
Journal of Computers Vol. 30 No. 5, 2019, pp. 98-110

doi:10.3966/199115992019103005008

98

Traffic Engineering Algorithms between Different Tunnels:

Stateful and Stateless

Jun Zhao1*, Congxiao Bao2, Xing Li1

1 Department of Electronic Engineering, Tsinghua University, Haidian District, Beijing, China

zhaojun12@mails.tsinghua.edu.cn, xing@cernet.edu.cn

2 Information Technology Center, Tsinghua University, Haidian District, Beijing, China

congxiao@cernet.edu.cn

Received 20 November 2017; Revised 19 March 2018; Accepted 3 May 2018

Abstract. More and more networking services create overlay network using physical links

between geo-distributed data centers and many kinds of tunnel technologies, to make full use of

link resources between data centers. To achieve efficient construction of overlay network and

flexible traffic engineering between different tunnels in overlay network, this paper presents the

design Software Overlay Router (SOR), which is used to relay packets. This paper also presents

a stateful and a stateless algorithms based on OpenFlow protocol to establish a tunnel without

the requirement of global IP address in a simple and scalable manner. The stateful algorithm

modifies incoming packets according to a database of four tuples mapping relationship, then

forwards modified packets based on kernel routing table through established tunnel, and finally

reconstructs received packets and transfers to the original destination. While stateless algorithm

benefits from using IP transition algorithm without the need of maintaining four tuples mapping

relationship, which largely reduces the number of OpenFlow rules need to be updated. The

experiment shows the SOR and the algorithms proposed in this paper can effectively improve

utilization of network link resources.

Keywords: OpenFlow, OpenVPN, overlay network, software defined networking, traffic

engineering

1 Introduction

Software Defined Networking (SDN) [1] is a newly proposed network architecture, which has been

widely used to redesign and accelerate traditional network [2]. This is done by decoupling the system that

makes decisions about where traffic is sent (control plane) from the underlying systems that forward

traffic to the selected destination (data plane) using OpenFlow protocol.

Studies [3] have shown that overlay networks can significantly improve network performance. With

the development of SDN technology, more and more applications [4] create overlay network using

physical links between geo-distributed data centers and many kinds of tunnel technologies, to make full

use of link resources between data centers, in order to provide better service quality.

Thanks to the considerable flexibility offered by SDN, many technologies have been proposed to build

overlay network, which can be divided into two categories: header rewriting [5-7] and packet

encapsulation [8-9].

In the case of header rewriting [5-7], packet headers are replaced by special short tags. Kannan and

Banerjee [5] introduces the notation of Flow-ID, where all packets belong to a flow are identified using

this unique Flow-ID, and leverages the capabilities of the SDN to dynamically allow switching devices to

route the packets based on the Flow-IDs. Similar to [5], Kawashima [6] proposes a header rewriting

method using VLAN-ID to identify packets belong to the same flow. Mina [7] proposes a scalable VPN

gateway, which relays packets from internet to a virtual machine (VM) with private IP address located in

* Corresponding Author

Journal of Computers Vol. 30 No. 5, 2019

99

data center. The VPN gateway can handle hundreds of tunnels simultaneously leveraging a commodity

switch. Header rewriting technology has several disadvantages. First, all the switches along the routing

path must recognize the matching field [5-7], e.g., FLOW-ID and VLAN-ID, thus header rewriting is

mostly used in a fully controlled intra-data center network. Second, header rewriting cannot relay packets

through Network Address Translation (NAT) devices [5-6]. Third, although literature [7] can forward

traffic through NAT, it requires a special hardware to achieve that.

However, in the case of packet encapsulation [8-9], the whole Ethernet frame is encapsulated into

another IP packet. Yang et al. [8] design a tunnel broker, which can build overlay network based on

OpenVPN tunnel to avoid the requirement of global IP address. Rodriguez et al. [9] present the design of

an open source software overlay router (OOR) using Locator/ID Separation Protocol (LISP) as tunnel

protocol, and claims that LISP does not reduce efficiency given that LISP encapsulation typically adds 36

bytes (IPv4) or 56 bytes (IPv6) extra length. Virtual Extensible LAN (VXLAN) is a traditional

technology used to build overlay network. Packet encapsulation technology also has some disadvantages.

