
Journal of Computers Vol. 30 No. 4, 2019, pp. 113-121

doi:10.3966/199115992019083004010

113

Task Scheduling Algorithm Based on Improved Data Gridding

Xiang-Kui Jiang1*, Yong-Qing Fan1, Zhi-Cang Wang1, He-Jun Xuan2

1 School of Automation, Xi’an University of Posts and Telecommunications,

Chang’an West Street, Chang’an District, Xi’an 710121, China

{jiangxiangkui@xupt.edu.cn, fanyongqing@xupt.edu.cn, zhcwang@qq.com}

2 School of Computer and Information Technology, Xinyang Normal University,

Xinyang, 464000, China

xuanhejun0896@126.com

Received 13 January 2019; Revised 14 January 2019; Accepted 12 March 2019

Abstract. Task scheduling in distributed environments is an important research field. To address

the issue of effective resource scheduling, a resource scheduling model using data gridding is

proposed in this paper. First, we use data gridding on the attributes of resources to divide

different types of resources into different data subspaces. We then search the gridding data for

resources satisfying the minimum requirements of the task, which reduces the blindness of the

allocation of resources and decreases the time needed for resource matching and scheduling.

Finally, a globally optimized resource allocation strategy to minimize the task execution time is

adopted to choose from among the resources satisfying the minimum task requirements. Results

of experimental and theoretical analyses show that the proposed algorithm has a higher task-

matching speed and shorter task-execution time than traditional algorithms.

Keywords: data gridding, distributed computing, heterogeneous network, task scheduling

1 Introduction

The preparation of manuscripts which are to be reproduced by photo-offset requires special care. Papers

submitted in a technically unsuitable form will be returned for retyping, or canceled if the volume cannot

otherwise be finished on time. With the advent of the age of big data, the effective use of parallel and

distributed systems for big data processing has become a popular topic of scientific research. Task

scheduling in distributed systems [1-2] is the typical method for highly efficient handling of big data. By

considering the performances of various resource nodes, task requirements, and related factors, task

scheduling allocates various tasks to the corresponding resource nodes in an approach for achieving

particular goals or meeting certain expectations [3-4]. The effectiveness of the task scheduling algorithm

is an important factor affecting the quality of system services; therefore, the manner of choosing

appropriate resources from the system and for assigning tasks are key problems to be solved when

designing scheduling algorithms for executing tasks.

Different user tasks have different levels of service demands [2]. Algorithms for task scheduling have

been widely studied [5-8]. The current research focus area for task scheduling algorithms is the

scheduling of tasks to minimize the overall response time, which is minimization of the time needed to

complete the job. One such algorithm is the so-called min-min algorithm. This algorithm can rapidly

schedule tasks. However, the scheduling algorithm always schedules sub-tasks in advance before

carrying out the main task. Moreover, some resources are frequently assigned tasks, leading to an

imbalance in the processor load.

Scheduling algorithms based on intelligent algorithms, such as genetic algorithms and particle swarm

optimization (PSO) algorithms [9-10], can obtain better scheduling results during static scheduling. In

addition, they can achieve faster response times for tasks. However, for real-time tasks, good scheduling

* Corresponding Author

Task Scheduling Algorithm Based On Improved Data Gridding

114

results have not been demonstrated. In a grid environment with rich resources, algorithms based on

resource clustering [11-12] can narrow the scope of task scheduling during resource selection, improve

the resource selection accuracy, choose the appropriate processor for task allocation, and reduce the task

execution time. Although these scheduling algorithms can improve the speed of task resource matching,

the result is not necessarily optimal clustering. This is because of the parameter settings at the moment of

clustering and the limitations of the clustering methods. Preferred tasks are unable to find resources to

meet the given conditions, resulting in a reduced quality of system service.

To decrease the time required for matching tasks and resources, and to improve the efficiency of

resource allocation, a resource matching algorithm based on improved handling of grid data is herein

proposed. The distributed system resources, which fulfill the minimum demand, are quickly engaged

when a user task arrives, thus improving the speed of matching tasks and resources. To reduce the task

execution time, a global optimal search strategy is used to minimize the completion time of the user task.

