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Abstract. The Spatio-temporal coherence of time-varying model sequence is an important and 

highly-desirable property in varies of applications. We propose an efficient framework that 

reconstructs a Spatio-temporally coherent point cloud sequence for dynamic objects from multi-

view video. The main distinction of the framework is that it does not complicatedly and strictly 

match between any two contours on the same model or the neighboring model. The point cloud 

between the discrete frames is obtained by transporting the neighboring models or by 

reconstructing the in-between model based on interpolation silhouette. The time-varying and 

quasi-dense point cloud of such dynamic objects shape can be tracked successfully thanks to 

Spatio-Temporal-Contour consistency and distance field interpolation employed in our shape 

tracking framework. Compared to existing approaches, the resulting point cloud sequence has 

better Spatio-temporal coherence. Experimental results demonstrate that the framework obtains 

the promise.  

Keywords:  contour consistency, distance field interpolation, free-viewpoint video, shape 

tracking framework 

1 Introduction 

In recent years, Free-Viewpoint Video (FVV), which consists of Spatio-temporally coherent dynamic 

model, becomes a popular topic in the computer vision field. FVV with the higher frame-rates is 

preferable in various domains such as entertainment, education, sports, medicine, and culture heritage [1]. 

The reconstruction of dynamic scene is a key technology to obtain FVV. However, the Spatio-temporal 

coherence of time-varying model sequence, which is generated from multi-view video, is not retrieved 

well. As is illustrated in Fig. 1, the red rectangle indicates the right arm which moves between two 

frames. The actor’s arms between two frames are not captured by any of the camera. The temporal 

consistency of data obtained by these video cameras is not enough to generate time-varying model 

sequence with the better Spatio-temporal coherence. However, Spatio-temporal coherence is an 

important and highly-desirable property in varies of applications [2]. For example, when the position of 

the points change so quickly from frame to frame, it is not visually pleasing because it distracts the 

viewer from the actual animation. It is necessary to reconstruct the model when the deformation takes 

place between frames. Otherwise the Spatio-temporal coherence of time-varying model sequence is 

destroyed. 
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(a) are the neighboring 

frames from a video 

sequence 

(b) are the neighboring 

frames from a video 

sequence 

(c) is the neighboring 

silhouette corresponding

(d) is the neighboring 

silhouette corresponding

Fig. 1.  

To solve the problem, it is necessary to increase the number of the in-between model between the key 

models, namely improve the temporal coherence. Our work is motivated by the problem. It allows the 

transport between two models represented by point cloud. The point cloud representation of each frame is 

obtained by transporting the point cloud of the previous frame towards the optimal shape defined by the 

silhouettes corresponding to the time instance.  

The primary contributions of this paper are as follows: 

(1) It speeds up generating the quasi-dense point cloud using Spatio-Contour consistency from scratch, 

separately for each time instance. 

(2) It improves the temporal coherence of the time-varying point cloud sequence using distance field 

interpolation and Temporal-Contour consistency. 

Our work aims at obtaining the point cloud sequence with better Spatio-temporal coherence under the 

suitable time-complexity. In particular, the proposed framework targeted at handling a video of dynamic 

scene captured by a multiple-view system.  

This paper is organized as follows: first, in Section 2, we discuss the related work on the shape 

tracking work; in Section 3, the overall shape tracking system, which makes use of multi-view silhouette 

image, Spatio-Temporal-Contour consistency, and distance field interpolation (DFI), is described. 

Section 4 provides and discusses the experimental results, and finally, Section 5 gives concluding 

remarks. 

2 Related Work 

In this section, we briefly review the shape tracking work. In the past, most of the work on the shape 

tracking has focused on mesh deformation with small-scale deformation [3-11]. There is actually very 

little work with respect to the shape tracking based on point cloud representation [12-15]. Related work 

of our work falls mainly into two categories [16]:  

Physical-based. The approaches need to obtain the priori physical model which controls the transport of 

the model. The intermediate model is obtained according to the energy function. To some extent, the 

transport simulates the real physical phenomena. The optimized energy function determines transport 

path. The most shortcoming of the approach is the large amount of calculation. It means the approach is 

time-consuming. The approach is unsuitable to reconstruct the dynamic scene because it is difficult to 

represent the trajectory of the dynamic object or the part of one using the identified physical function 

[16].  

