changing of the grammatical structure of nature language to

generate the implicit document. As a classical work, TEXTO [11] is composed of the sentence template

and the substitution dictionary. TEXTO works just like a simple substitution ciper, with each of the 64

ASCII symbols or Unicode from secret data replaced by an English word. Under this method, the secret

information is replaced by English words in substitution dictionary. Wayner [12] introduces a method by

The Implementation of a Secret Information Hiding Framework Based on Hash Function and Invisible ASCII Characters Replacement

30

per-computing the context-free grammars to generate steganographic text without sacrificing syntactic

and semantic correctness. Chapman proposes another setganorgraphic method called NICETEXT [13].

Similar to TEXTO, NICETEXT needs to construct substitution table before the embedding procedure

filling English words into the sentence template.

The semantic-oriented method hides the secret information by the synonym substitution. Common

algorithms include replacement based on equivalent rules [14], replacement based on the synonymous

sentences [15], replacement based on synonym substitution [16], and steganography based on machine

translation [17].

The syntax-oriented method is easy to implement. However, the generated text by this method is not

coherent to the original carrier document and does not have the semantic integrity. Therefore, it may be

easily noticed by interceptors [18]. The key of semantic-oriented approach is to structure an ideal

synonym substitution table by utilizing the natural language processing mechanisms. Consequently, the

performances of these approaches are determined by the development of natural language processing

technology [19]. Different from the above two methods, the secret information hiding framework

proposed by this paper does not change the semantic and the syntax of the original cover texts. By

adopting the invisible ASCII codes replacement strategy and the hash collision, the generated documents

are more in accordance with the original cover texts than the above two methods.

2.2 Format-based Information Hiding

The format-based information hiding method is realized by changing the format of the text document. It

is suit to the text with certain layout format or structure [5]. Brassil [20] hides information by adjusting

its font, line space, word space, words count in one line, adding blank characters, building signature or

using special formats like document head. Based on Brassil’s work, Huang [21] proposes a revised

approach in text watermarking where inter-word spaces of different text lines are slightly modified.

Chroni [22] adopts this technology in the PDF documents. In order to enlarge the embedding rate,

Mahato [23] proposes a text steganography for Microsoft Word document. The idea behind Mahato’s

work is that slight variation in font size of invisible character space from other characters is not reflected

in the document and in the required disk size for the document. Singh [8] proposes the Text

Steganography based on null spaces. Based on the big data of texts, Chen [24] proposes a coverless

information hiding method using Chinese character encoding technology.

The generated documents by the format-based information hiding method are coherent to the original

cover texts. However, this technique holds low embedding rare. Meanwhile, once the algorithm detail is

published, it can be easily detected by the detectors. In order to enhance security, our framework employs

the hash function to make the generated document more difficult to be detected. Moreover, by utilizing

the hash collisions of the previously processed segments, the framework is improved to enhance the

embedding rate.

3 Analysis of ASCII Characters

ASCII is a computer coding system based on the Latin alphabet, mainly for displaying of modern English

and other western European languages. It is now the most common single-byte encoding system,

equivalent to the international standard ISO/IEC 646. ASCII uses the combination of 7-bit or 8-bit binary

numbers to represent 128 or 256 possible characters. The standard ASCII, also known as the basis ASCII,

uses 7-bit binary number to represent all the English characters, Arabic numbers, punctuation marks and

special control characters used in English. Table 1 lists part of invisible ASCII characters and their

corresponding binary representations.

Table 1. Part of invisible ASCII characters

ASCII code NUL SOH STX ETX EOT ENQ ACK BEL BS HT

Definition
000

0000
000

0001
000

0010
000

0011
000

0100
000

0101
000

0110
000

0111
000

1000
000

1001

Actually, in the standard ASCII coding system, the value of codes 0 ~ 31 and 127 (33 in total) are the

controlling or communicating characters (the rest are all visible characters). For example, ASCII codes

Journal of Computers Vol. 30 No. 3, 2019

31

like LF (line feed), CR (carriage return), FF (form feed), DEL (delete), BS (backspace), BEL (bell) are all

controlling characters; ASCII codes like SOH (start of head), EOT (end of text), an ACK (acknowledge)

are all communicating characters. The ASCII codes numbering 8, 9, 10 and 13 are converted to

backspace, tabulation, line feeds, and carriage return characters respectively. These characters have no

specific graphic display on the screen, but they have different effects on texts’ display according to their

applications.

At present, information hiding algorithms based on the substitution of invisible characters are mainly

focusing on adding spaces or line breaks to some specific locations [25] or replacing blank space by null

character (code as 0000000) according to secret information. For example, the famous information hiding

system WbStego in the market is built based on these methods. But these methods are rarely used

because of the poor robustness and relatively lower embedding rate.

After performing many different tests, we found that SOH (coded as 0000001) and SP (coded as

0100000) have similar effects in most of documents. Simultaneously, there are a lot of SP candidates for

the replacement in the English document. So, in this paper, the SP and SOH substitution method is used

to implement our information hiding framework.