2 Problem Statement and Preliminaries

In a distributed system—which has a greater number of processor resources—let { }1 2, , ,
n

R R R R= … be

the set of processors in the distributed system resources, where n R= is the number of processor

resources in the system. For the i th processor iR in the resource pool of the distributed system, we use

the triad { }id user cap
, ,i i i iR R R R= to represent the attributes of processor iR , in which id

iR is the ID number

of the processor, user

iR means that the processor is subordinate to the providing distributed system, and
cap

iR is the computing power, storage capacity, reliability, security level, and other characteristic values

of the processor.

A heterogeneous distributed system is one in which the attributes of different processors differ in their

distributed system resources, such as their calculation speed, communication speed, storage capacity,

reliability, and security. Therefore, attribute cap

iR of processor iR can be expressed as

{ }cap
1 2, , ,

i i i

NiR r r r= … , where ()1, 2, ,
i
jr j N= … is the jth attribute value in the attribute cap

iR of processor

iR , and N is the number of cap

iR attributes of processor iR .

With the expansion of distributed applications, an increasing number of application tasks have certain

requirements in terms of system resources [13]. For example, real-time tasks require a certain minimum

computing speed, a network link to the processor, and an adequate storage device speed to achieve

instantaneous execution of tasks. Furthermore, the levels of reliability, fault-tolerant capability, and

security performance of processors must also be high to satisfy the reliability and safety demands of tasks.

For a task in a distributed system, let { }1 2, , ,
m

T T T T= … be the task set, where m T= is the number

of tasks in the set. In this task set, the ith task iT can be expressed as { }a d 1 2, , , , ,

i i i i i

i NT t t t t t= … , where a

i
t

is the arrival time of task iT , d

i
t is the absolute deadline for task iT , and ()1, 2, ,

i
pt p N= … is the

minimum requirement for properties ()1, 2, ,pr p N= … of the processor resource. Consequently, if task

iT has been assigned to be performed on processor jR , then ()1, 2, ,
i j
p pt r p N≤ = … ; that is, the value of

the p th attribute of processor jR is not less than the minimum required for task iT .

3 Improved Scheduling Model Using Data Gridding

Decreasing the time required for matching tasks and resources, and quickly selecting the appropriate

resources to be assigned to a task, are important strategies for minimizing the response time of a task.

When a task arrives, the system resources meeting the minimum demands of the task are quickly selected

from the distributed system. Appropriate resources are selected and assigned to tasks submitted by users,

thus minimizing the task execution time. To address the problem of how resources meeting the minimum

requirements of a task can be rapidly selected from the distributed system, we herein propose a scheme

Journal of Computers Vol. 30 No. 4, 2019

115

based on improved data gridding. The scheme is designed to improve the speed and accuracy of the

allocation of resources.

3.1 Improved Resource Matching via Data Gridding

Data gridding is a means of processing discrete data that is widely used in light detection and ranging

(LiDAR) point cloud data filtering, target recognition, and other research fields [14-15]. The data

gridding method divides a high-dimensional space into subspaces 1 2 Nn n n× ×⋅⋅⋅× (where N is the

number of data dimensions), and then maps the data to the corresponding subspaces. This method is

simple and convenient. Moreover, it is easily applicable to discrete data and data having no rules. Thus,

the attribute information for resources in the distributed system and the task requirements for these

properties can be abstracted as data points. The discrete points can then be mapped to the subspaces of

the data space.

3.1.1 Grid Width Selection and Data Coordinate Determination

Each attribute value or task requirement can be regarded as a data point in data space. In this space, the

dimensions are represented by the data point coordinates, and the appropriate mapping function is chosen

to map each data point to the corresponding subspace. To perform this mapping, an appropriate grid

width for each dimension must be selected to divide the high-dimensional data space. In traditional data

gridding on LiDAR data, it is valid to conduct a mesh partition with a uniform distribution of data points,

where each dimension has the same grid width. However, for data representing the attributes of

distributed system resources, which have a non-uniform distribution, this method is not suitable. When

data are more concentrated in a dimension, the large grid width will cause more data points to map to the

same grid, which is not conducive to the gridding of resource attribute data. Therefore, we propose an

improved data gridding method for matching resources that meet the minimum task demands.

Assuming that the ith data point is expressed by ()1 2, , ,

i i i i

Nx x x x= … , the width of the initial grid and

the coordinates of the data points in the data grid can be calculated via the following steps.