First, traditional encapsulation method VXLAN is based on UDP protocol, which has performance issues

due to that Internet Service Provider (ISP) usually limits the transmission rate of UDP protocol. Second,

although literature [8] can establish OpenVPN tunnel, the forwarding rules should be manually

configured, which has scalability issues. Third, although OOR [9] can build tunnel through NAT, it needs

some modifications on NAT devices in the middle of the path.

So for the ease of building overlay network, three aspects should be taken into consideration. First, the

maximum transfer rates of one path achieved by different kinds of tunnels may differ largely among each

other. Overlay router should be able to build different kinds of tunnels and establish specific tunnel

according to link measurement results. Second, due to security consideration, many hosts are connected

to internet through NAT devices. Overlay router should be able to build tunnels through NAT without the

requirement of global IP address. Third, overlay routers may build several different tunnels with each

other simultaneously, so an algorithm, which is able to flexibly relay packets through different tunnels is

urgently needed.

We claim that the technologies mentioned above [5-9] cannot fully meet the above three requirements.

So in this paper, we propose a Software Overlay Router (SOR). To make full use of link bandwidth

resources, SOR can build at least 3 kinds of tunnels, such as Generic Routing Encapsulation (GRE),

VXLAN and VPN (TCP protocol based). In order to establish tunnel through NAT, the SOR behind

NAT device initially sends requests to other SORs to build VPN tunnel. A stateful algorithm and a

stateless algorithm have been proposed to forward packets through different kinds of tunnels. Table 1

summaries the advantages and disadvantages of technologies mentioned above.

Table 1. Differences between related works and SOR

Compared

work

NAT

support

Dynamic

routing

Bandwidth

utilization

Deployment

scenario

[5] No Yes Normal Intra-datacenter

[6] No Yes Normal Intra-datacenter

[7] No Yes Normal Intra-datacenter

VXLAN Yes Yes Low Internet1

[8] Yes No High Internet

[9] Yes2 Yes Normal Internet

SOR Yes Yes High Internet

This paper extends our previous work [10]. Our contributions are four folds. First, we design a

Software Overlay Router (SOR), which is able to establish several different kinds of tunnels through

NAT with other SORs simultaneously and increase utilization of link resources. Second, we introduce a

stateful traffic engineering algorithm, which is based on OpenFlow protocol to establish a tunnel without

the requirement of global IP address in a simple and scalable manner. The stateful algorithm modifies

incoming packets according to a database of four tuples mapping relationship, then forwards modified

packets based on kernel routing table through established tunnel, and finally reconstructs received

packets and transfers to the original destination. Third, we devise a stateless traffic engineering algorithm,

1 The word Internet means that there is no limitation in deployment scenario.
2 In order to support traversing through NAT, OOR needs some modifications on NAT devices.

Traffic Engineering Algorithms between Different Tunnels: Stateful and Stateless

100

which benefits from using IP transition algorithm without the need of maintaining four tuples mapping

relationship, thus largely reduces the number of OpenFlow rules need to be updated. Fourth, an extensive

evaluation of SOR proves that SOR can achieve high throughput and effectively improve utilization of

network link resources.

This paper is organized as follows. Section 2 exposes the design of Software Overlay Router (SOR)

and implementation related issues. Section 3 contains the details of stateful traffic engineering algorithm

proposed in this paper, while stateless one is explained in section 4. The performance evaluation is

presented in section 5. In section 6, some useful use cases are discussed, and finally section 7 draws the

conclusion of this paper.

2 Design of Software Overlay Router

In order to solve problems mentioned above, we implement Software Overlay Router, shown in Fig. 1, to

create tunnels between hosts distributed all over the world based on the mechanism proposed in this

paper. For brevity, we firstly summarize the notations that will be used in Table 2. Our mechanism is still

based on packet encapsulation technology, which has no limitations in deployment scenarios.