4 Framework Implementation

Fig. 1 outlines the overall secret information transmission workflow of our proposed framework.

Generally, the workflow can be divided into 3 stages, the information hiding stage, the information

transporting stage and the secret information extracting stage. In the information hiding stage, a proper

carrier document has to be prepared at first. The carrier text is not necessary a secret document and

public text files (such as fiction, email, comments on news) are alright. Then, the secret information

needs to be encoded into the parity code before it being embedded into the carrier document. Meanwhile,

the shared secret hash key should be set between the sender and receiver. After all these works are

performed, the cover text is generated for the public network transmission. In the transport stage, the

cover text will be transported by the public network along with countless normal text. The interceptor

seems impossible to notice such an inconspicuous cover text. In the extracting stage, on available of the

shared secret hash key, the receiver can easily acquire the secret information as long as they have the

same parameters configuration and the parity decoding process with the senders.

Fig. 1. The secret information transmission workflow of the framework

4.1 Sharing Setting

Before the secret message being transmitted, the shared information, such as the division of carrier

document and the division of the secret information, between the sender and receiver should be set.

Furthermore, the sender and receiver also need to reach an agreement on the form of hash function.

Actually, some famous hash functions, such as MD4, MD5, and SHA-1, and even user defined hash

functions are all feasible. In this paper, MD5 is selected as our hash function.

Carrier document division. In the secret information embedding procedure, one of the crucial work,

called segmentation, has to be performed to break down the carrier document into smaller segments. On

available of each smaller segment, the information hidden process is performed. However, in order to

properly process the embedded secret information, the two sides have to reach an agreement on the

The Implementation of a Secret Information Hiding Framework Based on Hash Function and Invisible ASCII Characters Replacement

32

division of the carrier document.

Actually, the simplest implementation of this division is to set a full English sentence as one segment.

This method looks feasible and reasonable and it is already used in many MT-based methods. However,

different division means different number of spaces in a single segment and different number of hashed

values that can be compared with the present binary information. It is obviously that more spaces in a

segment means high probability of embedding success. Meanwhile, the way of division of the original

carrier document directly influences the embedding rate (ER) as Eq. (1) defines.

 ER= (Number of bits of secret information)/(Number of bits of effective carrier document). (1)

In order to reach high secret information embedding rate, it is necessary for our framework to choose a

reasonable division of the carrier document. Similar to the MT-based method [15], we use the English

sentence as the basic unit to divide the carrier document. But, there are mainly two differences between

our method and the MT-based method: (1) the length of our segment can be freely chosen and this length

is relatively fixed by setting the same SPs in each segment, however, the length of sentence in the MT-

based method is fixed; (2) the number of SPs in our carrier segment is fixed and this number is under our

control, however, the number of translations per sentence is undermined in the MT-based method.

Secret information division. For definiteness and without loss of generality, the secret information is

encoded into the form of binary stream. Before being embedded into the segments of the carrier

document, the secret information has to be split into groups with h bits and a process called parity coding

need to be performed. By parity coding, the h bits of secret information will generate an h+1 bits parity

code. Consequently, there is even number of “1” in the h+1 bits of parity code. As a result, there are h+1

bits of secret information needed to embed into one segment of the carrier document. During the process

of the secret information transmission, the sender as well as the receiver needs to be in agreement on the

size of h.

Actually, the value of h is generally small but it has a significant impact on the ER. On one hand, small

h will result in low ER even if the number of hash values for a given segment is high. On the other hand,

large h will result in frequently occurs of errors (i.e., frequently fails to find a proper hash value same as

the given secret bits). Supposes there are k SPs in a given segment of the carrier document, the failure

probability (PR) with a given number h can be calculated as the formula below:

 PR=(1-(1/2)h+1)k. (2)

In order to acquire high ER, relationship between the value of h and k needs to be carefully considered.

By analyzing the experimental results (as described in Sect. 6), we set h∈[1, 7] and k∈[23, 26] in our

framework. However, even if we get the reasonable value of h and k, it is also possible that there is no

hash values for a given carrier segment and a group of secret information. The occurrence of this

situation is defined as PNH (possibility of no hash value) as Eq. (3) describes.

1

(1/ 2) , 1is odd

(1- (1/2) -1/2) , 1is even.

k

h k

h
PHN

h
+

⎧ +⎪
= ⎨

+⎪⎩
 (3)

From Eq. (3), we can see that the PNH is relatively small. In our improved method (in the upcoming

Sect. 5), this value can be make so smaller to be negligible.

Shared secret key. The sender and receiver have to set a shared secret key for the hash process. As the

secret key and the secret information are transmitted as the same way, the interceptors do not aware the

existence of the secret shared key. So, they cannot detect the existence or even extract the secret message

by the hash process. If the secret key alone is considered to be not strong enough, the hidden message

itself can additionally be encrypted with another secret key prior to the steganographic encoding process.

4.2 Embedding Procedure

On available of parity coded binary secret stream, the following three steps are employed to embed the

secret information into the carrier document.