Geometry-based. The approach yields the intermediate geometry model between source models and 

target ones. It is the morph by shape deformation techniques. More recently, the approach further falls 

mainly into two categories [12]:  

(1) Surface-based approaches 

In the approaches, the match is an integral part of most shape tracking pipelines and a very crucial part. 

It usually start by finding correspondences between the source surface and target one, which is also an 

important process for non-rigid surface registration, otherwise known as deformable object registration [5, 

12]. Unfortunately, establishing correct correspondence is very difficult in reality. As is known to all, 
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obtaining the correspondence between the points is a typical NP-hard problem.  

A large number of algorithms have been developed to address the challenging problem. The artificial 

marker is often used. Zhao et al. [17] proposed a novel non-linear algorithm that achieves as-rigid-as-

possible deformation through constraining the rigidity of the local neighborhoods. The original point 

cloud is efficiently simplified by clustering, and then the deformation is performed on the simplified 

point cloud. A dynamic resampling method is introduced to eliminate the redundant points. Their 

approach preserves both detail and volume under deformations. The main disadvantage of the proposed 

approach is time-consuming and it needs artificial markers. In order to overcome the limitations of 

artificial markers, Iterative approaches, such as the classic Iterated-Closest-Point algorithm and its 

variants, are often used when the relative transformations between the two scans are not very large. 

Because there is a large number of wrong matches by establishing the relationship based on the ruler of 

neighboring point when the shape between two models exhibits larger difference. Therefore the iteration 

may fall into local optimization rather not be global optimization and the most optimal match cannot be 

attained between two models. Some approaches alternate the computation of correspondences with 

refining the aligning transformation, and almost always require multiple iterations before the final 

alignment is found. Li et al. [4] combine the calculation of obvious correspondence with the optimization 

of the global deformation. To some extent, their approaches overcome the limitation of the small-scale 

deformation. Other researchers apply random sample consensus filtering, deformation driven strategy, 

Mobius cluster and so on, to solve the problem of model match. However, these approaches overhead 

time is not satisfactory. 

CmolIk et al. [14] classify the point of the source and target point cloud by clustering operations and 

built the binary tree of the model respectively. Their approach considers only the local geometric 

information expressed by the point locations in 3D space. But the approach may appear a lot of cracks 

and holes during transport process and focus on static objects. Hence it is time-consuming. Similarly, 

Nakajima et al. [12] formulate the interpolation as point cloud transport rather than non-rigid surface 

deformation. Guo et al. [18] propose a novel L0 strategy that integrate into the available non-rigid motion 

tracking pipeline. When human body motions with occlusions, facial and hand motions, the tracking 

technique substantially improves the robustness and accuracy in motion tracking.  

Like our work, Ahmed et al. [2] deals with multi-view video and obtains the unstructured point cloud. 

Their approach reconstructs source model and target one from scratch, separately for each time instance 

and focus on the match between models.  

The above-mentioned approaches have the following disadvantages: 

(a) The approaches require obtaining the source model and target model before the deformation. It is 

not always possible to acquire the appropriate models that one wishes to deform.  

(b) The approaches need the smooth compact connected surfaces. However, It could be difficult if the 

course model or target model contain significant noise and also discontinuities due to occlusions. 

(c) The approaches require establishing the correct correspondence. Nevertheless it is very difficult, 

demanding in reality, and time-consuming. It is unsuitable to reconstruct quickly the dynamic object.  

(2) Volume-based approaches 

The volume-based approaches treat topologically different shapes in a more natural way by 

interpolating signed distance fields for source shapes and target ones. 

Cohen-Or et al. [19] adapt interpolating 3D distance field to control the mesh deformation. Moreover, 

the approach has the shortcoming that it is computationally expensive to obtain the 3D distance field. 