Calculate the data space volume by:

 ()max min
1

N i i

N
i

V x x
=

= −∏ . (1)

where max
1

max { }
p

i i

k
k N

x x

≤ ≤

= and min
1

min { }
p

i i

k
k N

x x

≤ ≤

= are the maximum and minimum, respectively, of the data

on the ith dimension, and N is the dimensionality of the data space.

(2) Calculate the average data volume held by data points according to:

 N N pV V N′ = . (2)

where NV is the volume of the data space and pN is the number of data items in the space.

(3) Calculate grid width i
a on the ith dimensional space by:

 , 1, 2, ,
i i

a k s i N= × = … . (3)

where i
s is the variance of the data in the ith dimension. In addition, the proportionality coefficient k is

the specific value for the ith grid width i
a and the variance i

s . Once the grid width i
a is determined, the

information pertaining to the data distributed in the ith dimension is considered. The grid width of data in

the ith dimension and the data distribution in the dimension are directly proportional to the intensity; that

is, i i
a k s= × . Thus, the distribution of data in the dimension can effectively determine the grid width:

when the data distribution is dense, grid width is small; otherwise, the width is larger.

(4) Calculate the coefficient, k , by Eqs. (4) and (5):

Task Scheduling Algorithm Based On Improved Data Gridding

116

 ()
1 1 1

N N Ni i N i

N
i i i

V a k s k s
= = =

′ = = × = ×∏ ∏ ∏ . (4)

 ()
1 1

N Ni iN N
N N p

i i
k V s V N s

= =

′= = ×∏ ∏ . (5)

(5) Calculate the position ()1 2, , ,

i i i i

Np p p p= … of the ith data point in the grid according to:

 ()min 1, 1, 2, ,
i i i i

k kp x x a k N⎢ ⎥= − + =⎢ ⎥⎣ ⎦
… . (6)

After Steps 1 to 5, the width of the initial mesh and the coordinates of the data have been identified. To

make each data grid contain only one data point, it is necessary to modify the grid width (generally, one

to three revisions are needed). In this paper, the final determinations of grid width and data points are

completed according to the method shown in Fig. 1.

Fig. 1. Calculation of the grid width and data point coordinates

In Steps 3 and 4 of the improved data gridding method, the distribution information in each dimension

in the data is considered. The grid width for the dimension and the intensive distribution of data in the

dimension are directly proportional; that is, i i
a k s= × , where i

s is the variance of data in the ith

dimension. When the data distribution is dense, the grid width is small; otherwise the width is larger. In

this case, the distribution information of data is conducive to the mapping of only one point in each grid.

Traditional data gridding methods only determine the grid width once, and multiple data points are

mapped to each grid. Therefore, to cause only one resource data point to be mapped to each subspace, a

correction process for determining the grid width of the data is incorporated into the improved gridding

method; that is, / 2
i i

a a= , as shown in Fig. 1. Although the decrease in grid width will increase the

number of grids, only grids having data points mapped to them are stored at the time of storage. Thus,

this modification will not increase the storage space or reduce the speed of access.

Journal of Computers Vol. 30 No. 4, 2019

117

3.1.2 Coarse Matching of Resources

When task { }a d 1 2, , , , ,

i i i i i

i NT t t t t t= … is assigned to execute in processor { }id user

1 2
, , , , ,

j j j
j j j NR R R r r r= … , Eq.

(7) is established, which states that the p th attribute value of processor jR is not less than the minimum

required by task Ti.

 ()1, 2, ,
i j
p pt r p N≤ = … . (7)

After the data gridding, the subspace position of the resource requests for task { }a d 1 2, , , , ,

i i i i i

i NT t t t t t= …

is ()req req req req

1 2, , ,
N

p p p p= … on the condition that the data subspace position of processor j assigned to

the task is ()1 2
, , ,

j j j
j Np p p p= … , where req

k
p and j

kp can be obtained by Eqs. (8) and (9).

 ()req min
1, 1, 2, ,

i k

k kk
p t r a k N⎢ ⎥= − + =⎢ ⎥⎣ ⎦

… . (8)

 ()min
1, 1, 2, ,

j i k
k kkp r r a k N⎢ ⎥= − + =⎢ ⎥⎣ ⎦

… . (9)

In these equations, min

kr is the minimum value of the data ()1, 2, ,k k N= … in the preprocessing

resource.

