
Journal of Computers Vol. 30 No. 5, 2019, pp. 31-45

doi:10.3966/199115992019103005003

31

The Ordered Treemap of Weight Divided Layout Algorithm

Bo Yang1, Weiqun Cao1*

1 School of Information Science & Technology, Beijing Forestry University, Beijing, China

yb2219@163.com, weiqun.cao@126.com

Received 25 October 2017; Revised 12 April 2018; Accepted 2 June 2018

Abstract. Existing treemap layout algorithms are inefficient sequentially, while ordered treemap

layout algorithms are incapable of squarifying ability and providing continuity. In this paper, we

propose a type of ordered treemap of weight divided layout algorithm. The overall idea of the

algorithm is to bundle multiple nodes into two nodes with similar weights. Then, the long edge

segmentation principle is used to design the rectangular area of the treemap. Through the

application of the “divide and conquer” rule for the new structure of the two power value nodes,

the layouts of all the single nodes are accomplished by repeating the above process until

completion. We used 50 randomly generated datasets and compared nine types of layout

algorithms. The comparison and analysis are made with six indexes for our algorithm. The

experimental results show that the algorithm has an advantage in terms of average aspect ratio,

continuity, and distance correlation, and that it is suitable for a hierarchical data visualization

display that has order requirements.

Keywords: hierarchical data, layout algorithm, ordered treemap, square treemap

1 Introduction

Information visualization is an interdisciplinary subject that emerged with the development of computer

graphics, man-machine interaction, visual design and psychology. In today’s big data era background, the

rapid processing and display of massive amounts of data is one main problem to be solved. Hierarchical

data represents an important data structure of big data that emphasizes hierarchical relationships between

individuals. Hierarchical relationships are mainly divided into two categories: contains and subordinate.

For example, China contains some provinces; each province contains some cities, and each city is

divided into several counties; and several files and directories are in the computer system. The

hierarchical data visualization includes two main types: node-link and space-filling [1]. The main

research of this paper focuses on the most typical layout of the space filling method, i.e., the treemap. A

Treemap is one of the representative works of early information visualization research and was first

proposed by Johnson in 1991 [2]. A treemap is a visualization method of two-dimensional space filling,

and it can very efficiently use area and color to represent the distribution of leaf nodes in a tree structure.

Additionally, it has the obvious advantages of high space utilization and is suitable for displaying the

hierarchical structure of the data collection on a large scale. As shown in Fig. 1, the tree structure of Fig.

1(a) can be represented as the Treemap of Fig. 1(b). The structure starts from the root node of the tree.

The screen space is divided into multiple rectangles according to the data of the child nodes, and the area

of the rectangle represents the numerical attributes of the node. The recursion obtains the final Treemap.

The core problem of treemap visualization is how to divide the screen space recursively. Since the

inception of the treemap, various layout algorithms of the treemap have emerged. Many improvement

algorithms have been developed on the indexes of the treemap layout algorithm, which includes the

average aspect ratio [3], continuity [4], readability [5], average distance change [3], the variance of

distance changes [3] and distance correlation [6]. Treemaps are mainly divided into rectangular and non-

rectangular treemaps [7]. The rectangular treemap layout algorithm includes the following types: Slice-

* Corresponding Author

The Ordered Treemap of Weight Divided Layout Algorithm

32

(a) Tree structure (b) Treemap

Fig. 1. Tree structure transforms into a treemap

and-Dice [2] which is the most original; the Squarified [8], which is focused on the square layout; the

Strip [5] and the Spiral [4], which are focused on the sequential layout; and the Pivot [3], which is for

achieving improved square and sequential layouts. Itoh [9] proposed the layout algorithm based on the

Delaunay triangular grid, which effectively improved the performance of the squarifying ability. Jarke

[10] proposed the cushion-treemap, which set different shading shadows for the partition area to enhance

the hierarchical structure. The non-rectangular treemap layout algorithm includes the following: the

polygon filling algorithm, represented by the Voronoi Treemap [11]; the triangle filling algorithm,

represented by the Divide-and-Conquer Treemap [12]; and the circular filling algorithm, represented by

the Circular Treemap [13]. Based on variations of the circular treemap layout algorithm, there are

CropCircles [14], Circle-Packing [15], ClockMap [16], and an improved algorithm by Zhao et al. [17] for

improving the spatial utilization of the circular treemap. There are hybrid treemap algorithms that use a

variety of layout methods, i.e., the Hybrid Treemap [18]. Baudel and Broeksema [19] defined the design

space of sequential, rectangular and space-filling layouts. This space is covered by five attributes, namely,

the layout order, weight definition, the principle of filling, recursive position and direction of the filling.

Through the existing layout algorithms, the user-defined rectangle treemap layout scheme is implemented.

Xin and Yuan [20] summarized the basic layout algorithms, attribute design and interaction design of

treemaps, analyzed the algorithms of a non-rectangular treemap from its scalability, summarized the

effect evaluation method, the use in actual cases, and the development prospect of treemap research and

its application. Chen et al. [7] analyzed and compared the standard treemap layout algorithms above and

analyzed the various performances of treemaps through a variety of evaluation indexes. At the same time,

they proposed that various algorithms can be combined efficiently and used flexibly according to the

actual condition in the application so that the algorithms can learn from each other and achieve better

performance indexes.