What is more, the approach is invalid to point cloud since it requires the closure surface. The paper 

inspires ours. Yemez et al. [20] can obtain the surface by the expression ( , , ) 0f x y z = . ( )f •  stands for 

the 3D iso-level function. Sucmuth et al. [8] given a set of unordered point cloud, their algorithm is able 

to compute coherent meshes which approximate the input data at arbitrary time instances. They obtain 

reconstructions for further time-steps which have the same connectivity as the previously extracted mesh 

while recovering rigid motion exactly. The approach needs prior template mesh and maintains the 

topology of the dynamic model during deformation process. Shinya et al. [15] employ distance field as 

the factor of the energy function which controls the deformation path. The mathematical model is a very 

crucial problem in the approach. Yang et al. [21] propose a novel sparse-sequence fusion (SSF) algorithm 

for handheld scanning using commodity depth cameras, obtaining the fused result by integrating the 

refined depth images into the truncated signed distance field (TSDF) of the target. Ji et al. [22] term the 

network SurfaceNet. It takes a set of images and their corresponding camera parameters as input and 
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directly infers the 3D model. Their approach is that both photo-consistency as well geometric relations of 

the surface structure can be directly learned for the purpose of multi-view stereopsis in an end-to-end 

fashion. 

Existing reconstruction approaches for reconstruction dynamic and static object are difficulty to apply 

them for real-time reconstruction of the dynamic scene. Because it may lead to the following problems: 

(a) It is rather difficult to obtain accurate match between two models. Although some approaches 

achieve this goal, the reconstruction speed is not satisfactory. At the same time, these approaches limit 

the degree of the deformation of the object.  

(b) It is difficult to maintain the topological consistency during deformation. Reconstruction quality is 

difficult to be guaranteed. The approaches may appear a lot of cracks and holes during transport. 

Based on the strengths and drawbacks of the existing methods, we adopted shape-from-silhouette (SFS) 

technique, Spatio-Temporal-Contour consistency to reconstruct a quasi-dense point cloud sequence. 

3 Shape Tracking Framework 

The Fig. 2 illustrates the shape tracking framework. Here the term “shape tracking”, in the way we use it, 

refers to gradual and continuous transport one shape to another shape, while producing the in-between 

point cloud; The term “high confidence point”, refers to these points which make up of the sparse point 

cloud; the term “expansion point” refer to the point which is obtained by interpolating between high 

confidence points. 

 

Fig. 2. Block diagram of the proposed shape tracking system 
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We use the point cloud as an approximate model in the framework. There is an important reason that 

the approach, which reconstructs the object from the multi-view video, generates a large number of 

points. We extend SFS to the dynamic case so as to address the problem of shape tracking. The shape 

tracking technique is mainly based on interpolating distance field. This is mainly because the distance 

values to the boundary change smoothly during the transformation. Therefore the technique can reduce 

the discrimination between source curves and target one during point cloud transport. 

The shape tracking framework consists of three stages: Reconstructing sparse point cloud; Expanding 

sparse point cloud based on Spatio-Contour consistency; Tracking quasi-dense point cloud sequence 

based on Temporal-Contour consistency. Details of each of these stages are given in the following 

subsections. 

3.1 Reconstructing Sparse Point Cloud 

3.1.1 Extracting the Intersection between Epipolar Line and Occluding Contours 

In this section, we solve the problem how to extract accurate intersection between epipolar line and 

occluding contours. The method consists of three steps:  

Firstly, we obtain the epipolar line. In order for the efficiency and simplicity, we simulate the epipolar 

line using the algorithm of digital differential analyzer (DDA) [23]. 

Secondly, we traverse the epipolar line according to increasing order of X  coordinate component 

from pixel startpoint to endpoint, or vice versa.  

Thirdly, the relationship between pixel and contour is determined by isolevel function. That is, we 

obtain the accurate intersection between contour edge and epipolar line by isolevel function. Assumed 

{ }|1
i

I I i M= ≤ ≤  be the set of corresponding silhouette images taken at each slot, the isolevel function 

is represented by Eq. (1): 

 ( , ) (1 )((1 ) ( , ) ( , 1) ((1 ) ( 1, ) ( 1, 1))G u v a b I u v bI u v a b I u v bI u v= − − + + + − + + + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ . (1) 

Where ( , )u v⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  denotes the integer part, and ( , )a b  the fractional part of the projection coordinate 

( , )u v  on the binary silhouette image 
n
I . The function G, taking values between 0 and 1, is the bilinear 

interpolation of the sub-pixel projection corresponding to the binary silhouette image 
n
I  (0 for outside, 1 

for inside). 