During data gridding, which is a kind of linear transformation from the property data to grid

coordinates, the size relationships of the data are preserved, and Eq. (10) can be obtained by Eq. (7), (8),

and (9).

 req
, 1, 2, ,

j

k kp p k N≥ = … . (20)

Using Eq. (10), the resources that satisfy the lowest requirement of the given task are at the top right in

the subspace of the task after the resource data gridding. Thus, when a task arrives, the subspace

locations are calculated according to Eq. (8). Then, the processor that satisfies the minimum requirement

for the task resource can be found with degree of complexity (1)o .

3.2 Resource Scheduling Model

With the improved data gridding method, the matching of the task and resources can be carried out

quickly when a task arrives, thereby finding the correct resources from among those that meet the

minimum task demands. To minimize the task execution time, the appropriate processor must be

determined. In a distributed system, the completion time of a task submitted by a user depends on the

finishing time, which is the time of the last accomplishment of the task. It is also the time of the end of

the latest completed task execution. Let the completion time of a task of user u be ()ut T , and let ()ujt T

be the completion time of task u
jT .

 () (){ } ()a ,max ,
u j u
j i i jt T t R t t T= + . (31)

In Eq. (11), ()it R represents the finishing time of the previous task in processor iR ,
a

j
t is the arrival time

of user task jT , and (),

u
i jt T is the execution time of task jT in processor iR . Then, ()ut T can be

expressed by Eq. (12), which is the latest completion time of all tasks of this user.

 () (){ }max
u u

j
j U

t T t T
∈

= . (42)

In Eq. (12), U is the set of all tasks of user u . To make the execution time of the tasks of user u the

earliest, ()ut T must be made the earliest. Thus, we employ Eq. (13) to determine the processor to which

the task will be assigned for execution for ensuring the earliest possible finishing time for the task.

Task Scheduling Algorithm Based On Improved Data Gridding

118

(){ }{ }

() d

_ argmin max

such that

u
j

j Ui

u j
j

U

num P t T

t T t

i R

∈

⎧⎪⎪⎪ =⎪⎪⎪⎪⎪
⎨
⎪⎪⎪ ≤⎪⎪⎪⎪ ∈⎪⎩

 (53)

In Eq. (13),
d

j
t is the deadline for completion of the task, and U

R is the set of processors meeting the

requirements of task jT . By solving this equation, the processor _num P to which task jT is assigned is

obtained, which will ensure the shortest processing time for the task.

4 Experiment Results and Analysis

To decrease the time needed for resource matching, we propose a strategy for resource matching based

on improved data gridding. The proposed method accelerates the search for resources of the distributed

system that meets the minimum requirements of a task. A global search strategy is adopted to improve

the distribution of processors to execute the task in the shortest possible time. To verify the validity of

this method, the comparison of algorithms mainly focuses on the time needed to search for resources that

meet the minimum requirements of a task (i.e., the time for coarse resource matching) and on the

execution time of the task. Section 4.1 provides an analysis of the time complexity of coarse matching for

resources to verify the speed achieved when matching resources using the improved data gridding

method. In Section 4.2, the algorithm proposed herein (task scheduling based on data gridding, or

TSBDG) is compared with the min-min algorithm and the fuzzy clustering and two-level-based task

scheduling (FCTLBS) algorithm [12] in completing simulation experiments on different tasks. We

thereby demonstrate that the TSBDG algorithm results in execution times are shorter than those of other

algorithms.

4.1 Time for Coarse Matching of Resources

In the method of the comparison of resources, the task having the lowest demand for resources is found

in a distributed system with m resources by a search of tn tasks for the task having the lowest

requirements; the time complexity for this search is ()to m n× . Using the clustering method, the

complexity of dividing m resources in the distributed system into N classes (N being the number of

resource properties) is ()o m IterateTimes× , where IterateTimes is the maximum number of iterations

during clustering. The complexity of searching for resources that meet the minimum requirements of a

task from among preferred resources is ()io m , where im is the number of resources of class i . As a

result, using a clustering search for resources meeting the lowest requirements of tn tasks in a distributed

system, the time complexity is ()i to m n m IterateTimes× + × . Moreover, when the quantity in of tasks

is a larger value, the complexity of this method is ()i to m n× .