NAT

Software Overlay Router

Software Overlay
Router

PC

OpenVPN

Kernel Route

VXLANGRE

Special IP

Fig. 1. Architecture of Software Overlay Router

Table 2. Notations Used in This Paper

Notation Description

SIPT the special IPv4 allocated for tunnel T (SIPvxlanfor VXLAN and SIPvpn for VPN)

SIPv6T the special IPv6 allocated for tunnel T (SIPv6vxlan for VXLAN and SIPv6vpn for VPN

LOCAL refer to the OpenFlow local port

NORMAL process the packet using traditional Layer 2 or Layer 3 processing

Dip the destination IP address of forwarding packet

Dport the destination port of forwarding packet

Sip the source IP address of forwarding packet

Sport the source port of forwarding packet

HT,s the source end host of tunnel T

HT,d the destination end host of tunnel T

PORTT,s the global unique destination port allocated for modified packet in host HT,s

IPH the IP address of host H

PORTH the global unique source port allocated for NAT in host H

IFVIS newly defined OpenFlow action used translate IPv4 packet to IPv6 format with Prefix and Length as input

ISVIF newly defined OpenFlow action used translate IPv6 packet to IPv4 format with Prefix and Length as input

LEN(ip) the function used to calculate length of Prefix with ip as input

Journal of Computers Vol. 30 No. 5, 2019

101

2.1 Tunnel Protocols Chosen

GRE can encapsulate a wide variety of network layer protocols inside virtual point-to-point links over an

Internet Protocol network. VXLAN uses a VLAN-like encapsulation technique to encapsulate MAC-

based layer 2 Ethernet frames within layer 4 UDP packets, using 4789 as the default destination UDP

port number. Neither of them can make full use of the link bandwidth resources.

This paper introduces TCP based OpenVPN tunnel, based on the following two intuitions. First, TCP

protocol has a traffic congestion control algorithm, which can make full use of high bandwidth networks.

Second, OpenVPN supports that host with a private IP address actively establishes tunnel with host in

global network. In a nutshell, overlay router should have the ability of establishing at least three different

tunnels, such as GRE, VXLAN and OpenVPN.

2.2 Architecture of Software Overlay Router

Based on the concept of SDN, SOR locates in the data plane, focusing on traffic transmission between

different tunnels. Open source software Virtual Switch, usually called Open vSwitch, is currently widely

used in traffic engineering system, which supports forwarding traffic between GRE and VXLAN tunnels

by installing OpenFlow rules. However, OpenVPN tunnel cannot be controlled by OpenFlow protocol,

making it difficult to control traffic transmission between GRE and OpenVPN, VXLAN and OpenVPN

using OpenFlow protocol.

In order to solve above problem, this paper proposes the SOR architecture shown in Fig. 1. As

discussed above, each SOR establishes GRE, VXLAN and OpenVPN tunnels with other SORs. SOR

achieves traffic scheduling between different tunnels through pre-configured Linux kernel routing table

rules.

Simply using pre-configured Linux kernel routing table to achieve traffic engineering between

different tunnels has scalability issues. First, there are billions of IP addresses, all of which can be

destination address of IP packets. What is more, there are even 750,000 IP blocks based on the prefixes

advertised by BGP router, which is extremely large. Second, packets’ destination addresses are

dynamically changing all the time, and even for the same destination address, packets may be transferred

through different tunnels at different time. Dynamically updating Linux kernel routing table definitely

increases the complexity of SOR design.

2.3 Concept of Special IP

In order to solve the problem of Linux kernel routing table scalability, this paper introduces the concept

of Special IP. SOR pre-allocates an IP block for each type of tunnel, named as Special IP, which can be

either a specific IP address, or an IP block represented by CIDR.

If SOR needs to create three types of tunnels, it needs pre-allocate three Special IPs, and pre-configure

in the kernel routing table. In a nutshell, it only needs to configure three static routing rules in the kernel,

which is a perfect solution to the problem of hundreds of thousands of IP address prefixes.