Journal of Computers Vol. 30 No. 3, 2019

33

Secret information encoding. Firstly, it is supposed that the length of the secret information is L bits

and it been split into groups with h bits. Then, a parity bit is added to ensure that there is even number of

“1” in each group. As a result, there are h+1 bits in each group for the secret information embedding

procedure. However, as processed by Fig. 2, if L is not an integer multiple of h, the last group will be

automatic completed. Actually, the additional bits will be neglected during the secret information

extraction procedure. So, it is not necessary for the sender and receiver to have an agreement on the

additional bits. They just need to ensure that there is even number “1” in the last group.

Fig. 2. An example of secret information encoding process (h=3)

Information substitution. Firstly, it has to choose a text-based document as the carrier document. Then,

the segments in the carrier document are fetched in turn. Each segment is processed by the substitution

function to replace the SP with the SOH. For security reason, only one SP is selected from a segment for

substitution. Although, replaces more than one spaces will bring more options. However, more options

will results in more changes on the original document. Consequently, more changes will attract more

attentions from the interceptors.

Replaced segment hashing. Each replaced segment is firstly hashed with a secret hash key. Then, the

hash values will be compared with the encoded secret parity group composed of h+1 bits. During this

process, if there is more than one hash values equal to the secret message, we can randomly select one.

However, if there is no result same as the secret message, results that have odd number of “1” can be

randomly selected. It has to notice that the selected odd “1” result contains no secret information.

Repeats the above steps until all the secret information is successfully embedded into the carrier

document. Latterly, copies the rest part of the original carrier document into the newly generated

document to complete to embedding procedure.

4.3 Extracting Procedure

Compared with the embedding procedure, the extracting procedure is relatively simple as long as the

receiver has the same configuration with the sender. The workflow of the secret information extraction

procedure can be described as follows:

(1) Orderly applies the same hash function and the same secret hash key on each segment of the

received English document.

(2) If the first h+1 bits of a derived hash value has even number of “1”, then the first h bits of this

value are the secret message.

(3) Otherwise, if the derived hash value has odd number of “1”, then this hash value can be neglected

since it has no secret information.

(4) Repeatedly reads the segments from the received document until a segment with no SOH character

is met.

The Implementation of a Secret Information Hiding Framework Based on Hash Function and Invisible ASCII Characters Replacement

34

As described in Fig. 2, there might be some additional bits in the last segment of the document. Since

these bits do not affect the secret information transmission, they don’t need any special operations.

5 Framework Improvement

In our framework, the hash function is employed to make the secret information that been embedded into

the carrier document stronger to be detected. However, the phenomenon of collisions, namely different

initial values may have the same hash result, is inevitable. In this section, we will propose an improved

method which can settle the collisions effectively.

In our method, collision happens when the hash values derive from a single English segment happen to

the same results in their highest h+1 bits. Specifically, for an original segment A, X1 is a segment

generated by replacing the first SP of A; X2 is another segment generated by replacing the second SP of A.

Hash1 is the hash value comes from X1, and hash2 (processed by the same hash function as X1) comes

from X2. Under this situation, if the highest h+1 bits of hash1 and hash2 are identical, we can say that the

collision is happened, and the X1 and X2 are called collision replacements. The existence of collision

means less choice of candidate hash values.

According to the “birthday paradox” theory, when there are k SPs in a segment, the probability of not

equal happens in the highest h+1 bits of any two hash values that are derived from this segment can be

calculated as)2×-1(1+-(1-
1=Π

hk

i i , where k<2(h+1). However, if k≧2(h+1), this probability is 0. In most cases,

this probability (not equal) is pretty small even if we get the reasonable h and k. So, the collision

frequently happens during the hashing process which is described in Sect. 4.

In this section, we will propose an improved method which can settle the collisions effectively. In this

improvement, the existence of hash collisions of a former segment can be used to help reducing the

occurrence of collisions of its subsequent segments by providing them with a richer set of available hash

values.

In order to better illustrate the improved method, we define that there are two cases of collision

replacements, the even collision and the odd collision. The even collision happens when several replaced

segments derived from a single original segment hash to values with the same part of their highest h+1

bits. For all the hash values of the replaced segments that are derived from a carrier segment, if they are

different from the secret information needs to be hidden, then the hash values with odd number of “1” are

called odd collision. The even collisions and odd collisions consist of all collisions of a carrier document.

In our improved method, collisions of the former segments can be used to generate more hash values to

its subsequent segments.

For the purpose of effectively utilizing the existed collisions, a window W with C consecutive English

segment is set. In this window, the numbers of the hash values come from the ith segment are influenced

by the collision replacements of all the segments prior to i. In the hash procedure, the current replaced

segment will be hashed accompany with one of the former collisions. Namely, if p and q represent the

current replaced segment and one of the former collision replacement respectively, then hash(p+q) is the

hash value of p.