Using data gridding methods, the complexity of partitioning m resources in a distributed system into

subspaces is ()o m MaxTimes× , where MaxTimes is the maximum number of revisions. The maximum

number of revisions is generally one to three, and it is significantly smaller than the maximum number of

iterations for the clustering method. The complexity of searching for resources that meet the minimum

requirements of tasks in the data grid is (1)o . By using the improved data gridding, the time complexity

of searching for resources meeting the lowest requirements of tn tasks in a distributed system is

()to n m MaxTimes+ × , where 1 3MaxTimes≤ ≤ . Therefore, when the quantity of tasks tn is a larger

value, the time complexity of coarse matching of resources using the improved data gridding method

proposed herein is ()to n .

Table 1 shows the time complexity of the three methods of coarse matching of resources, where m is

the number of resources in the distributed system, im is the number of resources in the distributed system

Journal of Computers Vol. 30 No. 4, 2019

119

of kind i after clustering of resources, and tn is the number of tasks that need resource matching. It is

evident from the time complexity analysis for resource matching algorithms that the complexity of

resource matching using the data gridding method based on the improvement proposed herein is smaller.

Consequently, the matching speed will be higher.

Table 1. Time complexity for coarse matching of resources

Resource comparison method Resource clustering method Data gridding method

()to m n× ()i to m n× ()to n

4.2 Completion Time of Tasks

The goal of task scheduling is to achieve a reasonable allocation of resources to tasks to improve the

system efficiency as a whole and reduce the response time of tasks, which entails minimizing the task

execution time. Among task scheduling algorithms, the min-min algorithm is the basis for many

scheduling models. The strategy for allocation of resources using improved data gridding is to minimize

the execution time of tasks. Therefore, the proposed TSBDG algorithm was compared in an experiment

with the min-min algorithm and the FCTLBS algorithm proposed in Ref. [12] to demonstrate the TSBDG

algorithm effectiveness.

To increase the objectivity of the experiment, the processor had a calculation ability, communication

ability, and storage capacity. The simulation system ran on an Intel(R) Core(TM) i7 CPU with 2.93 GHz,

8 GB of RAM, and the 64-bit Windows 7 operating system. The simulation system consisted of the

resource generator, task generator, and task scheduler. The resource generator handled the generation of

resource attribute data in the distributed system. The task generator handled the generation of user tasks.

The task scheduler assigned a task submitted by a user to the appropriate processing machine. The

minimum requirements for the resources related to each task were randomly generated. The generated

task identified resources meeting the minimum requirements in the resource pool. The computation goal

was from the range comp diff comp[,]t C t× , the network throughput memory space was from BW diff BW[,]t B t× ,

and the memory space was from store diff store[,]t S t× , where compt , BWt , storet diffC , diffB and diffS were

random numbers in [1, 25]. Fig. 2 and Fig. 3 show the execution times for resource allocation using the

three algorithms (TSBDG vs. min-min and FCTLBS) when the number of tasks submitted by users was

50 to 500 and 500 to 1,500, respectively.

Fig. 2. Completion time when the quantity of tasks is 50 to 500

Task Scheduling Algorithm Based On Improved Data Gridding

120

Fig. 3. Completion time when the quantity of tasks is 500 to 1500

In the min-min algorithm, the small task was executed first during scheduling. Resources that were

frequently assigned tasks caused an imbalance in the processor load so that the completion time of user-

submitted tasks increased. In the FCTLBS algorithm, resources were first categorized. Next, task

preferences were computed. Then, tasks were assigned to the appropriate resources from among the

resources having the correct preference type. Because it found a suitable processor from only resources

preferring the corresponding task type, it could not achieve the global optimal solution (i.e., the most

appropriate allocation of resources). Furthermore, the resource load imbalance led to an increase in task

completion time.

In contrast, the proposed TSBDG algorithm rapidly identified all the resources meeting the minimum

requirements of the task in the resource data after gridding. Then, in searching for resources that fulfill

the minimum task demands, the global optimal search strategy for resource allocation provided the

shortest possible completion time of user-submitted tasks.

4.3 Experimental Analysis

The time complexity analysis given in Section 4.1 demonstrates that the proposed method based on

improved data gridding has a higher speed of resource matching than the resource comparison method

and the method based on resource clustering. In Section 4.2, the results of the simulation experiment

showed that the proposed TSBDG algorithm had a better task completion time than the min-min

algorithm and FCTLBS algorithm. The results are displayed in Fig. 2 and Fig. 3. Accordingly, during

coarse matching of resources by the proposed algorithm, the complexity was small, which narrowed the

resource matching time. Meanwhile, the simulation results showed that the proposed algorithm had a

shorter task completion time in task scheduling.