During the traversal on the epipolar line, we obtain the intersection between contour edge and epipolar 

line when the function value changes from negative value to positive value, or vice versa. By this means, 

we can improve the accuracy of the intersection 

3.1.2 Reconstructing Raw Point Cloud 

We reconstruct the raw point cloud using the silhouette-based static object reconstruction method. Parts 

of this work, which is our completed work, have appeared in Huang et al. [24]. The raw model is semi-

structured point cloud because we can get the ordered lists of points according to the index of each 

silhouette contour, respectively. The information of the order is benefit of the expansion of the point 

cloud.  

3.1.3 Removing the Outliers 

In practice, there exist errors in the process of reconstructing sparse model because of calculation error. 

The errors would drift over time in the next stages. To avoid error propagation, we remove the noise 

point by projecting the raw model onto the image plane and enforce of silhouette contour constraint. Our 

method consists of the following main steps: obtaining iso-level value of the pixel; judging relationship 

between silhouette contours and pixel by the statistical scheme. 

Obtaining iso-level value of the pixel. To express the idea mathematically, assumed 

{ }| 0
j

I I j M= ≤ <  (M is the number of the view) is the set of corresponding silhouette images taken at 

each slot; point cloud { }3
= 0

i
O P i N∈ ≤ <�  (N is the number of point)，Perspective projection j

∏  
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( j=0, 1, 2, 3… 1M − ) is represented by a 3×4 matrix. 
i
P  is projected onto the all the other silhouette 

planes by Eq. (1):  

 { }| ( )j

i i j i
p P P= ∏ . (1) 

where j

i
p  is the pixel corresponding to silhouette image 

j
I . The pixel j

i
p  is IN if the isolevel value is 

0.5, OUT if -0.5 and ON if in-between.  

Judging location relationship between point and model. Generally speaking, if one point is inside or 

onside the model, it must be its projection point is inside all silhouette contours. However, the numerical 

instability leads that it is difficult to judge the location relationship between point and model. Because the 

pixel corresponding to the point may be inside some silhouette contours or outside another silhouette 

contours. Therefore the above-mentioned conclusion is not also true. In order to solve the problem, we 

utilize the statistical scheme to judge location relationship between point and model. 

3.2 Expanding Sparse Point Cloud Based on Spatio-Contour Consistency 

3.2.1 Spatio-Contour Consistency 

There exists the Spatio-Contour consistency between two neighboring camera views at same slot t. As is 

shown in Fig. 3(a) is the source silhouette image, Fig. 3(c) is the target silhouette image, Fig. 3(b) is the 

interpolation silhouette image between Fig. 3(a) and Fig. 3(c). The consistency of the neighboring spatio 

contour will rise along with increasing the number of the views.  

 

(a) 

 

(b) 

 

(c) 

Fig. 3. The silhouette image from neighboring views, respectively 

Franco et al. [25] mesh the point cloud using the similarly consistency in order to improve the 

reconstruction quality. We now use the consistency for expanding the sparse point cloud.  

3.2.2 Expanding Sparse Point Model 

According to the Spatio-Contour-Consistency theory, we interpolate between two neighboring contour 

curves. Given a point cloud O consists of Ncontour curve corresponding to M camera views. Let us 

consider for simplicity the interpolating two neighboring contour 
Source

C O∈  and 
Target

C O⊆ . The 

expansion procedure is implemented in sequential order as: finding corresponding point-pair; 

interpolating between two curves; removing the outliers.  

Finding corresponding point-pair. Assumed 1

,

k

i j SourceP C∈ , 2

,

k

i j TargetP C∈ , i =0, 1, 2,…… 1M − , j =0, 

1, 2,…… 1N − ; M, N is the number of camera views, contour, respectively ;
1
k =0, 1, 2,…… 1m − , 2

k =0, 

1, 2,…… 1n − , m, n is the number of the point of the contour 
Source

C , Target
C , respectively. We find the 

corresponding point for each point 1

,

k

i jP . The rule is the closest Euclidean distance in spatial.  