If the (i-1)th segment has N collision replacements, the number of available hash values of ith segment

will hike up N times. The growing number of hash values directly led to the probability of the existence

of hash values same as the given secret bits for the ith segment. Specifically, the amount of hash values

for segment i (AH) can be calculated as:

1

1

i-

i jj -
AH K N= ×Π (4)

In Eq. (4), Ki represents the amount of SPs in the ith(0<i<C) segment and Nj represents the amount of

the collision replacements of the jth(0<j<i) segment. From the equation, we can see that AH grows with C

exponentially. A relatively bigger C will make AH an unacceptable huge number. So, it is needed to set

an upper bound t (AH ≤ t) for AH. The reasonable value of t is affected by the hardware environment as

well as the value of h and k. Here, h and k refer to the number of bits in a secret information group and

the number of SPs in a segment of carrier document respectively.

In our implementation, a window that accommodates two consecutive segments is set, namely W=2.

From the above analysis, a larger W could bring more available hash values. But larger W also costs more

computing resources and more space to buffer hash values. Furthermore, the threshold of the number of

Journal of Computers Vol. 30 No. 3, 2019

35

hash values for a specific segment is set as t. The detailed embedding procedure of our improved method

is described as follows:

(1) Encodes the initial secret information to ensure that there is even number of “1” in each group

(same as the first step of Sect. 4.2).

(2) For each window W, utilizes ASCII character SOH to replace the ith (0 <i≤ k) SP of the first

segment to get a k elements set X (X={Xi | Xi is the replaced segment ⊗ 0<i≤ k}); Then, applies hash

function on these replaced segments to get k hash values; At last, compares all these hash values with the

given secret bits to get a collision set P (P = {Pi | Pi is an even or odd collision ⊗ 0<i≤k<t}).

(3) Orderly selects Pi∈P, Yj∈Y (Y={Yj | Yi is a replaced segment generated from the 2nd segment of W

⊗ 0 < j ≤ k}), and utilizes the hash function hash(Pi+Yj) to get a new group of hash values. Here, the

number of new generated hash values is k times with the number of elements of P. Then, compares this

group of hash values with the given secret bits to get a replaced collision set Q (Q ={Qi | Qi is an even or

odd collision ⊗ 0<i≤k}) of the second segment of W. Q is a subset of Yi × Pi. By now, the embedding

procedure of the first window is finished.

(4) By the previous steps, two replaced collision sets, P and Q, may be generated for embedding the

secret information. If P is generated, since it must contain some even collisions, we can randomly select

an even collision as the carrier segment. Otherwise, only Q is generated:

(a) if there is an even collision q in Q and q is derived from an even collision p in P (which means the

result of hash(p+q) is equal to the given secret bits), we can embed 2h secret bits (not including the

parity bit) in the present windows W. However, if q is derived from an odd collision of P, we can only

embed h secret bits.

(b) If all elements in Q are odd collisions, corresponding to the two cases of (a), only h bits or 0 bits

are able to be embedded.

By considering all possible situations, proper segments of the carrier document are selected to embed

the maximum number of secret bits.

(5) If the all the secret bits are embedded, terminates the embedding procedure. Otherwise, continues

processing the next window, turn to Step (2).

6 Experimental Evaluation

This section evaluates the performance of our framework from perspectives of embedding rate,

robustness and efficiency respectively. The experiments in this section are carried out on the machine

with Intel i7 4790 CPU (3.6 GHz), 8GB DDR3 1600 RAM and 64-bits Windows 7 OS. The carrier

documents are .doc and .txt files written in English.

6.1 Embedding rate analysis

Theoretical maximum embedding rate. MER (maximum embedding rate) is firstly mentioned in the

machine translation based (MT-based) information hiding method [15]. In MT-based method, MER

means the ratio of the theoretical maximum secret bits that can be embedded into an English sentence to

the average length of the English sentences. The ratio is influenced by the quantity of the translations per

sentence. More translations mean larger MER. The MT-based method uses the English sentence as the

basic embedding unit. However, diverse lengths of sentences and different number of translations of a

specific sentence directly lead to poor MER. In order to facilitate processing, they statistically set 1168

bits as the average length of a sentence. Some MER of MT-based method is shown in Table 2 (k’

represents the average number of translations per sentence; AL represents the average length of English

sentences).

Table 2. MER of MT-based method

k’ 11.62 15.15 18.01

AL 1168 1168 1168

MER(%) 0.22 0.27 0.31

The Implementation of a Secret Information Hiding Framework Based on Hash Function and Invisible ASCII Characters Replacement

36

In this paper, we set the English segments correspond to the English sentences of the MT-based

method, the number of SPs in a segment correspond to the number of translations per sentence of the

MT-based method. There are two differences between our method and the MT-based method: (1) the

length of our segment can be freely chosen and this length is relatively fixed by setting the same SPs in

each segment, however, the length of sentence in the MT-based method is fixed; (2) the number of SPs in

our segment is fixed and this number is under our control, however, the number of translations per

sentence is undermined in the MT-based method.