In the hierarchical data structure, we need to consider the order and continuity of some datasets. The

existing treemap layout algorithms are inefficient sequentially, while ordered treemap layout algorithms

are incapable of squarifying and providing continuity. We proposed the ordered treemap of weight

divided layout algorithm (OTWDLA) for the type of data in this paper. The algorithm uses the idea of

weight equalization and the principle of long edge division to divide the rectangular blocks. The

structural nodes are divided by using the idea of “divide and conquer;” then, all treemap nodes are

divided. We first describe and analyze the advantages and disadvantages of nine types of layout

algorithms, which were introduced previously, and then, through the program design, implement these

algorithms individually. Then, we compare and analyze the six evaluation indexes. This algorithm can

quickly determine the dataset segmentation points, efficiently reduce the segmentation time, and

effectively reduce the data uncertainty in the segmentation results to maintain a specific performance of

the average aspect ratio, continuity and distance correlation of the layout, which is suitable for a visual

representation of hierarchical data with sequential data requirements.

Journal of Computers Vol. 30 No. 5, 2019

33

2 Treemap Layout Algorithm

The core idea of a rectangular treemap layout algorithm is how to divide the screen space for the

rectangular nodes recursively into rectangular sections. In a given tree hierarchy structure, for the node

weight and node sequence, the parent node is divided according to the weights of the child nodes, and

then, the whole layout algorithm is defined. This paper introduces several rectangular treemap layout

algorithms and analyzes their advantages and disadvantages.

2.1 The Slice-and-Dice Layout Algorithm

The Slice-and-Dice [2] layout algorithm was proposed by Johnson in 1991; the algorithm adopts the

vertical and horizontal alternating method to segment the rectangle drawing area of the layout, from left

to right or from top to bottom in turn to fill the rectangular area, only considering the order of the nodes

and the proportion of weight in the process of filling. Fig. 2(a) shows the effect of this layout algorithm.

This algorithm maintains the sequence and continuity of datasets, but its disadvantage is that it is easily

generates long and thin rectangles that are not conducive to human eye recognition or the click

interaction of the mouse.

(a) Slice-and-Dice Treemap (b) Squarified Treemap (c) Strip Treemap

(d) Spiral Treemap (e) Pivot-by-Size Treemap (f) Pivot-by-Middle Treemap

(g) Squarified-SP Treemap (h) SOTLA Treemap (i) Squrified-AMA Treemap

Fig. 2. Treemap layout algorithms

The Ordered Treemap of Weight Divided Layout Algorithm

34

2.2 The Squarified Layout Algorithm

The Squarified layout algorithm, which was proposed by Bruls [8], is used to solve the problem of the

Slice-and-Dice algorithm, i.e., that a large number of long and thin rectangles were formed that are

difficult for the human eye to identify. The layout algorithm tries to make the rectangles as close as

possible to squares. First, the algorithm sorts the original dataset from large to small according to weights.

Second, the greedy strategy is used to allocate the power value of the nodes. The filling of each node is

chosen such that the average aspect ratio is close to one, and the iterative loop continues until all nodes

are assigned. As shown in Fig. 2(b), the algorithm enables the human eye to identify the nodes easily, but

the original order of nodes is disturbed, and finding a particular node is difficult.

2.3 The Strip Layout Algorithm

The Strip layout algorithm, proposed by Bederson et al. [5], improves the readability and continuity of

the treemap layout. The layout strategy of this algorithm works by processing the input rectangles in

order and laying them out in horizontal strips of varying thicknesses, as shown in Fig. 2(c). The

algorithm is efficient in that it can achieve simple, continuous, and stable structures with high readability.

2.4 The Spiral Layout Algorithm

The Spiral layout algorithm, proposed by Tu and Shen [4], is designed to improve the continuity of the

data further. Its layout strategy is to choose a Spiral path layout, as shown in Fig. 2(d). The algorithm can

highlight the change of layout and visual contrast.

2.5 The Pivot Layout Algorithm

The aim of the Pivot layout algorithm, proposed by Shneiderman and Wattenberg [3], is to solve the

problem of the disorderly Squarified algorithm. It adopts the idea of partition incremental refinement to

divide the filling area of the dataset into four parts, i.e., R1, Rp, R2 and R3, to maintain the average aspect

ratio and order of the treemap nodes. To lay out in the current selected rectangular area and ensure that it

is allocated according to the order of R1, Rp, R2, and R3, the node selection strategy of Rp includes two

algorithms. One is the Pivot-by-Size algorithm, which is selected according to the maximum node weight

value; the layout result is shown in Fig. 2(e). In addition, another is the Pivot-by-Middle algorithm,

which is selected according to the intermediate node ordered by the node number; the layout result is

shown in Fig. 2(f). If the number of nodes is greater than 1 in the area of R1, R2, and R3, then they are

respectively iterated until all the nodes are distributed. This algorithm guarantees the partial orderliness

of the nodes while obtaining a better average aspect ratio, but it is not entirely ordinal.

