
Journal of Computers Vol. 30 No. 4, 2019, pp. 151-158

doi:10.3966/199115992019083004014

151

A Detection System of Android Malware Based on

SVM Algorithm

Lian-Fen Huang1, Chao-Lin Ye1, Chao Feng1*, Han-Bo Li2, Ying-Min Zhang1

1 Department of Communication Engineering, Xiamen University, Xiamen, China

2 Department of Electronic Engineering, Xiamen University, Xiamen, China

chaof@xmu.edu.cn

Received 13 January 2019; Revised 14 January 2019; Accepted 12 March 2019

Abstract. In this paper, we propose a new detection system of android malware, a lightweight

system combining static detection and Support Vector Machine algorithm (SVM). This system

adopts static analysis to gather features of an application directly. These features are mapped to

a vector space. An app corresponding a vector in the vector space, the SVM algorithm use these

vectors to train a model which can indicate whether an android app has suspicious behaviors. To

evaluate this system, we use a train set of 4500 benign applications and 6500 malicious

applications to train model and acquire a True Positive Rate (TPR) of 97.96% and False Positive

Rate (FPR) of 0.84% with a test set of 1371 benign applications and 829 malicious applications.

Compared to traditional method for detecting android malware, this system can obviously

improve the detection accuracy of malicious app and reduce the analysis time, while avoiding

the high complexity of dynamic analysis. Moreover, this system provides a friendly web

interface, allowing users to upload the app file and receive the analysis report.

Keywords: Android, Malware, SVM, web interface

1 Introduction

As one of the most popular mobile platform for smartphone, Android system is facing the increasing

threat from attackers and malware. According to statistics, in the first half of 2018, 360 Internet Security

Center has intercepted a total of 2.831 million new malicious programs on the Android platform. Among

them, 127,455 new mobile phone ransomware were intercepted, and 4,806 new mobile mining trojans

were intercepted from January to July. The addition of mining trojans is nearly 20 times the total

interception in 2017 [1].

Obviously, if malware can be detected and predicted in advance, the harm of malware to Android can

be avoided, which will greatly improve the security situation of the current Android platform.

1.1 Detection Method for Android Malicious APP

Currently, detection techniques for malicious applications (malicious code) can be divided into two

categories: static detection and dynamic detection.

Static detection. Static detection, such as Kirin [2], Stowaway [3], RiskRanker [4] and Drebin [5], refers

to the use of decompilation techniques, control flow analysis, data flow analysis and semantic analysis to

identify the behavior characteristics of the application without running the code. At present, the major

security vendors widely use the feature code scanning method based on static analysis. Its main principle

is to analyze the samples of malicious applications and store the extracted malicious sample signatures

into the database. When scanning the application to be detected, the feature code of the application to be

detected is extracted and compared with the database. If there is a feature code of the application to be

detected in the database, it is determined to be malicious. This method has the advantages of being fast

* Corresponding Author

A Detection System of Android Malware Based on SVM Algorithm

152

and efficient, but it is difficult to combat protection techniques such as code obfuscation.

Dynamic detection. Dynamic detection, such as TaintDroid by Enck et al. [6], Droidbox by Lantz [7],

pBMDS by Xie [8] and Mobile-Sandbox by [9] Spreitzenbarth [9], is concerned with the actual behavior

of the application. By running the application to be detected in an executable environment and

monitoring its system calls, network access, file operations and memory modifications in real time, it is

determined whether the application has malicious behavior. Compared to static detection techniques,

dynamic detection techniques do not effectively audit all code because some code needs to be triggered

under special conditions.

The static detection method of traditional Android malware is to obtain its static features by

decompiling the unknown application software, and then use the acquired static features to calculate the

similarity between them and the known malicious sample model, and finally According to the obtained

similarity value and the previously set threshold value, when it is greater than the threshold value, it is

considered as malware, and such a process is used to determine the category of an unknown application

software. The key point in this detection process is the threshold setting. In the traditional static detection

method, it is based on past experience and personal judgment. This setting has too many personal

subjectivity. The uncertainty caused by such subjectivity largely affects the accuracy of the final

prediction.

Although the dynamic detection method can obtain additional information that cannot be obtained by

the static detection method, the dynamic monitoring method needs the sandbox environment support,

result in the long-time detection and the implementation complexity.