According to the definition of ER described in Sect. 4.1, the MER of our method can be defined as:

 MER = logk/Lk. (5)

In this definition, Lk represents the length (we use bit as unit) of the segment with k spaces. Table 3

shows the MER of our method under different value of k (AL represents the average length of our

segment under different value of k).

Table 3. MER of our method

k 2 4 8 16 32 64

AL 11.6 23.6 47.4 95.0 190.6 381.2

MER (%) 1.14 1.09 0.80 0.53 0.33 0.20

In Table 2, MER is increasing with the growing of k’. However, results shown in Table 3 are the

opposite: MER is decreasing with the growing of k. The value of k’ in Table 2 is affected by the

underlying translation machine. In order to ensure the translation quality, too large k’ is not acceptable.

As a result, the MT-based method has a relatively small MER (the maximum MER is about 0.33% in

practice). Since the value of k is changeable, our method can reach an ideal ER when a proper k is chosen.

In Table 3, MER reaches large value when k is set as 2, 4 or 8. However, too large MER may lead to the

failure of the information embedding procedure. As a compromise, we choose 8 as the proper value of k.

The effect of h and k on ER. The above section analyzed the MER of our method theoretically. But in

reality, the embedding error and the redundant bits introduced by parity code make the procedure cannot

reach such high ER. As a matter of fact, we have a much lower ER in our original method. However, we

are able to approach the MER when the reasonable values of h and k are chosen as our improved method

does. In our methods, k represents the number of SPs in a carrier segment; h records the number of bits in

a secret information group. Fig. 3 and Fig. 4 depict the effects of h and k on ER before and after the

improvement. Since it is often not operable for the value of x-axis less than 4, the value of y-axis is

basically 0 when the value of x-axis is less than 4.

Fig. 3. The effect of h and k on ER of our original method

Journal of Computers Vol. 30 No. 3, 2019

37

Fig. 4. The effect of h and k on ER of our improved method

The two figures also show that ER reaches a relatively large value when k is set as 8 or 16 and h is set

as 2, 3 or 4. Obviously, ER has a considerable increment after the improvement. In the improved method,

the largest two values of ER, 0.44% and 0.41%, are achieved by setting k as 8 and 16 respectively. It is

improved more than 30% compared with the original method.

However, there is still a big gap between the largest ER in Fig. 4 and the MER in Table 3. Fig. 3 and

Fig. 4 also show that ER is not regularly increasing or decreasing with the increment of h and k. As a

matter of fact, the increment of k and h will result in larger capacity of the carrier segments; larger

capacity of each carrier document will result in longer carrier segment; longer segment will result in the

higher probability of embedding error since it will bring a lot of carrier segments with no embedded

secret information.

The effect of h and k on the embedding error. As mentioned previously, ER is not regularly increasing

or decreasing with the increment of h and k. In order to get the best ER, we need to evaluate the

influences of h and k on the occurrence of embedding errors. Fig. 5 and Fig. 6 give the results of

embedding errors with different h and k before and after the improvement.

Fig. 5. “Empty” with different k (h=4)

Fig. 6. “Empty” with different h (k =24)

The Implementation of a Secret Information Hiding Framework Based on Hash Function and Invisible ASCII Characters Replacement

38

In Fig. 5, A1 and A2 represent the number of carrier segments with no embedded secret information

and the total number of segments in carrier document before improvement respectively. B1 and B2

represent the same results after the improvement. In this experiment, the length of secret information is

1376 bits (1720 bits after parity encoding). The secret information are divided into groups with 4 bits (i.e.

h=4). From the figure, we can see that all the results, A1, A2, B1 and B2, are decreasing with the growing

number of k. B1 and B2 decrease faster than A1 and A2. In Fig. 6, A1, A2, B1 and B2 represent the same

values as the ones in Fig. 5. In this experiment, the number of SPs in each carrier segment is set as 16 (i.e.

k=16). From this figure, we can see that A2 and B2 are decreasing with the growing of h until it arrives at

3. This is because smaller h will get relatively lower rate of embedding error. As shown in Fig. 5, A1 and

B1 are relatively small compared with A2 and B2. So, A2 and B2 are almost only affected by the capacity

of the carrier segments. However, A1 and B1 are increasing rapidly with the growth of h when it exceeds

3. Under this circumstance, A1 and B1 take bigger and bigger proportions of A2 and B2 respectively. As

a result, A2 and B2 also increase rapidly with h. Fig. 6 also shows that B1 and B2 are much smaller than

A1 and A2 respectively. Which means our improved method gets better ER than the original method.

Although we get better ER than the original method, there is still a gap between our best ER and

theoretically MER. By performing further experiments, we have found that the first segment in the carrier

windows is the biggest factor for the occurrence of the embedding error. As a matter of fact, our

experiments only place two segments to each carrier windows (i.e. W=2) for simplicity. The improved

method only increased the hash values to the second segment of the carrier window. But the first segment

is processed as the original method. For this reason, we can place more segments to the carrier windows

to get higher ER.