When traffic needs to be forwarded through certain tunnel, it only needs to modify the destination IP

address of the packets to the Special IP allocated for that tunnel, which excellently solves the problem of

dynamically changing destination IP addresses.

2.4 Implementation of SOR

We have successfully implemented SOR in Raspberry PI 3 Model B and Amazon AWS EC2 virtual

machine to demonstrate the largely deployment feasibility of SOR.

SOR consists of a variety of open source software. Table 3 lists the software used to build SOR and

their corresponding versions. Open vSwitch software is used to establish GRE and VXLAN tunnels,

while OpenVPN is used to build TCP based VPN tunnel. RYU is used as the central controller of SOR,

and forwards traffic among tunnels by installing specific OpenFlow rules.

Traffic Engineering Algorithms between Different Tunnels: Stateful and Stateless

102

Table 3. Open source software used in SOR

No. Open Source Software Version

1 Open vSwitch 2.6.0

2 OpenVPN 2.3.2

3 RYU 4.6

On the choice of Special IP, in order to avoid conflicts with the commonly used private IP address

block (10/8, 176.16/12, 192.168/16), SOR uses preserved IP address block 100.64/10 as Special IP

allocation pool. For example, SOR pre-allocates 100.64.0./24, 100.64.1/24, 100.64.2/24 for GRE,

VXLAN, and OpenVPN respectively.

3 Stateful Mechanism

In this section, we give a detailed explanation of stateful algorithm.

3.1 An Example of Mechanism

In this subsection, we give an example to illustrate the procedure to forward traffic by building

OpenVPN tunnel through NAT. Fig. 2(a) shows the network topology without Software Overlay Router,

in which, client (C) behind NAT directly communicates with remote server (S) through underlay network.

In Fig. 2(b), traffic between client and server is forwarded through overlay path C-X-Y-S with Software

Overlay Router. When packet with IPS as destination IP address, PORTS as destination port, is sent from

C, the flow entries are shown in Fig. 2(b).

S (Server in Tokyo) NAT C (Client in Tianjin)

(a) Network without overlay router

OpenVPN tunnel

DST IP = IPS; DST Port = PORTS; SRC IP = IPC; SRC Port = PORTC IFVIS [Prefix = SIPv6VPN, Length = LEN(SIPv6VPN)]; Output: LOCAL

DST IPv6 = IPv6 [Prefix = SIPv6VPN, Length = LEN(SIPv6VPN)] ISVIF [Prefix = SIPv6VPN, Length = LEN(SIPv6VPN)]; Output: LOCAL

DST IP = IPS; DST Port = PORTS; SRC IP = IPC; SRC Port = PORTC Set SRC IP = IPY; Set SRC Port = PORTY; Output: NORMAL

Flow Table X

Matching Field Action

Matching Field Action

Flow Table Y

(c) Network with overlay router and stateless algorithm

Y in Beijing X in Tianjin

OpenVPN tunnel

OpenVPN

Kernel Route

VXLAN

LOCAL

SIPv6VPN

SIPv6VXLAN

Y in Beijing X in Tianjin

(b) Network with overlay router and stateful algorithm

Flow Table X

DST IP = IPS; DST Port = PORTS; SRC IP = IPC; SRC Port = PORTC

OpenVPN

Kernel Route

VXLAN

LOCAL

SIPVPN

SIPVXLAN

Set DST IP = SIPVPN; Set DST Port = PORTX; Output: LOCAL

DST IP = SIPVPN; DST Port = PORTX; SRC IP = IPC; SRC Port = PORTC Set DST IP = IPS; Set DST Port = PORTS; Output: LOCAL

DST IP = IPS; DST Port = PORTS; SRC IP = IPC; SRC Port = PORTC Set SRC IP = IPY; Set SRC Port = PORTY; Output: NORMAL

Matching Field Action

Matching Field Action

Flow Table Y

Fig. 2. An example of SOR

Journal of Computers Vol. 30 No. 5, 2019

103

We allocate two Special IPs for OpenVPN and VXLAN tunnels separately (i.e., SIPvpn and SIPvxlan),

and statically configure the Linux kernel routing table for the two tunnels in X. In SOR X, packets are

forwarded through OpenVPN tunnel after modifying destination IP address to SIPvpn and destination port

to PORTX. Based on the matching fields, SOR Y resets the destination IP address and port to original

ones (i.e., IPS and PORTS) before forwarding collaboratively.

