
Journal of Computers Vol. 30 No. 4, 2019, pp. 57-62

doi:10.3966/199115992019083004005

57

Virtual Machine Placement Algorithm for

Minimizing Run Time in Cloud Environment

Chia-Cheng Hu1,2*, Zhong-bao Liu2, Su-Zhen Ge2, Hong-Bo Zhou2, Chong-Jie Zhang2

1 College of Information Engineering, Yango University, Fuzhou 350015, Fujian, China

2 School of Software, Quanzhou Institute of Information Engineering, Quanzhou 362000, Fujian, China

cchu.chiachenghu@gmail.com, zhongbao@hotmail.com, 592260817@qq.com, zhb591111@163.com,

475488008@qq.com

Received 29 September 2017; Revised 10 October 2017; Accepted 10 October 2017

Abstract. As enterprises store more data, cloud computing has emerged as a powerful and

popular paradigm on processing and analyzing the large-scale data. The cloud consumers can

access the computing resources through cloud technologies and build their own computing

platforms on virtual machines (VMs). The VMs will be placed on the hardware computing

resources provided by the Cloud. An important problem is to allocate the VMs to the physical

computers in an efficient way. For this issue, MapReduce has emerged as the leading platform to

scale-out to large clusters of machines capable of processing PBytes of data. One of the biggest

challenges from the perspective of the cloud provider is to offer this MapReduce service in the

cloud effectively. Most cloud providers are focusing their attention on the runtime efficiency of

the computers in the Cloud. The majority of studies converted the problem of mapping VMs to

physical computers to be a Bin-packing problem, which is NP-Complete. In this paper, we

propose algorithms for solving the problem of allocating VMs to physical computers with

minimum run time. The problem is formulated as a 0/1 integer linear programming (0/1 ILP).

Then, a rounding algorithm is proposed for obtaining a feasible solution.

Keywords: 0/1 integer linear programming, mapreduce, RFID cloud computing, virtual machine,

1 Introduction

In Cloud computing, a pool of hardware computing resources is available to users (called cloud

consumers) via the Internet [1]. Computing resources, e.g., processing power, storage, software, and

network bandwidth, are represented to cloud consumers as the accessible public utility services. The

cloud consumers can access the computing resources through cloud technologies without detailed

knowledge on the underlying infrastructure, and build their own computing platforms on virtual

machines (VMs). Finally, the VMs are placed on the hardware computing resources provided by the

Cloud.

An important problem is to manage the hardware computing resources of the Cloud for satisfying the

cloud consumer requirements in an efficient way of allocating the VMs to the physical computers. For

this issue, MapReduce [2] has emerged as the leading platform with seamless ability to scale out large

clusters of machines in order to be able of processing PBs of data. It is a framework for processing

parallelizable problems across huge datasets using a large number of computers, collectively referred to

as a cluster. It breaks a user computation into small tasks that run in parallel on multiple computers, and

scales these tasks to the cluster. Pioneered by Google and popularized by the open-source Hadoop [3], a

large number of enterprises including technology and Internet companies as well as traditional businesses

like retail [4] and pharmaceutical research [5] have used MapReduce for business analytics.

One of the biggest challenges from the perspective of the cloud provider is to offer this MapReduce

service in the cloud effectively. Most cloud providers are focusing their attention on the runtime

* Corresponding Author

Virtual Machine Placement Algorithm for Minimizing Run Time in Cloud Environment

58

efficiency of the computers in the Cloud. The runtime duration of a distributed job in the Cloud depends

on the size of data it processes and the amount of VM resources allocated to it. The duration of a

computer is determined by the longest runtime of the VMs running on the computer. If the runtime of

most VMs is much shorter than the runtime of the longest one, the runtime efficiency of the computer

becomes low.

In this paper, we focus on allocate VMs to physical computers with minimum runtime. The problem is

formulated as a 0/1 integer linear programming (0/1 ILP). Then, a rounding algorithm is proposed for

obtaining a feasible solution. Simulation is also executed to evaluate the performance of the proposed

algorithm.

2 Related Works

In [6], the authors used nature-inspired method to propose Ant Colony based workload placement

algorithm, but the algorithm had high complexity and slow convergence speed. In [7], the authors

proposed a placement algorithm using VM migration to enhance more space saving of physical servers,

but this placement approach may lead to local optimum result and more migration steps. Strategies

proposed in [8] and [9] emphasized the cost of migration and analyzed whether the energy saving after

migration could offset the cost of migration process. In [10], a placement strategy making spatio-

temporal tradeoffs for VMs was proposed, but it was only applicable to the environment where jobs

arrive at the same time. If the jobs arrive dynamically and continuously, it was not applicable.

In [11-12], the authors evaluate the power consumption of data centers by using MapReduce. In [13],

how the impact of different parameters of a Hadoop job is studied. In [14], the authors propose a new

data layout by turning off some of the computers for saving energy. In [15], the authors adopt a strategy,

where incoming jobs are batched and all computers are used to store the data and execute jobs after the

entire cluster can be suspended.