6.2 Robustness Analysis

The robustness of our framework can be carried out by accessing its stability and security respectively.

Stability analysis. As mentioned previously, the embedding failure may occur during the information

hiding stage. In our framework, the embedding failure occurs when there is no hash values same as the

secret information to be hidden or there is no hash value contains even number of “1”. We have to find a

new carrier document when the embedding failure occurs. The high occurrences of embedding failure

will reduce the stability and feasibility of the information hiding algorithm. Theoretically, if two bits

secret information (h=2) are embedded into carrier segments with 8 SPs (k=8), we will get 99.961%

embedding success rate for each carrier segment, 99.6% embedding success rate for 10 consecutive

carrier segments, and 96.2% embedding success rate for 100 consecutive carrier segments.

Table 4 lists the embedding success rate of our improved method by testing documents with different

values of h and k. In this experiment, the parameter W is set as 2. The results in the table are the average

results by deploying 100 experiments with different carrier documents and different fixed-length secret

information. In the table, CNum represents the number of secret characters needed to be embedded into

the carrier document.

Table 4. The success embedding rate of our improved method (%)

CNum
h, k

5 10 20 50 100 150 200

h=2, k=8 100 100 100 75 63 61 49

h=2, k=16 100 100 100 100 100 100 100

h=3, k=8 98 97 96 87 91 79 82

h=3, k=16 100 100 100 100 100 100 100

h=4, k=8 97 98 99 86 66 59 57

h=4, k=16 100 100 100 100 100 100 100

From the table, we can see that our improved method can reach more than 90% embedding success

rate in most cases. However, we also have low embedding success rate in some cases. But these

situations are still operational in practice. Furthermore, we can avoid the occurrence of these situations

by adjusting the corresponding parameters. As a whole, we have achieved a relatively high embedding

success rate, namely higher stability.

Security analysis. There are two criteria for evaluating the security of the information hiding algorithms:

Journal of Computers Vol. 30 No. 3, 2019

39

(1) the ability of covering the “noises (i.e. changes)” that the hiding algorithms bring into the original

carrier documents cannot be easily detected by the interceptors; (2) the ability of preventing the secret

message being extracted by the interceptors when they are aware of the existence of this message.

(1) Ability of Hiding

As mentioned in Sect. 3, by performing many different tests, we found that the SP and SOH have the

similar effects in most of documents. Meanwhile, there are many candidate SPs in the document for

replacing, our framework uses SP and SOH substitution method to implement the information hiding

algorithm. However, similar do not means the same. In the document, the width of SP is shorter than the

ones of SOH. This means that there are many abnormal gaps with different widths among words of the

document that carrying secret messages. This kind of “noise” may not be able to resist the test of

detection algorithm based on word shift. In order to cope with these detection algorithms, we introduce

the word shift based hiding method to our algorithm to make SOH has the absolutely same width with SP.

Another “noise” our framework brings into the original carrier document may be the probability of SP

(denoted as r1) and the probability of continuous SP (denoted as r2). In the generated document that been

embedded secret message, r1 is defined as the number of all SPs divides by the number of all characters;

r2 is defined as the number of continuous SPs divides by the number of all SPs. Theoretically, the

threshold for r1 is 0.3 and the threshold for r2 is 0.2 [26]. Since we put the restriction on the value of k,

the values of r1 and r2 in our method are much smaller than the theoretically ones.

Table 5 lists the average results of our experiments by testing 100 different documents. In this table,

the first line (Original) lists the results of the original carrier documents. The rest lines are all the results

of the generated documents that been embedded with secret message with different h and k.

Table 5. Probability of SP and Probability of continuous SP

ri
h, k

r1 r2

Original 0.1893 0.0138

h=2, k=8 0.1630 0.0086

h=2, k=16 0.1767 0.0106

h=3, k=8 0.1628 0.0084

h=3, k=16 0.1464 0.0090

h=4, k=8 0.1643 0.0076

h=4, k=16 0.1764 0.0089

From the Table 5, we can see that results of our method are much better than the threshold ones in [15].

The generated documents of our method are totally met the demands of the normal document from

perspectives of semantics, syntaxes and statistic characteristics respectively. As a result, detection

algorithms, such as natural language processing based method, different form synonym replacement

based method and MT-based method, cannot work well on our algorithm.

Fig. 7 and Fig. 8 give the secret information hiding effect of our framework by embedding secret

information into the .doc document. In our improved method, the inputs of the embedding procedure are

the carrier document and the secret message. The output is the “normal” document that that been

embedded with the secret message. Fig.7 displays a piece of the original carrier document. Fig.8 is the

corresponding document that been embedded with secret information (“Brussels followed Washington’s

lead in 1989 by a company of seven.”). From the two figures, we can see that the differences that brought

by the embedding procedure brings can be neglected except for the format distinctions that built-in

different types of files. Furthermore, since our framework is built based on the code structure of the

original carrier document, the changes of the font and size of the document have no influences on the

embedded secret information.