2.6 The Squarified-SP Layout Algorithm

The aim of the Squarified-SP layout algorithm, proposed by Chen et al. [21] in 2013, is mainly to

improve the order and stability of the Squarified algorithm. The core idea of the algorithm is according to

the principle of weight dividing the dataset into a smaller subset of data and, simultaneously, according to

the proportional relationship, cutting the rectangular area to obtain the rectangular sub-block. Then, the

Squarified algorithm is used in the rectangular sub-block corresponding data subset to obtain the final

effect of the layout. The algorithm introduces a parameter µ that represents the maximum number of

rectangles allowed in each rectangular sub-block, which the user can customize according to their needs.

The Squarified algorithm is performed when the number of blocks in the rectangle is less than µ,

otherwise, it continues to be divided into smaller rectangles. The layout effect of this algorithm is shown

in Fig. 2(g).

2.7 The SOTLA Layout Algorithm

The aim of the Squarified and ordered treemap layout algorithm (SOTLA), proposed by Hu et al. [22] in

2014, is mainly to solve the relatively poor order of the rectangular treemap and the poor performance of

the orderly treemap algorithms. It combines the Squarified priority power value, the partition of the Pivot,

Journal of Computers Vol. 30 No. 5, 2019

35

and the layout path of the Strip and Spiral. The algorithm first bundles multiple nodes to combine the

power value nodes. The construction principle is to choose the maximum of the dataset, calculate the sum

of the items before the maximum value, item by item, and then compare it with the maximum value again.

The summary data of the nearest maximum are divided into one group, and the remaining data are

divided according to the principle. Calculate the sum of the items after the maximum value of the data,

according to the principle above, so that the combined nodes are obtained. Then, the nodes are laid out

according to the principle of the average aspect ratio closest to 1, and the path is filled in the shortest

direction. The layout of each combination node is completed by dividing and repeating the process above.

Finally, the layout of all individual nodes is completed. The layout effect is shown in Fig. 2(h).

2.8 The Squarified-AMA Layout Algorithm

The aim of the Squarified based on Approximate Maximum Average (Squarified-AMA) algorithm,

proposed by Zhang et al. [23] in 2016, is mainly to improve the disorder and stability of the Squarified

algorithm. The principle of this layout algorithm is first to restructure the original dataset similar to that

of SOTLA to select the maximum of the data, calculate the sum of the items before the maximum value,

item by item, and then compare it with the maximum value again. The summary data nearest the

maximum are divided into one group, the remaining data are divided according to the principle, and the

elements after the maximum are divided by the same strategy as the elements before the maximum value.

The new combination data will be laid out according to the principle of the average aspect ratio and the

shortest edge path. A combination of more than four elements in a combined dataset is divided according

to the previous procedures until all element layouts are completed. The layout effect is shown in Fig. 2(i).

2.9 Comparative Analysis of Algorithms

Six treemap layout algorithm indexes were qualitatively or quantitatively analyzed with all the types of

existing algorithms by using the data to evaluate the performance of the different treemap layout

algorithms. We summarized the advantages and disadvantages of these nine different layout algorithms

for all the evaluation indexes, as shown in Table 1. We see that the overall performance of the Slice-and-

Dice algorithm is the best in the existing algorithms, but the average aspect ratio is very poor. The

average aspect ratio of the Squarified algorithm is best, but other aspects of performance are not good.

For the Strip and Spiral, the stability is poor, but the other performance aspects are good. The other five

types of algorithms have poorer readability and stability, but the other related performance aspects each

have advantages and disadvantages. Because of the difference of the layout algorithms, the user can

choose treemap algorithms according to their need.

Table 1. Comparison of treemap algorithms

Evaluation Index AAR C R ADC VDC DC

Slice-and-Dice ☆ ☆☆☆☆☆ ☆☆☆☆☆ ☆☆☆ ☆☆☆☆☆ ☆☆☆☆☆

Squarified ☆☆☆☆☆ ☆ ☆ ☆ ☆☆☆ ☆☆☆

Strip ☆☆☆ ☆☆☆☆ ☆☆☆☆ ☆ ☆☆☆ ☆☆☆☆

Spiral ☆☆☆ ☆☆☆☆☆ ☆☆☆ ☆ ☆☆☆ ☆☆☆

Pivot-by-middle ☆☆☆ ☆☆☆ ☆ ☆☆ ☆☆☆ ☆☆☆☆☆

Pivot-by-size ☆☆☆ ☆☆☆ ☆ ☆ ☆☆☆ ☆☆☆☆☆

Squarified-SP ☆☆☆☆ ☆☆☆ ☆ ☆☆ ☆☆☆☆ ☆☆☆☆☆

SOTLA ☆☆☆ ☆☆☆ ☆☆ ☆ ☆☆☆ ☆☆☆☆

Squarified-AMA ☆☆☆ ☆☆ ☆ ☆ ☆☆☆ ☆☆☆

Note. ☆☆☆☆☆ represents the best, ☆☆☆☆ represents good, ☆☆☆ represent average, ☆☆ represents

general, ☆ represents poor.

3 OTWDLA

In this paper, according to the principle of equipartition of weights to divide a treemap, we introduce two

types of algorithms to find the suitable division point: one is a sequential traversal dataset and the other is

The Ordered Treemap of Weight Divided Layout Algorithm

36

middle division. According to the principle of this segmentation, we can quickly determine the point of

division at the same time in each partition. There are only two types of circumstances so that the

uncertainty of data segmentation can be reduced. The main idea of the two algorithms is that dividing the

dataset into a smaller subset of data by adopting the idea of the weights of a binary, iterative loop will be

used to map the data, obtaining the final layout.