3.2 Detail of Mechanism

The core idea of Algorithm 1 is to reconstruct the modified packets at the end host of tunnel by

maintaining the packets’ four tuples mapping relationship in the controller.

Algorithm 1. Stateful Mechanism

Input: To be forwarded packet with Dip as destination IP address and Dport as destination port

Output: Installing new flow entries on tunnel end hosts HT,S and HT,d

1.

2. Install one flow entry on tunnel end host HT,S , where the matching field is original destination IP

address and port, the action is configured as follows:

(1) set destination IP address to SIPT

(2) set destination port to PORTT,S

(3) set output port to LOCAL

3. Install one flow entry on tunnel end host HT,d, where the matching field is Special IP address for

tunnel T and port, the action is configured as follows:

(1) set destination IP address to Dip

(2) set destination port to Dport

(3) set output port to LOCAL

4. Install one flow entry on tunnel end host HT,d, where the matching field is original destination IP

address and port, the action is configured as follows:

(1) set source IP address to IPY

(2) set source port to PORTY

(3) set output port to NORMAL

When host C wants to communicate with host S through tunnel T, it is only necessary to modify the

destination IP address of packet to the Special IP SIPT assigned by host HT,S for tunnel T and the

destination port to the globally unique port PORTT,S of host HT,S . In this way, the modified packet will

be forwarded through tunnel T after searching the Linux kernel routing table. According to the packet’s

four tuples mapping relationship maintained by controller, host HT,d will reconstruct the modified packet,

and transfer the packet to the original destination after NAT process based on OpenFlow rule (Line 4).

Because the Alg.1 needs to maintain a 4 tuple mapping relationship of TCP/UDP packets in the

controller, it is also referred as a stateful traffic engineering algorithm. If the number of flows need to be

updated is N, then the total number of OpenFlow rules need to be installed can be defined as Eq. (1).

 3 .statefulN N= × (1)

Unlike physical switch, which stores flow entries in Ternary Content Addressable Memory (TCAM)

limited in size, SOR keeps updated OpenFlow rules in memory, making it easier to handle much larger

number of packets simultaneously.

4 Stateless Mechanism

In this section, the detailed explanation of stateless algorithm will be given.

4.1 IP Translating Actions

In OpenFlow protocol, a flow rule has 2 parts: matching field and action. We implement two new actions

named IFVIS and ISVIF, which respectively mean translating packet header from IPv4 to IPv6 and from

Traffic Engineering Algorithms between Different Tunnels: Stateful and Stateless

104

IPv6 to IPv4, using stateless translating algorithm [11]. We take a simple case as an example shown in

Fig. 3.

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

| 8 - - - - - - - - - - - - - - - - - - - 104 112 120 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

| Prefix(Length) | Padding | A | B | C | D | PORT |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

+---+---+---+---+---+---+

| A | B | C | D | PORT |

+---+---+---+---+---+---+

ISVIF IFVIS

Fig. 3. An example of IFVIS and ISVIF actions

For ease of implementation, both IFVIS and ISVIF take IPv6 prefix and prefix length as input

parameters. IFVIS action encapsulates 4 bytes IPv4 address (i.e., A.B.C.D) and 2 bytes port (i.e., PORT)

into the last 6 bytes of IPv6 address, and adds IPv6 prefix (i.e., Prefix) to the first. If the Length is less

than 80 bits, then spare space will be padded with 0. While ISVIF simply extracts IPv4 address and port

information from the last 6 bytes, which is much simpler.