The Implementation of a Secret Information Hiding Framework Based on Hash Function and Invisible ASCII Characters Replacement

40

Fig. 7. Original carrier document (.doc)

Fig. 8. Document embedded with secret message (.doc)

Ability of resisting attack. Unfortunately, if a smart interceptor happened to smell the existence of the

secret message, he would find it is a significantly hard procedure to extract the secret message without

known about the embedding algorithm and the values of relative parameters of our method. At present,

there is no effective algorithm in the market has the ability of extracting the secret message from all the

information hiding systems. Beside the values of h, k, w, t and the location of the bits in hash values that

used to compare with the given secret bits, we also employ a secret key in hash function. Brute force the

hash function, like MD5, SHA-1, SHA-2, is proved harder. In addition, we can also construct a unique

hash function and encrypt the secret messages beforehand to enhance the security of our system.

6.3 Efficiency Analysis

The traditional information hiding technology has no strict restriction on the efficiency. An information

hiding algorithm is acceptable as long as it has high robustness and high embedding rate. However, with

the rapid development of mobile communication environment, it is urgently needs “good” (with

relatively lower runtime overhead) information hiding algorithms that can be deployed on the resource

starvation mobile platforms. Based on this observation, this subsection evaluates the efficiency of the

proposed framework.

Table 6 and Table 7 list the experimental results by evaluating the performance our framework with

different parameters (W=2). Table 6 lists the time cost of the information hiding stage. Table 7 lists the

time cost of the information extracting stage. Results of these tables are the average data by deploying

100 experiments with different carrier documents and different fixed-length secret information on our

framework. In the two tables, CNum represents the number of secret characters needed to be embedded

into the carrier document.

Journal of Computers Vol. 30 No. 3, 2019

41

Table 6. Time overhead of the secret information hiding stage (ms)

CNum
h, k

5 10 20 50 100 150 200

h=2, k=8 21.2 29.9 44.6 77.3 109.8 127.9 146.0

h=2, k=16 33.4 49.0 78.1 112.2 150.5 127.7 203.8

h=3, k=8 25.0 31.5 46.2 77.9 110.0 125.6 141.2

h=3, k=16 37.7 50.4 81.8 117.1 157.8 179.6 205.8

h=4, k=8 25.8 34.6 49.8 89.8 116.5 129.3 148.5

h=4, k=16 46.2 64.0 91.3 126.8 167.3 203.2 227.9

Table 7. Time overhead of the secret information extracting stage (ms)

CNum
h, k

5 10 20 50 100 150 200

h=2, k=8 12.6 13.8 17.0 26.1 37.4 46.0 54.1

h=2, k=16 12.0 15.0 18.8 27.4 35.8 44.9 52.4

h=3, k=8 13.2 13.9 14.5 26.2 35.6 44.6 53.0

h=3, k=16 12.7 13.4 16.8 24.7 33.2 39.5 48.9

h=4, k=8 13.0 14.1 18.2 26.6 35.7 43.0 53.3

h=4, k=16 12.3 13.2 16.7 23.4 32.0 41.8 45.8

From Table 6, we can see that the runtime overhead of the information hiding stage is directly

proportional to the number of characters of the secret information. Since larger value of k will directly

lead to the large number of computations of hash function, this overhead also grows with the increasing

value of k. The value of h also has slight influence on the runtime overhead of the information stage.

Similarly, as Table 7 lists, the runtime overhead of the information extracting stage is also directly

proportional to the number of characters of the secret information. However, both h and k have slight

influence on the runtime overhead of the information stage. From this experiment, we can see that the

overhead of our framework is relatively low, and it is applicable to the mobile platforms.

7 Conclusion and Future Work

As an important topic in the information security, the current text-based information hiding techniques

are suffering from poor robustness, lower embedding rate and semantic clutter. In order to solve these

problems, this paper proposed a novel secret information hiding framework based on the integration of

hash function and the invisible ASCII character replacement technology. The framework was tested from

perspectives of embedding rate, robustness and efficiency respectively. The experimental results have

demonstrated that the proposed framework holds high embedding rate, strong robustness and high

efficiency. However, only applicable for the English documents that have plenty of space symbols

seriously restricts the applications of the proposed algorithm. So, in the future, it is urgently needed to

apply this algorithm to a wider range of languages.

Acknowledgments

This work is partly supported by the academic and technical leader recruiting policy of Anhui University,

the National Natural Science Foundation of China (Grant Nos.61300169, 61702004), and the Natural

Science Foundation of Education Department of Anhui province. (Grant Nos. KJ2016A257).

Reference

[1] P. Moulin, J.A. O’Sullivan, Information-theoretic analysis of information hiding, IEEE Transactions on Information Theory

49(3)(2003) 563-593.

[2] M. Köhler, I. Lukić, V.K. Čik, Protecting information with subcodstanography, Security & Communication Networks

The Implementation of a Secret Information Hiding Framework Based on Hash Function and Invisible ASCII Characters Replacement

42

2017(1)(2017) 1-13.