5 Conclusions

To decrease the search scope and increase the efficiency of resource matching, we proposed a strategy

based on improved data gridding to conduct coarse matching of resources. The proposed algorithm could

quickly and accurately find distributed system resources that meet the minimum task requirements. Thus,

using global optimal searching for processor allocation to minimize the task completion time is an ideal

approach to performing task scheduling. Simulation experiments and a process analysis showed that the

proposed algorithm guaranteed rapid resource matching and task scheduling, which resulted in the

shortest possible completion time of the user-submitted tasks.

Acknowledgements

This work received financial assistance from Shaanxi Provincial Science and Technology Department

Key R&D Plan General Project(No. 2017NY-129), Shaanxi Provincial Department of Education Special

Journal of Computers Vol. 30 No. 4, 2019

121

Project (No. 17JK0712) The authors also gratefully acknowledge the helpful comments and suggestions

of the reviewers, which have improved the presentation.

References

[1] V. Bharadwaj, D. Ghose, T.G. Robertazzi, Divisible load theory: a new paradigm for load scheduling in distributed systems,

Cluster Computer 6(1)(2003) 7-17.

[2] F. Ramezani, J. Lu, F. Hussain, Task-based system load balancing in cloud computing using particle swarm optimization,

International Journal of Parallel Programming 42(5)(2014) 739-754.

[3] D.S. Yadav, S. Rana, S. Prakash, An efficient resources allocation strategy for survivable WDM network under static

lightpath demand, Optik 124(2013) 722-728.

[4] W. Zhao, J. Zhao, S. Zhao, Y. Li, Y. Dong, C. Dong, X. Li, Resources scheduling for data relay satellite with microwave and

optical hybrid links based on improved niche genetic algorithm, Optik 125(2014) 3370-3375.

[5] X. Wang, Y. Wang, Y. Cui, A new multi-objective bi-level programming model for energy and locality aware multi-job

scheduling in cloud computing, Future Generation Computer System 36(1)(2014) 91-101.

[6] O. Beaumont, L. Eyraud-Dubois, C.T. Caro, H. Rejeb, Heterogeneous resource allocation under degree constraints, IEEE

Transaction on Parallel and Distributed Systems 24(5)(2013) 926-937.

[7] H. Zhu, Y. Wang, Constrained multi-objective grid task security scheduling model and algorithm, Journal of Electronics &

Information Technology 32(4)(2010) 988-992.

[8] A. Kargarian, Y. Fu, System of systems based security-constrained unit commitment incorporating active distribution grids,

IEEE Transaction Power System 29(5)(2014) 2489-2498.

[9] X. Wang, Y. Wang, Y. Cui, Energy and locality aware load balancing in cloud computing, Integrated Computer-Aided

Engineering 20(4)(2013) 360-374.

[10] X. Zuo, G. Zhang, W. Tan, Self-adaptive learning pso-based deadline constrain task scheduling for hybrid iaas cloud, IEEE

Trans on Automation Science and Engineering 11(2)(2014) 564-573.

[11] S. Adabi, A. Movaghar, A.M. Rahmani, Bi-level fuzzy based advanced reservation of Cloud workflow applications on

distributed Grid resources, International Journal of Supercomputing 67(1)(2014) 175-218.

[12] W. Li, Q. Zhang, L. Ping, X. Pan, Cloud Scheduling algorithm based on fuzzy clustering, Journal of Communication

33(3)(2012) 146-154.

[13] X. Zhu, X. Qin, M. Qiu, QoS-aware fault-tolerant scheduling for real-time tasks on heterogeneous clusters, IEEE

Transaction on Computers 60(6)(2011) 800-812.

[14] L. Cheng, W. Zhao, P. Han, W. Zhanga, J. Shan, Y. Liu, M. Lia, Building region derivation from LiDAR data using a

reversed iterative mathematic morphological algorithm, Optics Communications 28(6)(2013) 244-250.

[15] J. Song, J. Wu, Y. Jiang, Extraction and reconstruction of curved surface buildings by contour clustering using airborne

LiDAR data, Optik 126(2015) 513-521.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