3.1 Algorithm Description

Before describing the algorithm of this paper, some basic definitions are provided. The inputs are a

rectangle area R; its length is h and width is w, and the coordinate of the top left corner is (x, y). We

define the original dataset as O = {a1, a2, …, ai,…, an}, i =1, 2, …, n, where we set the number of data as

n. O1, O2 are defined as two subsets of the original dataset after dividing (O1∪O2 = O). We define n1 and

n2 as the number of data of the two subsets (n1 + n2 = n). The sum of the total weight of the original

dataset is defined as s so that si represents the sum of the total weight of Oi. Thus, s1 + s2 = s. P is defined

as the segmentation of the dataset and represents the sequence number of the end element of a subset O1,

P∈1, 2, …, n.

Weight Divided-Binary Search Algorithm, OTWDLAB, is described below:

Step 1. If n > 1, compute the collection partition position p = / 2n⎢ ⎥⎣ ⎦ , and divide the dataset into two

subsets, O1 and O2; then, calculate the difference between the weights of all elements of the two subsets

dold = |s1-s2|; and then, jump to perform Step 2. If n ≤ 1, jump to perform Step 6.

Step 2. If n1 ≥ 2, p goes forward and obtains p = p - 1, repartition the dataset into two new subsets, O1

and O2; then, calculate the difference between the weights of all elements of the two subsets dnew = |s1-s2|.

Compare dold and dnew; if dnew < dold so that p = p - 1, dold = dnew, then jump to Step 2. If dnew ≥ dold so that

p = p, then jump to Step 3.

Step 3. If n2 ≥ 2, p returns to one and obtains p = p + 1, repartition the dataset to two new subsets, O1

and O2; then, calculate the difference between the weights of all elements of the two subsets dnew = |s1-s2|.

Compare dold and dnew; if dnew < dold, so that p = p + 1, dold = dnew, then jump to Step 3. If dnew ≥ dold so that

p = p, then jump to Step 4.

Step 4. The final segmentation point p is searched through the above iteration loop. Divide the dataset

into two subsets, O1 and O2. Based on the segmentation point, the sum weights of two subsets, s1 and s2,

are each calculated. Based on the principle of long edge segmentation, if w > h, the width of the original

rectangle R is divided according to the weights s1/s and s2/s of the O1 and O2, and the height remains

unchanged. Obtain the corresponding segmentation rectangle R1 of O1, where the width is w1=s1/s·w, the

height is h1=h, the upper left corner of the vertex coordinates is (x1, y1) = (x, y). Then, obtain the

corresponding segmentation rectangular R2 of O2, where the width is w2=s2/s·w, the height is h2=h, and

the upper left corner of the vertex coordinates is (x2, y2) = (x+x1, y). If w≤ h, the height of the original

rectangle R is divided according to the weight of O1 and O2, and the width remains unchanged. Obtain

the corresponding segmentation rectangle R1 of O1, where the width is w1=w, the height is h1=s1/s·h, and

the upper left corner of the vertex coordinates is (x1, y1) = (x, y). Then, obtain the corresponding

segmentation rectangular R2 of O2, where the width is w2=w, the height is h2=s2/s·h, and the upper left

corner of the vertex coordinates is (x2, y2) = (x, y+y1).

Step 5. Set the data subset O1 and O2 to O and the sub-rectangles, R1, R2, which are to be drawn are set

respectively to the drawn rectangle R, and repeat Step 1 to Step 4 until all the data elements are separated

completely.

Step 6. At this point, n ≤ 1. If n = 1, the height h, width w and the vertex coordinates of the upper left

corner (x, y) of the rectangle R are to be drawn and are assigned to the corresponding drawn rectangle ri

of the sub-node ai. Its height is hi=h, the width is wi=w, and the vertex coordinates of the upper left corner

are (xi, yi) = (x, y).

Step 7. The height, width, and coordinates of each sub-node are obtained through Step 1 to Step 6.

Finally, the rectangle drawing area corresponding to each of the sub-nodes is drawn.

Next, we will introduce another algorithm, the weight Divided-Sequential Search Algorithm,

OTWDLAS, which is described below:

Journal of Computers Vol. 30 No. 5, 2019

37

Step 1. If n > 1, set the initial location of the set partition p = 1 and the initial size of the sum of weights d

to positive infinity, namely, d = +∞; then, jump to perform Step 2. If n ≤ 1, jump to perform Step 6.

Step 2. Divide the original dataset into two new subsets O1 and O2 according to the location of p; then,

calculate the difference between the weights of all elements of the two subsets dcur = |s1-s2|. Compare d

and dcur; if dcur < d so that p = p + 1, then jump to Step 2. If dcur≥ d so that p = p, then jump to Step 3.

Step 3. This step is the same as the Step 4 of the OTWDLAB, so is not described here.

Step 4. Set the data subsets O1 and O2 to O; set the sub-rectangles R1 and R2 to the drawn rectangle R; and

repeat Step 1 to Step 3 until all data elements are separated completely.