In order to find the point-pair, we minimize the sum of square differences between 
Source

C  and Target
C . 
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The cost function is given by Eq.(2) : 

 ( )1 2

1 2

1 2

, ,
,

= 0 = 0

arg min ,
m n

k k

i j i j
k k

k k

E d P P= ∑ ∑ . (2) 

where ( )1 2 1 2

, , , ,

, = -
k k k k

i j i j i j i jd P P P P is the point-to-point Euclidean distance. ( )3 4

, ,

,

k k

i j i jP P  stands for the 

corresponding point-pair, 
3

k  =0, 1, 2,……
1

1m −
, 

4
k =0, 1, 2,……

1
1m −

, 
1

m  is the number of the 

point-pair. 

To improve the efficiency, one can reduce the traverse range by employing a sliding window strategy. 

The sliding window contains the last 
v

N  point (
v

N = 20 in our implementation). At same time, one can 

adopt the Ratio Test method or the Cross Test method for improving the point-pair accuracy. 

With regard to the source contour curve, we start with the first point and continue to its neighbor 

recursively, until algorithm reaches the end point. It is executed simultaneously the process on the target 

contour curve.  

Interpolating two contour curves. Assumed λ  ( 0,1,2..., 1
max

λ λ= − , 
max

λ  stands for the maximum 

number of interpolation) stands for the interpolation index; 
i

A Source
P C∈ ( )1

0,1,2..., 1i n= − , 

j

B Target
P C∈ ( )1

0,1,2..., 1j n= − , 
1

n
 
is the point-pair number. 

i

A
P , 

j

B
P  stands for the high 

confidence point, respectively; i, j is the index of the point, respectively; Q stands for a set of expansion 

point; 
sub

Q  stands for a sub-set of expansion point; 
in te r

P stands for the interpolation point ; γ  stands 

for the Euclidean distance of neighboring points in
sub

Q , 
max

γ  stands for the maximum distance of 

neighboring points ( ),

i j

A BP P . We obtain Q by the following steps: 

Firstly, we obtain the interpolation point in ter
P  by Eq.(3): 

 ( ) = + -
i j i

inter A B A
P P P Pα . (3) 

where [ ]0,1α∈ . And then 
inter

P  is inserted into 
s u b

S . 

Secondly, we let 
sub

Q Q Q= ∪ .  

The two steps are repeated until the end condition is reached. Q is obtained by Eq.(4): 

 ( ) = + -
Source Target Source

Q C C Cβ . (4) 

where [ ]0,1β ∈ . 

Note that we can find reverse curvature points of contour more precise than the current one-to-one 

pairing approach. But we aim at obtaining a good efficiency; our framework does not adopt these 

approaches, such as Bilinear Interpolation and Cubic Spline Interpolation. 

max
λ  and 

max
γ  together determine the denseness of the model. The process of interpolation between 

two points will stop when the condition is satisfactory. The condition is if γ  is less than the maximum 

distance 
max

γ
 
or if λ  exceeds the maximum number 

max
λ . Therefore the number of interpolation is 

different for the different point-pair ( ),

i j

A B
P P .  

After interpolating all the contour curve of the sparse model, it turns into the quasi-dense one.  

Removing the outliers. To remove the outliers, some points need to be removed. For the purpose, we 

adopt the method mentioned in section 3.1.3. In addition, it is important to distinguish high confidence 

point or expansion point from all point of point cloud during removing the outliers. The reason is that if 

the point is the high confidence point, we did not need to judge the location relationship between the 

point and the model. 

At last, we project the quasi-dense point cloud onto corresponding multi-view image so as to attain the 

quasi-dense point cloud with colored information. Refer to the paper [26] for its details. 
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3.3 Tracking Quasi-dense Point Cloud Sequence Based on Temporal-Contour Consistency 

3.3.1 Obtaining Interpolation Silhouette Images 

In order to increase the temporal coherence of model sequence, silhouette images are interpolated 

between key frames for each view. We obtain the interpolation silhouette images by the Distance Field 

images (DF-images). The basic procedure is as follows: 

Obtaining DF-image. Firstly, we obtain the silhouette images from multi-view video at frame t, and then 

extract silhouette contour. Secondly, we convert the images which have silhouette contour to the binary 

silhouette image, and then compute the DF-image based on the distance transform. The result is shown in 

Fig. 4. 