4.2 An Example of Mechanism

Similar with example shown in Fig. 2(b), in Fig. 2(c) traffic between client and server is forwarded

through overlay path C-X-Y-S with IPS as destination IP address, PORTS as destination port.

Algorithm 2. Stateless Mechanism

Input: To be forwarded packet with Dip as destination IP address and Pport as destination port

Output: Installing new flow entries on tunnel end hosts HT,S and HT,d

1. Install one flow entry on tunnel end host HT,S , where the matching field is original destination IP

address and port, the action is configured as follows:

(1) IFVIS action with SIPv6T Prefix and Length as parameters

2. Install one flow entry on tunnel end host HT,d , where the matching field is Special IPv6 address for

tunnel T and port, the action is configured as follows:

(1) ISVIF action with IPv6 Prefix and Length as parameters

3. Install one flow entry on tunnel end host HT,d , where the matching field is original destination IP

address and port, the action is configured as follows:

(1) set source IP address to IPY

(2) set source port to PORTY

(3) set output port to NORMAL

On the contrary, we allocate two Special IPv6 addresses for OpenVPN and VXLAN tunnels separately

(i.e., SIPv6vpn and SIPv6vxlan), and statically configure the Linux kernel routing table for these two tunnels

in X. In SOR X, packets are forwarded through OpenVPN tunnel after translating original IPv4 packets

to IPv6 packets using IFVIS action, based on the previously configured IPv6 kernel routing table rules.

SOR Y reconstructs the original destination IPv4 address and port (i.e., IPS and PORTS) using ISVIF

action before forwarding.

4.3 Analysis of Mechanism

Unlike stateful algorithm, stateless mechanism aims to release controller from maintaining four tuples

mapping relationship through using IFVIS and ISVIF actions. Due to that IPv6 space is much larger than

IPv4 address, we can simply reserve the mapping relationship by coding it into IPv6 header as shown in

Fig. 3 (Line 1 in Alg.2). Host HT,d will rebuild original IPv4 header by examining the last 6 bytes (Line 2

in Alg.2), before doing NAT processing (Line 3 in Alg.2).

As long as the destination IPv6 addresses of all flows forwarded through tunnel T belong to IPv6

address space with Prefix and Length in SOR Y, we only need install a single OpenFlow rule, no matter

Journal of Computers Vol. 30 No. 5, 2019

105

how many traffic flows are to be forwarded, which significantly reduces the number of OpenFlow rules

need to be updated. If the number of flows need to be forwarded is N, then the total number of OpenFlow

rules need to be installed can be defined as Eq. (2).

 2.
stateless

N N= + (2)

Nstateless is only a third of Nstateful. As the number of N grows larger, the reduced number of OpenFlow

rules is significantly considerable.

4.4 Distributed Controllers

With centralized controller, when a flow enters SOR X, the time it will take to construct overlay path for

transferring flow traffic equals the largest RTT between SORs and controller, which may be several

hundred milliseconds. In the meanwhile, installing 3 OpenFlow rules for each flow traffic introduces

additional costs. What is worse in stateful algorithm is that the controller needs to maintain four tuples

mapping relationship, which adds extra loads.

Unlike stateful algorithm, in stateless algorithm controller does not need to maintain global unique port

PORTT,S, making it easy to deploy distributed controllers. What is more, the OpenFlow rules installed in

SOR X and SOR Y have no relationship except the same SIPv6T, which is statically allocated previously.

So we can deploy distributed controllers in geo-distributed SORs locally, that is each controller controls

SOR in the same virtual machine, and the controllers can work cooperatively perfectly without the need

to exchange information with each other.

Fig. 4 shows the time model consumed by stateful and stateless algorithms when updating OpenFlow

rules. In stateful algorithm, most time is spent when propagating Packet_In message from SOR to

centralized controller and send Flow_Mod message in response, which is defined as Eq. (3).

, , ,

{ , }.stateful CAL X C C Y C XT T T mx T T= + + (3)

The time spent by stateless algorithm can be expressed as Eq. (4).