Step 5. At this point, n ≤ 1. If n = 1, the height h, width w and the vertex coordinates of the upper left

corner (x, y) of the rectangle R are to be drawn and are assigned to the corresponding drawn rectangle ri

of the sub-node ai. The rectangle height is hi=h, the width is wi=w, and the vertex coordinates of the

upper left corner are (xi, yi)= (x, y).

Step 6. The height, width, and coordinates of each sub-node are obtained through Step 1 to Step 5.

Finally, the rectangle drawing area corresponding to each of the sub-nodes is drawn. Example

Description

In this part, we will illustrate the proposed algorithm by an example. Suppose we have a rectangle with

a width of 600 and height of 400, and furthermore, suppose that this rectangle must be subdivided into

ten rectangles with areas of 4, 3, 1, 10, 2, 3, 6, 1, 3 and 2. Each element is represented by a rectangle

whose area is the weight of the element. As shown in Fig. 3, according to the principle of equalization of

power values, the elements 4, 3, 1 and 10 of the original dataset are combined into a new node 18. The

elements 2, 3, 6, 1, 3 and 2 are combined into a new node 17 so that we can obtain new nodes 18 and 17

and then lay out the new node list. The rendering of the treemap layout algorithm in the second part of

this paper is based on the drawing of this dataset.

Fig. 3. Weights structure

The Ordered Treemap of Weight Divided Layout Algorithm

38

The detailed drawing steps are shown below:

Step 1. By the principle of the weight structure in Fig. 3, in addition to the long edge segmentation

principle, the original rectangle will be segmented into rectangular sub-blocks whose ratio is 18:17. At

the same time, the width, length and top left corner vertex coordinates of the two rectangular blocks are

obtained.

Step 2. To adopt the idea of “divide and conquer”, we divide the rectangular sub-blocks with the weight

of 18 and 17 into rectangular sub-blocks with ratios of 8:10 and 11:6, respectively.

Step 3. According to the above principle, all the elements are divided, the width, height and top left

corner vertex coordinates of the ten rectangular sub-blocks are obtained, and then, all the sub-blocks are

drawn to obtain the final effect.

The whole partition drawing process is shown in Fig. 4.

Fig. 4. Split drawing process

4 The Experimental Evaluation

4.1 Evaluation Indexes

This paper evaluates the performance of the layout algorithm for six commonly used evaluation indexes,

including the average aspect ratio, continuity, readability, average distance change, the variance of

distance changes and distance correlation [3-7, 13].

The average aspect ratio (AAR) [3] is used to describe the approximate degrees of the squares and

rectangles of the treemap. The ratio is the unweighted arithmetic average of the aspect ratios of all leaf-

node rectangles. The aspect ratio is defined as the maximum value of the ratio of length to width and the

ratio of width to length. The aspect ratio of the i child is defined as follows:

 ()=max / , /i i i i iAR h w w h , (1)

Journal of Computers Vol. 30 No. 5, 2019

39

so that the average aspect ratio is defined as follows:

1

1
n

i

i

AAR AR
n

=

= ∑ . (2)

By this definition, the aspect ratio of a rectangle is closer to 1. When the rectangle is closer to a square,

the cognitive complexity for the user is lower.

Continuity (C) [4] is used to measure the search difficulty level of specific nodes in the treemap. Two

adjacent nodes in a treemap are adjacent. If not, the user’s search will be interrupted. Continuity can be

described as the number of halts in the process of user search specific nodes. With the hierarchy of n

nodes containing n-1 adjacent relationship, assuming the treemap visualization results contained the

adjacent relation as s, the continuity can be defined as follows:

1

s
C

n
=

−

. (3)

The continuous treemap is not interrupted during the search process, and the value is 1. Obviously, the

greater the continuous is closer to 1, the lower the cognitive complexity is for the user.

Readability (R) [5] is used to measure the difficulty degree when using sequential search specific nodes

in the treemap. It can be measured by the number of times the search direction of the line of sight

changes for the user in the process of searching. Assuming that there are n nodes in a treemap, when

traversing all the nodes, the line of sight can change n-2 times typically. In the specific calculation, first,

calculate the center of the rectangle each node, and then, calculate the radian of the adjacent rectangular

center wired in the sequential search. We defined that the line of sight direction of the user changes when

the radian is greater than 0.1. For s, the number of the line of sight direction changes when the radian is

greater than 0.1, so that readability can be defined as follows:

 ()1 2 , 2R s n n= − − > . (4)

Obviously, the higher the readability, the fewer times the line of sight jumps when a user searches the

target node, and the lower the cognitive complexity is for the user. As shown in Fig. 5, the node sequence

is 4, 3, 1, 10, 11, 1, 3 and 2; for sequence traversal, the radians of a1, a2, a3, a4 and a5 are greater than 0.1.