     

(a) the original 

input image 

(b) the silhouette 

image 

(c) the inner 

distance field 

(d) the outer 

distance field 

(e) the combined 

distance field 

Fig. 4.  

Note that the binary silhouette image must have good quality; otherwise the quality of DF-images will 

be affected. 

Interpolating distance field. Interpolating distance field is an integral and important part of our shape 

tracking framework pipeline. We interpolate distance field between neighboring frames to get 

interpolation silhouette image, and then use interpolated DF-image to compute point cloud that are the in-

between model between key models.  

We get two DF-images which correspond to the same view, namely source DF-image and target one. 

Assumed ( )
k
I i, j  is source DF-image and 

1
( )

k
I i, j

+
 is target one. Our method implements the 

interpolation between source pixels and target ones by Eq.(5): 

 ( ) ( ) ( ) ( )1
, 1 , ,

k k
I i j I i j I i j
η

η η
+

= − × + ×⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
. (5) 

where ( )( )1
max

k λη = ⁄ − , η  stands for the progress of transport, it is transition rates, k stands for the 

interpolation index. The source distance field and target one are warped one towards the other, and then 

produce the interpolation distance field. In order to decrease the computation time and alleviate numerical 

instabilities, our method records the pixel value of DF-image using the interpolation matrix, instead of 

interpolation DF-image.  

After the procedure, we obtain the interpolation silhouette image and the interpretation matrix. 

Obtaining interpolation silhouette contour. Once the interpolation DF-image is available, the 

interpolation silhouette image can be determined by the zero points of the distance field or, in the 

discretized version, by the boundary between the positive and negative valued lattice points, whereas the 

pixels itself (its interior) is defined as the set of all negative valued points.  

As is shown in Fig. 5, the interpolation silhouette contour is obtained. The in-between point cloud is 

computed from these contours by the method [24]. 
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(a) the silhouette at frame t (b) the interpolation silhouette 

between (a) and (c) 

(c) the silhouette at frame 1t +  

Fig. 5.  

3.3.2 Temporal-Contour-Consistency theory  

The Temporal-Contour-Consistency is similar to the frame consistency which is used in many fields. In 

the video sequences, there is strong correlation in the same inter-frame scene. Motion estimation 

technology used the time redundancy to improve compressing efficiency in video compression field [24].  

3.3.3 Tracking Quasi-dense Point Cloud Sequence 

Our shape tracking framework is based on interpolating neighboring quasi-dense point cloud. It consists 

of two steps: finding corresponding point-pair and interpolating between neighboring models. Given two 

point cloud ,
Source

O  
Target

O  consists of M contour curve, respectively; Assumed i

Source Source
C O⊆  

( 0,1,2... 1)i M= − , ( 0,1,2... 1)j

Target Target
C O j N⊆ = − ; τ  stands for the progress of transport. The tracking 

method is similar to the method mentioned in section 3.2.2. Note that the source point clouds or target 

ones includes the computed point cloud from the interpolated silhouettes. 

After interpolating all point-pairs of the neighboring point cloud, the Spatio-temporally coherent point 

cloud sequence is obtained. The main distinction of our shape tracking framework is that it does not 

complicatedly and strictly match between any two models. 

4 Experimental Results and Analysis 

For the purposes of testing, we have conducted experiments to demonstrate the performance of our 

Spatio-Temporal-Contour-Consistency-Based shape tracking framework on the dataset publicly available 

datasets “Cheongsam”, “Redskirt”, “Redshirt” [13] and “Lady Dance” 1. “Cheongsam” is the video of 

real-life performances and has 20 views. The image (video) sequence is collected at 25 fps. The 

resolution of images used for reconstruction is 1024 by 768. It is a short sequence (20 frames) with 

various types of actions such as standing, turning, and squatting. “Redskirt” and “Redshirt” are similar to 

“Cheongsam”. The dataset “Lady Dance” of 3D photography collection has 8 images from 8 viewpoints. 

We select 6 viewpoints in order to illustrate our method. 