 2 .
stateless UP CAL

T T T= + × (4)

, , , ,

.

UP X CX CX X Y CY CY Y
T T T T T= + + + (5)

SOR Y SOR X

TX,C

TC,X

TC,Y

TCAL

CONTROLLER C

SOR Y SOR X

TCAL

(a) Stateful algorithm with centralized controller

CONTROLLER CY CONTROLLER CX

TCAL

TX,Y

TX,CXTCX,XTCY,YTCY,Y

(b) Stateless algorithm with distributed controllers

Fig. 4. Time to update OpenFlow rules

TCAL represents the time spent by stateful and stateless algorithms when calculating appropriate

OpenFlow rules. TCAL in stateful and stateless algorithms are approximately equal with each other, while

controllers in stateless algorithm are collocated with SORs in the same servers, making the four

parameters (i.e., TX,CX, TY,CY, TY,CY and TCY,Y) less than 1 millisecond measured by ping command,

comparing with TC, X or TC,Y, which may be several hundred milliseconds. The detailed comparison will

be explained in the evaluation section.

Traffic Engineering Algorithms between Different Tunnels: Stateful and Stateless

106

5 Performance Evaluation

In this section, we investigate the performance gained by using SOR and above mechanism to build

Overlay Network.

5.1 Kernel Route Lookup

To find out how Linux kernel performance route lookup is, we can accurately benchmark the

fib_lookup() function in Linux kernel. The measurement is done in a virtual machine with eight 1.6 GHz

vCPUs, 64 GB RAM and Linux kernel 4.11.0-14.

Fig. 5. Kernel route lookup performance

Fig. 5 shows the kernel route lookup performance. The lookup time increases linearly as the number of

kernel routes grows. As there are billions of IP addresses, the lookup time may be several micro seconds,

which cannot be neglected. The stateful and stateless algorithms only need install several static kernel

routes, making the lookup time less than 80 ns represented by red point (left bottom corner of Fig. 5).

5.2 Throughput

Here we focus on the throughput of SOR’s data plane. The SOR is deployed in two Intel Core PCs (3.2

GHz CPU and 4 GB RAM), both of which are connected through a Gigabit Ethernet link. Traffic is

generated using iPerf tool (https://iperf.fr/), and we monitor both input and output rates. As Fig. 6 shows,

SOR scales close to the link capacity with a maximum throughput of 850 Mbps.

Fig. 6. Throughput

Journal of Computers Vol. 30 No. 5, 2019

107

5.3 Real World Experiment

In the emulation environment shown in Fig. 2, two SORs (represented by X and Y, Pentium Dual-Core

E6700 CPU 3.20GHz, RAM 8GB, and Ubuntu 14.04 64bit System) are deployed, supporting establish

VXLAN tunnel using UDP protocol and OpenVPN tunnel using TCP protocol. SOR X, located in

Tianjin, plays a role as the source end host of OpenVPN tunnel, through which the client connects to the

Internet. While SOR Y, located in Beijing, forwards packets received from OpenVPN tunnel to the

original destination acting as an overlay router.

In the emulation, we use iPerf tool to measure link bandwidth and packet loss rate between client and

server, and compare results measured under network with SOR and without SOR environment. SOR Y is

located in CERNET data center in Beijing, with 1000Mbps upload bandwidth, so link between SOR Y

and Server in Tokyo will not become the bottleneck of this evaluation. On the contrary, the outbound link

bandwidth of SOR X (or Client) in Tianjin is only 100Mbps rate, which may have a great impact on the

measurement results.

Fig. 7 shows the link bandwidth between Client and SOR Y during one day time measured using UDP

and TCP protocols separately, similar with results between Client and Server, which are not shown in this

paper. From Fig. 7 we can see that TCP protocol can consume total link bandwidth achieving 90Mbps

traffic transferring rate, while bandwidth measured by UDP protocol is only about 16Mbps. The reason

behind this is that UDP protocol is often used by multi-player online gaming and video conferencing

system, for which 16Mbps is totally enough. Due to the reason mentioned above, ISP usually limits the

speed of UDP protocol to more properly schedule bandwidth resource allocation among different

protocols.