Therefore, the number of the line of sight changes of the user is 5, and the readability of this treemap can

be calculated as follows:

 ()1 5 8 2R = − −
. (5)

Fig. 5. Schematic diagram of readability for the line of sight change

The Ordered Treemap of Weight Divided Layout Algorithm

40

Average distance change (ADC) [3] is used to describe the changes in the location and size of specific

nodes when a dataset changes. Assume that rectangular node Ri is defined by a 4-tuple (xi, yi, wi, hi),

where x and y are the coordinates of the upper left corner and the w and h are its width and height. After

the data are updated, this node is given by R’

i (x
’

i, y
’

i, w
’

i, h
’

i). Then, the distance between Ri and R’

i is

given by the following:

 () () () ()
22 2 2

'
' ' '

i i i i i i ii i
y yd x x w w h h= + + +

− − − −

. (6)

Therefore, the average distance change can be defined as follows:

1

1
1

n

i

i

ADC d
n

=

= ∑ . (7)

Obviously, the greater the value of di is and the greater the change in the node is, the more unstable the

visual effect is, and the higher the cognitive complexity is for the user. In this paper, we define ADC as

the reciprocal of the mean value of the position change so that the more stability there is, the more stable

the visualization is.

Variance of distance changes (VDC) [3] is used to measure the degree of equilibrium of stability of a

treemap, and it can be represented as the variance of the rectangle position and shape change:

 ()
2

1

n
i

i

d ADC
VDC

n
=

−

=∑ . (8)

The smaller the value of VDC is, the smaller the dispersion of the dataset is.

Distance correlation (DC) [6] is used to measure the linear correlation between the node positions and

ordinal numbers in the treemap. The upper left coordinates of the rectangular nodes represent node

coordinates, the upper left coordinates of the parent node are defined as (x, y), and the child is defined as

(xi, yi). Thus, the Euclidean distance of the child node to the parent node can be defined as follows:

 () ()
2 2

i i iD x x y y= +
− −

. (9)

The distance correlation can be defined as follows:

()

2

1

2
2 2

1 1

n

i

i

n n

i

i i

i D

DC

i D

=

= =

∗

=

∗

∑

∑ ∑

. (10)

DC has the range [0, 1]; the closer the value is to 1, the stronger the location of the rectangle node and its

serial number is.

4.2 Experimental Description

To verify the effectiveness of this algorithm, we realized the nine treemap layout algorithms of the

previous algorithms and compared the experiment to evaluate the algorithm in this paper.

We selected datasets of different sizes to conduct the simulation experiments. The numbers of datasets

were [10, 20, 30… 500], in a total 50 sets of sample data. Each datum in the dataset is generated by a

random number generation function to give a value within the range [1, 100]. Two sets of data are

required in the test of the ADC and VDC. This paper adopts the square root transformation method and

takes up the entire original dataset with O = {a1, a2, …, ai,…, an}, which will transform to the new dataset

with O’ = {a’1, a
’

2, …, a’i,…, a’n}. The transformation formula is a’i = i
a⎡ ⎤√⎢ ⎥ .

The experimental environment is a Windows 10 64-bit operating system, the processor Intel(R)

Core(TM) i3 CPU M 380 @ 2.53 GHz, with 8.00 GB RAM.

Journal of Computers Vol. 30 No. 5, 2019

41

4.3 Experimental Results and Analysis

We encoded the corresponding algorithm and performed a comparison experiment on six evaluation

indexes. The results are shown in Fig. 6 to Fig. 11, the x-axis represents the count of data in the

experimental dataset, and the y-axis represents the value of each evaluation index.

(a) The ARR of all algorithms (b) The AAR of the OTWDLA and Squarifled

algorithms

Fig. 6. The AAR evaluation index

As seen from Fig. 6(a), the algorithm with the best average aspect ratio is undoubtedly the Squarified

algorithm, and the worst is the Slice-and-Dice algorithm; by setting the upper bounds of the aspect ratio

as ten here, the algorithms can be compared, as shown in the diagram. The algorithm of this paper

performed well on the average aspect ratio, second only to the Squarified-SP algorithm. Fig. 6(b) shows

our algorithm and the Squarified algorithm. We can see that the AAR of our algorithm was maintained

between 1.8 and 3.1 relatively well.

Regarding the continuity aspect, the closer the value is to 1, the better the performance is. As seen

from Fig. 7(a), the Slice-and-Dice and Spiral are some of the best algorithms in this respect, where the

continuity index is one. The Squarified algorithm is the worst in this aspect. The continuity of our

algorithm was maintained between 0.7 and 0.9, and the performance is relatively good.

(a) The continuity all algorithms (b) The continuity of our OTWDLA

Fig. 7. The continuity evaluation index

Regarding readability, the closer the value is to 1, the better the performance is. As seen from Fig. 8(a),

the readability of the Slice-and-Dice algorithm is the best, that of the Strip and Spiral is second, and the

readability of the other algorithms is below 0.5. As seen from Fig. 8(b), regarding readability, the

algorithm of this paper is not very good, with a value below 0.15.

The Ordered Treemap of Weight Divided Layout Algorithm

42

(a) The readability all algorithms (b) The readability of OTWDLA

Fig. 8. The readability evaluation index

Regarding the average distance change, as seen from Fig. 9(a), the ADC of the Slice-and-Dice

algorithm is best and is far better than that of the other algorithms. As shown in Fig. 9(b), other than the

Slice-and-Dice algorithm, the algorithms are divided into two categories. Compared to the ADC of our

algorithm, the pivot-by-middle and the Squarified-SP algorithm performances are relatively good. This

result indicates that the average change is relatively small when the data are updated, which is more

conducive to the long-term tracking of data.

(a) The ADC of all algorithms (b) The ADC of all algorithms other than Slice-and-

DICE

Fig. 9. The ADC evaluation index

Regarding the variance of distance changes, the closer a value is to zero, the better the performance.