All the experiments are run on a desktop. Hardware for the experiments is: Intel(R) Core Duo CPU 

E8500 with frequency of 3.16 GHz, graphics card of ATI Radeon HD 3450-Dell Optiplex, memory of 14 

GB. Software for the experiments is: OpenCV, C++. The exact camera parameters are known a priori. 

Therefore we can assess the performance of our framework in approximately ideal conditions. 

                                                           
1 http://4drepository.inrialpes.fr/public/datasets 
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4.1 Expanding Sparse Point Cloud 

In order to improve the accuracy of the intersection between epipolar line and contour, we adopt the 

method mentioned in section 3.1.1. As is illustrated in Fig. 6, our proposed method is more accurate than 

traditional one. 

   

(a) the silhouette image (b) the intersection (blue) using 

traditional method 

(c) the intersection (blue) our 

proposed method 

Fig. 6. 

To assess the efficiency of expanding sparse point cloud by Spatio-Contour-Consistency, we complete 

the interpolation between neighboring contours on the sparse point cloud. The result is shown in Fig. 7. 

 

Dataset 
max

λ
 max
γ

 Sparse point cloud Quasi-dense point cloud 
Coloured quasi- dense  

point cloud 

Lady 

Dance 
5 0.05 

   

Redshirt 5 0.01 

 

 

 

Cheongsam 10 0.05 

 

  

   (a) the sparse point cloud 

which consists of these 

high confidence points 

(Green) 

the quasi-dense point 

cloud which consists of 

these high confidence 

points (Green) and these 

expansion points (Blue) 

(c) the quasi-dense point 

cloud with coloured 

information. The 

denseness is different on 

the red rectangle area 

Fig. 7.  
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As is shown in Fig. 7, the quality of the model of the dataset “Lady Dance” is poor. The reason is that 

the consistency between neighboring views is poor because we select only 6 views from the dataset. But 

the consistency will rise along with the increase of the view number. The quality of the model of the 

dataset “Cheongsam” and “Redshirt” testify the conclusion.Note that the reconstruction time increases 

with the number of pixels in all the contours. The demand about the denseness determines the value 

m ax
λ  and 

m ax
γ . For example, the denseness of the point cloud will rise along with decreasing the value 

max
γ ; but the reconstruction is more time-consuming. As is stated in Section 3.2.2, the number of 

interpolation is different for the different point-pair ( ),

i j

Source Target
P P . In other words, it is adaptive. 

4.2 Tracking Quasi-dense Point Cloud  

In our experiment, we set 5
max
λ = , 0.01

max
γ = , 0.5τ = . The result is shown in Fig. 8. We display 

samples from the point cloud sequence. Point cloud transports from frame 111 to 112, frame 118 to 119 

and frame 128 to 129, respectively. These frames stand for the typical deformation, such as standing, 

turning and squatting. 

 

Frame 

111 to 

112 

 

 

Frame 

118 to 

119 

   

Frame 

128 to 

129 

  

 

(a) the source 

quasi-dense point 

cloud 

(b) the 

interpolation 

point cloud 

between (a) and 

(c) 

(c) the point cloud 

based on 

interpolation 

silhouette image 

(d) the 

interpolation 

point cloud 

between (c) and 

(e) 

(e) the target 

quasi-dense point 

cloud 

Fig. 8.  

In order to test the performance on different video sequences, we have conducted experiments on the 

dataset “Redskirt”. The datasets is a short sequence showing medium speed dance moves, and thus offers 
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good opportunity to verify the tracking stability. The transportation process between neighboring models 

is illustrated in Fig. 9. 

 

Frame 

45 to 46 

  

Frame 

47 to 48 

  

Frame 

57 to 58 

  

 (a) the source 

quasi-dense 

model 

(b) the overlap 

between 

interpolation 

quasi-dense 

model (Blue) and 

source one 

(c) the overlap 

between quasi-

dense model based 

on interpolation 

silhouette (Blue) 

and source one 

(d) the overlap 

between 

interpolation 

quasi-dense 

model (Blue) 

and target one 

(e) the target 

quasi-dense model 

Fig. 9. Point cloud transport from Frame 45 to 46, 47 to 48, and 57 to 58 

As is shown in Fig. 8 and Fig. 9, the source shape gradually transports to maximize its similarity with 

target one. Some readers may observe that the result from Frame 45 to 46 is similar to the one from 

Frame 47 to 48. The reason is that the four frames are neighboring. If they observe carefully the red 

rectangle area, they will find that the result is slightly different. The result reflects the performance of our 

framework. 