3 ILP and Rounding Algorithm

In this section, a formal definition of the problem of allocating VMs to physical computers with

minimum runtime will be given. The following notations in the problem formulation are adopted:

‧ The set of VMs is denoted by V and |V| = v;

‧ The set of physical computers is denoted by P and |P| = p;

‧ Let tj to denote that the runtime of VM j, where 1 ≤ j ≤ v.

Prior to the problem formulation, the following decision variables are defined:

‧ xi,j=1 (xi,j=0) is used to denote that VM j is (is not) assigned to group j;

‧ T is used to denote the total runtime among all physical computers.

The objective is to minimize the total runtime among all physical computers, i.e., to minimize T. In the

assignment, each VM j is required to be assigned to exactly one physical computer, i.e.,
,

1

1.

n

i j

j

x

=

=∑

Therefore, constraint (1) is induced. On the other hand,
,

1

v

j i j

j

t x

=

∑ is the total runtime of physical

computer i for executing all VMs j assigned to physical computer i. Since all
,

1

1.

n

i j

j

x

=

=∑ should be

smaller than T, the constraint (2) is induced. The 0/1 ILP formulation is as follows.

Minimize T

Subject to

,

1

1

n

i j

j

x

=

=∑ for 1 ≤ j ≤ v (1)

Journal of Computers Vol. 30 No. 4, 2019

59

 T −
,

1

v

j i j

j

t x

=

∑ ≥ 0

for 1 ≤ i ≤ p and 1 ≤ j ≤ v (2)

 xi,j ∈
{0, 1}

for 1 ≤ i ≤ p and 1 ≤ j ≤ v (3)

If xi,j ∈{0, 1} are relaxed to 0 ≤ xi,j ≤ 1, then an LP results, which is polynomial-time solvable. Suppose

that
*

,i j
x is the optimal solution to the LP, where 1 ≤ i ≤ p and 1 ≤ j ≤ v. In the following, we present a

rounding algorithm that can round
*

,i j
x to

,i j
x′ , where

,i j
x′ ∈{0,1} is a feasible solution to the 0/1 ILP.

Initially, we set ,i j
x′ =

*

,i j
x for all 1 ≤ i ≤ n and let X = {

*

,i j
x | 0 <

*

,i j
x < 1}.

The rounding algorithm is executed iteratively until X is empty. In each iteration, a
*

,k jx is selected if

the increment
,k jΔ of the objective is minimum, where

*

,i j
x ∈X. The increment

*

, , ,
,k j k j k j

−

Δ = Δ −Δ

where
,k j

+

Δ is the increment amount of T by setting
*

,
1,

i j
x = and

,k j

−

Δ is the decrement amount of T by

setting all
*

,
0

i j
x = for 1 ≤ i ≤ p and i≠k. The rounding algorithm is presented below.

(1) sset X ={
*

,i j
x | 0 <

*

,i j
x < 1};

(2) for each
*

,i j
x ∈X do

(3) set
,k j

+

Δ to be equal to the increment amount of T by if setting
*

,
1

i j
x = ;

(4) set
,k j

−

Δ to be the decrement amount of T by setting all
*

,
0

i j
x = for 1 ≤ k ≤ p and i≠k;

(5)
, , ,

;
i j i j i j

+ −

Δ = Δ −Δ

(6) determine
,k jΔ ∈X is minimal;

(7) set
*

,
1

i j
x = ;

(8) set all
*

,
0

i j
x = for 1 ≤ i ≤ p and i≠k;

(9) delete all
*

,i j
x from X for 1 ≤ i ≤ p;

(10) If X is not empty, go to (1).

4 Simulation and Performance Analysis

We simulate our algorithms in a large cloud datacenter with various MapReduce jobs to be run and

allows for VMs to be placed on physical servers. After all VMs on a particular server have finished, we

simulate the server being powered off or hibernated by the cloud service provider.

Workload demand on the system depends on the parameters of the MapReduce jobs submitted.

Specifically, the parameters that impact the nature of the workload include: (1) Number of jobs, (2)

Minimum number of VMs required for each job, (3) Type of VM required for each job, (4) Estimated

completion time for each job. We explore a range of values for all these parameters, and in turn explore

several workload mixes. The default configuration uses (1) 50 MapReduce jobs, (2) the minimum

number of VMs required is uniform on [1, 10] with integer rounding, (3) a round-robin assignment is

used to assign VM types to successive jobs, and (4) estimated completion times for each respective job is

taken from a uniform distribution on [10, 100] minutes.

The environment is characterized by the following:

‧ Number of physical machines available,

‧ Resource characteristics of physical machines,

‧ Allowed resource characteristics of the virtual machines.

In our simulations, we make the following decisions, respectively:

‧ There are sufficient server resources to accommodate all MapReduce jobs running in parallel with

their respective number of VMs required,

Virtual Machine Placement Algorithm for Minimizing Run Time in Cloud Environment

60

‧ We use a three dimensional normalized resource capacity model (e.g., CPU, memory, storage) where

the resource capacity of each server along each dimension is 200 units by default, and

‧ We use seven VM types with pre-set resource configurations. To ensure a good mix of workloads for

any particular configuration, we run 10 trials for each configuration and take an average.