As you can see from Fig. 10(a), the VDC of the Slice-and-Dice algorithm is best, while the other

algorithm has a different degree of shock. In this paper, our algorithm and the Squarified-SP algorithm

are better than the other algorithms in this aspect, when using smaller shocks.

(a) The VDC of all algorithms (b) The VDC of OTWDLA

Fig. 10. The VDC evaluation index

Journal of Computers Vol. 30 No. 5, 2019

43

Regarding the distance correlation, as seen from Fig. 11, the algorithm in this paper performs well in

this aspect, with values between 0.95 and 1, and the Slice-and-Dice, pivot-by-middle, pivot-by-size, and

Squarified-SP algorithms are all at one level.

(a) The DC of all algorithms (b) The DC of OTWDLA

Fig. 11. The DC evaluation index

The experimental results of each evaluation index can be seen in Table 2.

Table 2. The value range of each evaluation indexes

Evaluation Index AAR (1~10) C (0~1) R (0~1) ADC VDC (0~1) DC (0~1)

Slice-and-Dice 10 1 1 0.040~0.814 0~1 0.947~0.970

Squarified 1.061~1.423 0.008~0.333 0~0.147 0.003~0.004 0~1 0.666~0.814

Strip 1.640~7.925 0.842~0.956 0.375~1 0.003~0.009 0~1 0.797~0.884

Spiral 1.708~4.420 1 0.250~0.850 0.003~0.013 0~1 0.550~0.734

Pivot-by-middle 1.965~4.406 0.725~0.889 0~0.222 0.014~0.036 0~1 0.954~0.981

Pivot-by-size 1.736~5.042 0.748~0.889 0~0.177 0.005~0.013 0~1 0.947~0.977

Squarified-SP 1.435~2.702 0.586~0.778 0.018~0.250 0.007~0.032 0~1 0.852~0.975

SOTLA 1.791~3.485 0.715~0.897 0.125~0.445 0.005~0.010 0~1 0.834~0.932

Squarified-AMA 1.748~3.451 0.411~0.667 0.017~0.389 0.003~0.004 0~1 0.634~0.796

OTWDLAB 1.828~3.076 0.675~0.889 0~0.125 0.011~0.036 0~1 0.937~0.978

OTWDLAS 1.828~2.887 0.675~0.889 0~0.083 0.006~0.038 0~1 0.937~0.978

The comparison and characteristics of each algorithm are analyzed from six different evaluation

indexes. As shown in Fig. 12, after the values of the six evaluation indexes are normalized, the various

evaluation indexes indicate that the greater the value of the index is, the better the is performance of the

algorithm in the aspect being measured. That is, the larger the area of the entire corresponding algorithm

is in the radar chart, the better the comprehensive performance is. Based on the comparative analysis of

the algorithms, it can be seen that the Slice-and-Dice algorithm has the best comprehensive performance,

but the aspect ratio is the worst, when applied to each of the layer nodes of the small datasets. The

Squarified algorithm is undoubtedly the best algorithm in terms of the aspect ratio, but the other aspects

of performance are not very good, are suitable for a large amount of data and do not need to clear the

sequential dataset. In Fig. 12(b), our algorithm is very good in terms of the average aspect ratio,

continuity, the distance correlation performance. Compared with the Strip and Spiral algorithm, the

algorithm of this paper sacrifices a small amount of readability, improves the average distance change,

variance of distance changes and distance correlation, and has obvious advantages in terms of the average

aspect ratio and continuity. As shown in Fig. 12(c), the present algorithm was compared with the

Squarified-SP algorithm and is similar in all aspects of performance, but the complexity of our algorithm

is much simpler. Table 3 shows the performance evaluation of the indexes. In this paper, the largest

advantage is that the average aspect ratio is obtained by using uncomplicated algorithm logic. At the

same time, the continuity of performance is good and is suitable for continuity of sequential data

visualization.

The Ordered Treemap of Weight Divided Layout Algorithm

44

(a) Evaluation indexes of

all algorithms

(b) Evaluation index of

OTWDLA

(c) The evaluation indexes

of OTWDLA and

Squarified-SP

(d) Legend

Fig. 12. Radar chart of evaluation indexes

Table 3. The evaluation indexes of our algorithms

Evaluation Index AAR C R ADC VDC DC

OTWDLAB ☆☆☆☆ ☆☆☆ ☆ ☆☆ ☆☆☆☆ ☆☆☆☆☆

OTWDLAS ☆☆☆☆ ☆☆☆ ☆ ☆☆ ☆☆☆☆ ☆☆☆☆☆

Note. ☆☆☆☆☆ represents the best, ☆☆☆☆ represents good, ☆☆☆ represent average, ☆☆ represents

general, ☆ represents poor.