[3] C.-Y. Yang, Robust high-capacity watermarking scheme based on Euclidean norms and quick coefficient alignment,

Multimedia Tools and Applications 76(1)(2017) 1455-1477.

[4] A.S. Lorente, S. Berres, A secure steganographic algorithm based on frequency domain for the transmission of hidden

information, Security & Communication Networks 2017(2)(2017) 1-14.

[5] Y.-B. Luo, Y.-F. Huang, F.-F. Li, C.-C. Chang, Text steganography based on Ci-poetry generation using Markov chain

model, KSII Transactions on Internet and Information Systems 10(9)(2016) 4568-4584.

[6] A.V. Subramanyam, S. Emmanuel, M.S. Kankanhalli, Robust watermarking of compressed and encrypted HPEG-2000

images, IEEE Transactions on Multimedia 14(3)(2012) 703-716.

[7] M. Botta, D. Cavagnino, V. Pomponiu, Protecting the content integrity of digital imagery with fidelity preservation: an

improved version, ACM Transactions on Multimedia Computing, Communications, and Applications 10(3)(2014) 96-105.

[8] P. Singh, R. Chaudhary, A. Agarwal, A novel approach of text steganography based on null spaces, IOSR Journal of

Computer Engineering 3(4)(2012) 11-17.

[9] M.S. Rahman, I. Khalil, X. Yi, H. Dong, Highly imperceptible and reversible text steganography using invisible character

based codeword, in: Proc. the Twenty First Pacific Asia Conference on Information Systems, 2017.

[10] F. Liu, P.-P. Luo, Z.-J. Ma, C. Zhang, Y. Zhang, E. Zhu, Security secret information hiding based on hash function and

invisible ASCII characters replacement, in: Proc. the 15th IEEE International Conference on Trust, Security and Privacy in

Computing and Communications, 2016.

[11] K. Maher, TEXTO. <http://www.nic.funet.fi/pub/crypt/steganography/>, 1995 (accessed 18.01.06).

[12] P. Wayner, Disappearing Cryptography: Information Hiding: Steganography and Watermarking, 2nd ed., Morgan

Kaufmann, San Francisco, 2002.

[13] M. Chapman, G.I. Davida, M. Rennhard, A practical and effective approach to large-scale automated linguistic

steganography, in: Proc. the 4th International Conference on Information Security, 2001.

[14] L.-Y. Xiang, X.-H. Wang, C.-F. Yang, P. Liu, A novel linguistic steganography based on synonym run-length encoding,

IEICE Transactions on Information & Systems E100.D(2)(2017) 313-322.

[15] R. Stutsman, C. Grothoff, M. Atallah, K. Grothoff, Lost in just the translation, in: Proc. the 2006 ACM Symposium on

Applied Computing, 2006.

[16] P. Meng, L.-S. Hang, Z.-L Chen, Y.-c. Hu, W. Yang, STBS: a statistical algorithm for steganalysis of translation-based

steganography, in: Proc. the 12th International Conference Information Hiding, 2010.

[17] C. Grothoff, K. Grothoff, R. Stutsman, L. Alkhutova, M. Atallah, Translation-based steganography, Journal of Computer

Security 17(3)(2009) 269-303.

[18] E. Satir, H. Isik, A Huffman compression based text steganography method, Multimedia Tools and Applications

70(3)(2014) 2085-2110.

[19] L.-Y. Xiang, G. Luo, Y.-H. Xie, W. Chen, Research on the coding strategies for synonym substitution-based steganograph,

Journal of Computational Information Systems 10(22)(2014) 9877-9888.

[20] J.T. Brassil, S. Low, N.F. Maxemchuk, Copyright protection electronic distribution of text documents, in: Proc. the IEEE

87(7)(1999) 1181-1196.

[21] D. Huang, H. Yan, Interword distance changes represented by sine waves for watermarking text images, IEEE Transactions

on Circuits and Systems for Video Technology 11(12)(2001) 1237-1245.

Journal of Computers Vol. 30 No. 3, 2019

43

[22] M. Chroni, S.D. Nikolopoulos, Watermarking PDF documents using various representations of self-inverting permutations,

in: Proc. the 11th International Conference on Web Information Systems and Technologies, 2015.

[23] S. Mahato, D.K. Yadav, D.A. Khan, A novel approach to text steganography using font size of invisible space characters in

Microsoft word document, Intelligent Computing, Networking, and Informatics 243(2014) 1047-1054.

[24] X.-Y. Chen, H.-Y. Sun, Y. Tobe, Z. Zhou, X. Sun, Coverless information hiding method based on the Chinese

mathematical expression, in: Proc. 1st International Conference on Cloud Computing & Security, 2015.

[25] A.A. Mohamed, An improved algorithm for information hiding based on features of Arabic text: a unicode approach,

Egyptian Informatics Journal 15(2)(2014) 79-87.

[26] X.-G Sui, H. Luo, A steganalysis method based on the distribution of space characters, in: Proc. 4th International

Conference on Communications, Circuits and Systems, 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