1.2 Our Method

Considering the advantages and disadvantages of static detection and dynamic monitoring, we choose

static analysis detection method to build this lightweight detection system. At the same time, the

detection of maliciousness of unknown APP is essentially a classification problem. For this reason, the

system uses SVM-based machine learning algorithm to implement the classification. A classifier model

can be obtained by classifying the training samples. When the unknown app samples are detected, the

classification model can be used to directly predict. The advantage of machine learning is that it does not

need to rely on very large sample libraries, reduce the error of human intervention, and has good

predictability for unknown app samples.

1.3 Roadmap

The remainder of this paper is organized as follows: Section 2 illustrates the classification model training

process of the detection system. Section 3 evaluates the performance of this system. Section 4 introduces

the web interface. A conclusion is drawn in Section 5.

2 Implement of Malicious APP Detection

2.1 APP Sample Library Introduction

The Android application sample dataset of this system is divided into benign application samples set and

malicious application samples set. Among them, the sample dataset of the benign application has up to

5000 samples, which come from the xiaomi application market [10] and the 360 application market [11].

The malicious application samples come from the Drebin Dataset [5] and Android Malware Dataset

(AMD) [12], which are two well-known malicious application sample libraries. Among them, Drebin’s

sample library collected 5,560 Android malicious application APK sample files from August 2010 to

October 2012, a total of 179 malicious code families. AMD’s sample library collected 24,553 malicious

applications from 2010 to 2016, a total of 71 malicious code family categories, 135 variants.

These samples provide strong data support for subsequent machine learning model training.

Journal of Computers Vol. 30 No. 4, 2019

153

2.2 Static Feature Extraction

The file format of the Android application is APK, which is essentially a compressed package. After

decompression, multiple files containing feature information can be obtained. The decompressed internal

file structure is shown in the following Figure.

res META-INF
AndroidManif

est.xml
classes.dex resources.arscasset libs

APK File

Fig. 1. File structure of an APK file

The AndroidManifest.xml file is an application configuration file used to configure the name, version,

permissions, referenced library files, and all used Android component names and attributes. The

classes.dex file is a Dalvik virtual machine executable file that is a bytecode file generated by source

code compilation. It can be disassembled into a Smali file by decompiling tools.

This system can extract four aspects of features from the AndroidManifest.xml file:

‧
1
S : APP four major components: Activity, Service, Content Provider and Broadcast Receiver

‧
2

S : Application permissions

‧
3

S : External hardware components: on which the App runtime depends

‧
4

S : Filtered intents

By analyzing the Smali file obtained by disassembling the classes.dex file, the system can extract the

following four features [5]:

‧
5

S : Restricted API function call. The Android system provides a number of API function interfaces for

the application to invoke, but some of the key functions are to restrict the application from making

calls. Some malicious applications call these key functions in order to implement a root privilege

attack. Therefore, in order to better understand the function of an Android application, the system will

extract all the API functions called by the application.

‧
6

S : Suspicious function call. After consulting the research results of other malicious application

analysis organizations, it is found that some API functions are often called by malicious applications.

For example, system/bin/su, getExternalStorageDirectory, HttpPost, printStackTrace, etc. Therefore,

this system made a list of suspicious functions and checked whether they called the functions in this

list when statically parsing the Smali file.

‧
7

S : The permissions actually used. Most malicious applications will apply for a large number of

permissions in the manifest file, and some permissions are not used when the application is running.

Therefore, it is necessary to find out which system permissions are actually being used when the

application is running.

‧
8
S : Network address. Some malicious applications will establish a network connection with the

attacker’s server after stealing the user profile information, and then send the data to the attacker.

Therefore, the disassembly file may contain an IP address, host name, and URL. Some addresses even

contain botnet addresses. Therefore, the system will also extract the network address appearing in the

disassembly file as one of the features.

In summary, we extracted eight feature sets from the AndroidManifest.xml file and the disassembly

classes.dex file respectively, from which we can analyze the functional implementation and behavior of

the application. The flow chart of the APK static feature extraction is as follows:

A Detection System of Android Malware Based on SVM Algorithm

154

Upload APK

Is APK format?