5 Conclusion

This paper proposed a new weighting divide orderly treemap layout algorithm (OTWDLA), and we

analyze and study the visualization of hierarchical data. In this paper, by comparing many types of

treemap layout algorithms, the experimental results show that the algorithm has high ratings for the

average aspect ratio, correlation distance, continuity and variance of distance changes performance. This

algorithm offers a useful compromise for obtaining good results in AAR and C. It is not the best in terms

of comprehensive performance but has a very good effect on the orderly hierarchical data. The

OTWDLA algorithm has the following features: (1) the algorithm has a very low complexity, it obtains a

good average aspect ratio, and the rectangular shape is closer to the square, which is advantageous for

human eye recognition; and (2) it has good continuity, which facilitates data searching. The OTWDLA

can be used on data with a sequential requirement. Some examples include the following situations:

Forest disaster statistics with time and space sequences of different periods in different locations; the

fluctuation of stocks over time; changes in the click rate, transmission and transfer after a press release

over time; and shopping website commodity sales data. At the same time, the implementation of this

algorithm is very good for data without a sequential requirement. In the future, we will work to improve

the ratio of their overall performance, optimize the square of the treemap, and enhance its readability.

Acknowledgements

The authors wish to thank the reviewers for their comments. This work is supported by the Fundamental

Research Funds for the Central Universities (2015ZCQ-XX).

References

[1] W. Chen, Z. Shen, Y. Tao, Data Visualization, Publishing House of Electronics Industry, Beijing, China, 2013.

[2] B. Johnson, B. Shneiderman, Tree-maps: a space-filling approach to the visualization of hierarchical information structures,

in: Proc. IEEE Conference on Visualization, 1991.

Journal of Computers Vol. 30 No. 5, 2019

45

[3] B. Shneiderman, M. Wattenberg, Ordered treemap layouts, in: Proc. IEEE Symposium on Information Visualization, 2001.

[4] Y. Tu, H. W. Shen, Visualizing changes of hierarchical data using treemaps, IEEE Transactions on Visualization &

Computer Graphics 13(2007) 1286-93.

[5] B.B. Bederson, B. Shneiderman, M. Wattenberg, Ordered and quantum treemaps: making effective use of 2D space to

display hierarchies, ACM Transactions on Graphics 21(2002) 833-854.

[6] J. Wood, J. Dykes, Spatially ordered treemaps, IEEE Transactions on Visualization & Computer Graphics 14(2008) 1348-

1355.

[7] Y. Chen, H. Hu, Z. Li, Performance compare and optimization of rectangular treemap layout algorithms, Journal of

Computer-Aided Design & Computer Graphics 25(2013) 1623-1634.

[8] M. Bruls, Squarified Treemaps, in: W. C. de Leeuw, H. Pagendarm, F. H. Post, B. Waltzer (Eds.), Data Visualization,

Springer-Verlag, Wien, Austria, 2000, pp. 33-42.

[9] T. Itoh, Y. Yamaguchi, Y. Ikehata, Y. Kajinaga, Hierarchical data visualization using a fast rectangle-packing algorithm,

IEEE Transactions on Visualization & Computer Graphics 10(2004) 302-313.

[10] J.J. Van Wijk, d.W. Van, H., Cushion treemaps: visualization of hierarchical information, in: Proc. IEEE Symposium on

Information Visualization (INFOVIS’99), 1999.

[11] M. Balzer, O. Deussen, C. Lewerentz, Voronoi treemaps for the visualization of software metrics, in: Proc. the 2005 ACM

symposium on Software visualization, 2005.

[12] J. Liang, S. Simoff, Q.V. Nguyen, M.L. Huang, Visualizing large trees with divide & conquer partition, in: Proc.

International Symposium on Visual Information Communication and Interaction, 2013.

[13] K. Wetzel, Pebbles-using circular treemaps to visualize disk usage. <http://lip.sourceforge.net/ctreemap.html>, 2003

(accessed 02.03).

[14] B. Parsia, T. Wang, J. Golbeck, Visualizing web ontologies with cropcircles, in: Proc. End User Semantic Web Interaction

WS, 2005.

[15] W. Wang, H. Wang, G. Dai, H. Wang, Visualization of large hierarchical data by circle packing, in: Proc. Conference on

Human Factors in Computing Systems, 2006.

[16] F. Fischer, J. Fuchs, F. Mansmann, ClockMap: enhancing circular treemaps with temporal glyphs for time-series data, in:

Proc. Eurographics Conference on Visualization, 2012.

[17] H.S. Zhao, L. Lü, Z.T. Bo, Variational circular treemaps for hierarchical data, Journal of Software 27(2016) 1103-1113.

[18] S. Hahn, J. Döllner, Hybrid-treemap layouting, in: Proc. Eg/vgtc Conference on Visualization, 2017.

[19] T. Baudel, B. Broeksema, Capturing the design space of sequential space-filling layouts, IEEE Transactions on

Visualization & Computer Graphics 18(2012) 2593-602.

[20] Z. Xin, X. Yuan, Treemap Visualization, Journal of Computer-Aided Design & Computer Graphics 24(2012) 1113-1124.

[21] Y. Chen, Y. Jia, Y. Sun, A squarified treemap layout algorithm using block-based sorting, Journal of Computer-Aided

Design & Computer Graphics 25(2013) 731-737.

[22] H. Hu, Y. Chen, Y. Zhen, R. Liu, A squarified and ordered treemap layout algorithm, Journal of Computer-Aided Design &

Computer Graphics 26(2014) 1703-1710.

[23] C. Zhang, X. Xiang, P. Zhang, Research and optimization of visual layout algorithm based on squarified treemap,

Computer Engineering & Applications 53(9)(2017) 208-212.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