We use the following three metrics to measure the efficiency of our placement algorithms:

‧ Machine uptime: the total time of the servers is up.

‧ Resource inefficiency: The amount of resources wasted on the server at the time of the initial

placement.

‧ Time imbalance: The Difference in the runtimes of the first and the last VMs to finish on the server.

We compare our placement algorithm with random first-fit placement in which VMs randomly

shuffled before a first-fit placement is performed, thus exploiting VM diversity.

Fig. 1 shows that our placement algorithm has less machine uptime than random first-fit placement. In

fact, its machine uptime is 33% better than random first-fit placement. The reason for the efficiency of

our placement algorithm can be seen from Fig. 2 and Fig. 3 which show that our placement algorithm has

lower resource inefficiency and time imbalance than random first-fit placement.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 50 100 150 200 250 300

Number of jobs

M
ac

h
in

e
u

p
ti

m
e

(i
n

 m
in

u
te

s

our placement algorithm

random first-fit placement

Fig. 1. Machine uptime

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 50 100 150 200 250 300

Number of jobs

R
es

o
u

rc
e

in
ef

fi
ci

en
cy

our placement algorithm

random first-fit placement

Fig. 2. Resource inefficiency

Journal of Computers Vol. 30 No. 4, 2019

61

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300

Number of jobs

 T
im

e
im

b
al

an
ce

our placement algorithm

random first-fit placement

Fig. 3. Time imbalance

5 Conclusion

In this paper, we studied the problem of energy efficient MapReduce in a private cloud environment. Our

techniques place MapReduce VMs within the cloud in a manner that is not only an efficient spatial fit,

but also a balanced temporal fit. The results of Fig. 1, Fig. 2, and Fig. 3 show that our placement

algorithm successfully exploits both resource and time to achieve significant energy savings of physical

computers based on two key principles. First, we allocate VMs with similar runtimes to a server such that

the server runs at a high utilization throughout its uptime. Second, while the VMs with similar runtimes

are allocated to the server, their complementary requirements (CPU, memory, storage and network) are

also considered such that the available resources of the server are fully utilized.

Acknowledgements

This work was supported in part by the Fujian Provincial Key Laboratory of Cloud Computing and

Internet-of-Thing Technology, China.

References

[1] I. Foster, Y. Zhao, S. Lu, Cloud computing and grid computing 360-degree compared, in: Proc. Grid Computing

Environments Workshop, 2008.

[2] J. Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters, Commucations of the ACM 51(1)(2008)

107-113.

[3] Hadoop, <http://hadoop.apache.org>, 2012.

[4] AsterData, <http://www.asterdata.com/customers/barnes-andnoble>, 2012.

[5] M. Dublin, <http://www.genomeweb.com/informatics/gothadoop>, 2012.

[6] E. Feller, L. Rilling, C. Morin, Energy-aware ant colony based workload placement in clouds, in: Proc. 12th IEEE/ACM

International Conference on Grid Computing, 2011.

[7] B. Li, J.X. Li, J.P. Huai, T.Y. Wo, Q. Li, L. Zhong, EnaCloud: an energy-saving application live placement approach for

cloud computing environments, in: Proc. Cloud Computing, 2009.

[8] G. Jung, M.A. Hiltunen, K.R. Joshi, R.D. Schlichting, C. Pu, Mistral: dynamically managing power, performance, and

adaptation cost in cloud infrastructures, in: Proc. Distributed Computing Systems, 2010.

Virtual Machine Placement Algorithm for Minimizing Run Time in Cloud Environment

62

[9] A. Verma, P. Ahuja, A. Neogi, pMapper: power and migration cost aware application placement in virtualized systems, in:

Proc. the ACM/IFIP/USENIX International Middleware Conference, 2008.

[10] M. Cardosa, M. Korupolu, A. Singh, Shares and utilities based power consolidation in virtualized server environments, in:

Proc. 11th IFIP/IEEE Int’l Conf. Integrated Network Management, 2009.

[11] K. Lim, P. Ranganathan, J. Chang, C. Patel, T. Mudge, S. Reinhardt, Understanding and designing new server architectures

for emerging warehouse-computing environments, in: Proc. 35th Ann. Int’l Symp. Computer Architecture, 2008.

[12] Y. Chen, L. Keys, R. Katz, Towards energy efficient MapReduce, Technical Report UCB/EECS-2009-109, Univ.

California, 2009.

[13] J. Leverich, C. Kozyrakis, On the energy (In) efficiency of hadoop clusters, in: Proc. SOSP Workshop Power Aware

Computing and Systems (HotPower), 2009.

[14] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, A. Warfield, Xen and the art of

virtualization, in: Proc. ACM Symp. Operating Systems Principles (SOSP), 2003.

[15] Scheduling in Hadoop, < http://www.cloudera.com/blog/tag/scheduling/>, 2012.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