4.3 Qualitative Assessment 

We now analyze the average reconstruction time through the sequence. A favorable comparison to state 

of the art methods is listed in Table 1. It shows quantitative evaluation on the reconstruction time per 

frame. Our method shows competitive performance on through the sequence. 
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Table 1. Reconstruction time per frame through the sequence 

Dataset Method Time (s) 

Lady Dance 

Bilir, et al. [7] 

Allain, et al. [27] 

Mustafa, et al. [11] 

Our method 

9.32 

9.61 

10.75 

6.43 

Cheongsam 

Liu, et al. [13] 

Bilir, et al [7] 

Allain, et al. [27] 

Our method 

142.68 

67.41 

80.85 

33.16 

Redskirt 

Liu, et al. [13] 

Bilir, et al. [7] 

Allain, et al. [27] 

Our method 

145.45 

68.44 

80.78 

34.65 

 

Note that the temporal coherence will rise with increasing the value τ  between neighboring models. 

To obtain a quantitative analysis of the quality of the model, an experiment on the datasets 

“Cheongsam”, “Redskirt”, and “Lady Dance” was performed, respectively. Table 2 lists the accuracy 

(Acc.) and completeness (Comp.) with respect to the ground truth model. Note that we set 5
max
λ = , 

0.01
max
γ = , and 0.5τ = . The index of the model is shown in parentheses in the table header.  

A suitable choice of the parameter 
max

λ , 
max

γ  and τ  is very important. They affect the Spatio-

temporal coherence of point cloud sequence as well as the reconstruction time. Generally speaking, as 

max
λ  increases, τ  increases or 

max
γ  decreases, the Spatio-temporal coherence of the model sequence 

will increase. To obtain balance between the speed and the accuracy, one should select an appropriate 

value for these parameters. 

Table 2. Accuracy and completeness for different datasets and methods 

Cheongsam (111) Redskirt (45) Lady Dance (00) 
Method 

Acc. Comp. Acc. Comp. Acc. Comp. 

Liu, et al. [13] 

Bilir, et al. [7] 

Allain, et al. [27] 

Our method 

0.65 

0.72 

0.59 

0.91 

98.1% 

97.8% 

99.0% 

95.2% 

0.70 

0.79 

0.64 

0.96 

97.9% 

98.3% 

99.2% 

94.1% 

0.79 

0.85 

0.77 

1.01 

86.2% 

86.8% 

87.1% 

83.4% 

 

5 Conclusions 

We have proposed and tested the automatic Temporal-Spatio-Contour-Consistency-based framework to 

track the time-varying shape of a dynamic object from its multi-view video. The main distinction of the 

framework is that it does not complicatedly and strictly match between any two contours on the same 

model or the neighboring model. The shape of the dynamic object is tracked correctly via point cloud 

transports based solely on image cues. We can obtain a higher frame rate, Spatio-temporal-coherence and 

quasi-dense point cloud sequence with color information. The advantage of the framework can be 

summarized as follows: 

(1) It expands the sparse point cloud using Spatio-Contour consistency. By this means, one can rapidly 

obtain a quasi-dense point cloud sequence. 

(2) It interpolates the quasi-dense point cloud sequence between consecutive models using Temporal-

Contour consistency. By this means, one can obtain the point cloud sequence with the better Spatio-

temporal coherence.  

(3) It obtains robustly the sub-pixel intersection between the epipolar line and the contour edge. By 

this means, one laid the foundation for higher reconstruction quality, especially the dynamic object 

exhibiting complex topology.  

For the algorithm to work successfully, there is generally a compromise between the frame rate, the 
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speed of the motion and the accuracy of the shape details. Note that our framework is unsuitable for the 

application in which the model sequence with the high accuracy must be met. By implementing our 

approach in parallel, the execution time will be decreased. Therefore, in future work we will do it. 
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