Decompiling apk by Apktool

Yes

Create thread to parse manifest.xml Create thread to parse smali file

Extract applied permissions:

getElementsByTagName(“uses-permission”)

Extract used system APIs in codes

lineFromFile.contains(call)

Extract Four components:

getElementsByTagName(“activity”)

Extract info about Suspicious API calls

lineFromFile.contains(suspCall)

Extract applied Hardware feature:

getElementsByTagName(“uses-feature”)

Match actually used permissions

permissionMap.containsKey(call)

Extract Filter Intents:

getElementsByTagName(“intent-filter”)

Extract URL address in codes:

urlPattern.matcher(lineFromFile)

Save extracted static features to txt fi les

Fig. 2. APK static feature extraction flow chart

The following figure shows the feature information in a txt file obtained after static analysis of an

application:

Fig. 3. Screenshot of extracted static feature info

Journal of Computers Vol. 30 No. 4, 2019

155

2.3 Feature Vectorization

After the above steps, the static features of an APP are saved as strings in a txt file. In order for the

machine learning algorithm to process, the string needs to be converted to a numeric type. Therefore, we

need to map the features to the numerical vector space. Here we de-emphasize the eight feature sets

extracted from all the applications to form a larger feature set:

1 2 3 8

#S S S S S= ∪ ∪ �∪ (1)

For each application, we define a mapping function (,)I x s . If the application x contains the feature s

on feature set S, then the value of corresponding position is set to 1, otherwise 0. The function definition

is shown below:

1,

(,) #
0,

application x contain features
I x s

otherwise

⎧
= ⎨
⎩

 (2)

After mapping, each application x will have a feature vector ()xϕ . Since we are using supervised

learning, we use a set of samples of known categories to adjust the parameters of the classifier to achieve

the required performance. So we also need to label each sample and tell the algorithm the category of the

training sample during the training. We use y to indicate the category of each sample. If the sample
i
x is

a malicious sample, the value of
i
y is 1, otherwise -1. Therefore, for each application

i
x in the training

sample, ((),)
i i
x yϕ gives out the information of features and category.

2.4 Model Training

The machine learning algorithm this system uses is the linear Support Vector Machines (SVM) [13].

Given two classes, i.e. malicious and benign application, a linear SVM model can determine a

hyperplane which can separate the two classes with maximal margin (see Fig. 4).

〈����,�〉

ω

�(�)

Hyperplane with
maximum margin

malicious applications

benign applications

Fig. 4. Schematic diagram of SVM [5]

The hyperplane can be defined as:

 0#
T
x bω + = (3)

The optimal hyperplane of the required solution needs to meet the following constraints:

21

min || || #
2

ω (4)

 s.t. (()) 1, 1, 2, ..., #T

i i
y x b i mω ϕ + ≥ = (5)

where m is the size of train set.

The goal of model training is to acquire the best parameter , bω of the optimal hyperplane. To achieve

the goal, a train set of 4500 normal applications and 6500 malicious applications is used to train model.

The total vector space dimension, i.e. the length of feature vector ()xϕ , adds up to 324465 in this train

A Detection System of Android Malware Based on SVM Algorithm

156

set.

After finishing training, the best parameter , bω of the optimal hyperplane have been determined. To

detect a given unknown application z whether malicious or not, the first step is to decompile the

application z for its features, and then the vector ()zϕ is acquired by mapping the application’s features

into feature vector space. Finally, a detection function is given:

 () () #Tf z x bω ϕ= + (6)

Given a threshold t, ()z tϕ > declares application z as malicious application, otherwise as benign one.

The threshold t is chosen as 0 most of the time.

3 Performance

To evaluate the detection performance of this system, a test set of 829 benign applications and 1371

malicious applications is applied. The detection result is shown in Table 1.

Table 1. Evaluation result of this system with a test set

Classification result
Real category

Benign Malicious

Benign 1343 28

Malicious 7 822

According to Table 1, the True Positive (TP) is 1343, the False Positive (FP) is 7, the False Negative

(FN) is 28 and the True Negative (FP) is 822. Therefore, this system can acquire good classification

effect with True Positive Rate (TPR) of 97.96% and False Positive Rate (FPR) of 0.84%.

4 Web Interface

In order to facilitate the user to submit the APK file to be tested and view the detection report, the system

provides a friendly web interaction interface based on the Python Flask framework [14]. The entire web

implementation framework is shown below:

Feature-extracted Module

Web upload APK

Extract APK feature

Feature vecotr

quantization

Apply classifier model to

predict

Trained Classifier Model

Web show out

detection result

Training APK Sets

Generate features Sets

Feature vecotr

quantization

Web show out

detection result

Fig. 5. The framework of web interaction interface

After submitting the APK file, the system will call the feature extraction module to perform static

feature scanning on the APK file to extract static features. These static features are then mapped to a

high-dimensional vector space to obtain a feature vector. By calculating the margin between the feature

Journal of Computers Vol. 30 No. 4, 2019

157

vector and the system's pre-trained classification model (i.e. hyperplane), it is determined whether the

uploaded APP is malicious or not. Finally, the results of the detection are returned to the user in the form

of a report.

Fig. 6(a) illustrates the interface for users to submit APK files. Fig. 6(b) illustrates the interface of the

returned detection report. The report gives the judgment of whether the uploaded APK file is a malicious

APP, and shows the most relevant APP features and their corresponding contribution weights in the form

of a table.

(a) The framework of web interaction interface (b) The framework of web interaction interface

Fig. 6. The web interaction interface

5 Conclusion

In summary, this system makes a deep research on Android malware detection technology, and extracts

useful feature information from Android APK files through static analysis such as reverse engineering.

Based on the theory of machine learning, a static detection system for Android malware was designed

and implemented. In the actual test, the system has shown a good classification effect. However, the

system still has certain limitations and room for improvement.

First of all, the system is based only on static analysis technology. It is mentioned that static

technology is difficult to combat code obfuscation technology. Therefore, if the malicious application

uses code obfuscation technology, the difficulty of decompilation of the application will increase, which

will affect the extraction of static features and thus affect the impact the detection results. Moreover, at

present, the system simply extracts the static features of the application, does not involve semantic

analysis, and does not dig deeper into the association between these static features.

The system still needs to be optimized from three aspects:

‧ Static analysis speed. At present, the decompilation speed of the APK Dex file is slow. Therefore,

when analyzing the APK file with confusion for the code, the application detection time is relatively

long, for which we will try to use other better Android application static analysis tool for static

analysis.

‧ Explanation to malicious behavior. Now the system can only diagnose whether the application is a

malicious application and provide relevant feature weight information. However, if the application is

malicious, there may be no malicious description of the malicious behavior. Therefore, we will also

optimize in this respect.

A Detection System of Android Malware Based on SVM Algorithm

158

‧ Improve the classification accuracy. We will also try to mine more feature information (such as

combined with semantic analysis), improve existing algorithms, and further improve the classification

effect of the classifier.

Acknowledgements

The work was supported in part by the Key Laboratory of Digital Fujian on IOT Communication,

Architecture and Security Technology under Grant 2010499.

We would like to thank Drebin and AMD teams for their malicious Android applications dataset. Also,

we would like to thank the anonymous reviewers for proofreading our paper and for giving us helpful

comments to improve this work.

References

[1] 360 Internet Security Center, 2018 China Mobile Security Ecosystem Report. <http://zt.360.cn/1101061855.php?dtid=

1101061451&did=491398428/>, 2018.

[2] W. Enck, M. Ongtang, P.D. McDaniel, On lightweight mobile phone application certification, in: Proc. ACM Conference on

Computer and Communications Security, 2009.

[3] A.P. Felt, E. Chin, S. Hanna, D. Song, D. Wagner, Android permissions demystified, in: Proc. ACM Conference on

Computer and Communications Security, 2011.

[4] M. Grace, Y. Zhou, Q. Zhang, S. Zou, X. Jiang. Riskranker, scalable and accurate zero-day android malware detection, in:

Proc. International Conference on Mobile Systems, Applications, and Services, 2012.

[5] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon., Konrad Rieck, DREBIN, Effective and explainable detection of Android

malware in your pocket, in: Ndss, 2014.

[6] W. Enck, P. Gilbert, B. gon Chun, L. P. Cox, J. Jung, P. McDaniel, A.N. Sheth. TaintDroid, An information-flow tracking

system for realtime privacy monitoring on smartphones, in: Proc. the USENIX Symposium on Operating Systems Design

and Implementation, 2010.

[7] P. Lantz, Droidbox - android application sandbox. <https://www.honeynet.org/gsoc2011/slot5>, 2011.

[8] L. Xie, X. Zhang, J.-P. Seifert, S. Zhu, A behavior-based malware detection system for cellphone devices, in: Proc.

WiSec’10 - Proceedings of the 3rd ACM Conference on Wireless Network Security, 2010.

[9] M. Spreitzenbarth, F. Freiling, F. Echtler, T. Schreck, J. Hoffmann, Mobile-sandbox: having a deeper look into android

applications, in: Proc. the 28th Annual ACM Symposium on Applied Computing, 2013.

[10] Xiaomi Inc., Xiaomi App Store, 2018.

[11] 360 Inc., 360 Mobilephone Assistant, 2018.

[12] Argus Cyber Security Lab, Android Malware Dataset, 2018.

[13] M.A. Hearst, S.T. Dumais, E. Osuna, J. Platt, B. Scholkopf, Support vector machines, IEEE Intelligent Systems and Their

Applications 13(4)(1998) 18-28.

[14] M. Grinberg, Flask Web Development: Developing Web Applications with Python, O’Reilly Media, 2018.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