Fig. 7. Bandwidth between Tianjin and Beijing

Fig. 8 compares the link bandwidth between Client and Server achieved under network with SOR and

without SOR environment. The metrics are collected by iperf tool using UDP protocol. The bandwidth

achieved by iperf in network without SOR is quite similar with Fig. 7, which proves that bandwidth

between SOR Y and Server is not the performance bottleneck from another perspective. However,

bandwidth under overlay network reaches 70Mbps, a litter lower than 90Mbps. This is because that

except original packet with IP header destined for Server, OpenVPN tunnel will encapsulate original

packet as payload of TCP header destined for SOR Y, which increases the total length of packet

forwarding along overlay network path, thus decreases actual bandwidth achieved by iperf tool. It is still

much larger than bandwidth achieved without SOR, though OpenVPN tunnel definitely adds extra costs.

Traffic Engineering Algorithms between Different Tunnels: Stateful and Stateless

108

Fig. 8. Bandwidth between Tianjin and Tokyo with and without SOR

The packet loss rate under circumstances with SOR and without SOR is depicted in Fig. 9, which is

calculated by sending stream at 32Mbps rate. As can be seen from measurement results, the packet loss

rate is constantly zero under network with SOR, because that bandwidth is approximately 70Mbps, much

larger than the sending rate. While in network without SOR, the packet loss is around 56%, due to that

available bandwidth is only 16Mbps, much lower than 32Mbps.

Fig. 9. Packet loss between Tianjin and Tokyo with and without SOR

The controller uses the stateful algorithm in the above experiment. Due to space limitation, the results

gained by stateless algorithm are omitted, which are similar to the ones measured using stateful algorithm.

Fig. 10 shows the number of OpenFlow rules installed when using stateful and stateless algorithms

separately. From Fig. 10, we can see that the number of rules installed by stateless algorithm is only a

third of the number installed by stateful algorithm, which proves the accuracy of Equations (1) and (2).

Fig. 10. Number of OpenFlow rules installed

Journal of Computers Vol. 30 No. 5, 2019

109

When using stateful algorithm with centralized controller, the largest RTT between controller and

SOR is about 58ms, while the latency experienced by stateless algorithm with distributed controllers is

merely 1ms, shown in Fig. 11. In QoS system, flows must be transferred without experiencing packets

loss. In order to achieve this, several Megabytes size of packets must be buffered in SOR locally, due to

several hundred milliseconds latency before the overlay path can be established, which leads SOR

consuming much more memory. However, the situation is improved much in stateless algorithm.

Fig. 11. Time taken to build overlay path

6 Discussion

The mechanism explained in this paper can be used to build a tunnel using OpenVPN through NAT. In

the meantime, although native OpenVPN tunnel does not support OpenFlow protocol, this paper

proposes the concept of Special IP to achieve controlling traffic traversing through OpenVPN tunnel

without modifying OpenVPN source code in a scalable manner, which further reduces the development

and maintenance costs.

QoS guarantee is one of the most important use cases. Companies always lease proprietary network

link from ISP to achieve efficient access to the internet, which usually costs a lot of money. With the help

of mechanism proposed in this paper, we can build multiple tunnels to the servers located geo-distributed

in the world simultaneously, to make full use of link bandwidth resources, based on the intuition that the

closer the distance between two servers is, the higher the bandwidth will be [12]. We need implement

traffic classification mechanism in the controller to classify traffic into different SLA groups, and

forward packets through different tunnels based on the tunnel link performance metrics collected by

measurement tools in the background. At the same time, we can cluster traffic in the same SLA group

into different clusters based on destination IP address, and forward packets through tunnel, whose server

is nearest to original destination of packets, by modifying packets’ destination IP address to Special IP

corresponding to that specific tunnel. We can use sPing [13] to debug the SDN based overlay network.

Through this way, companies can benefit from much more better quality of services.

7 Conclusion

This paper presents the design of Software Overlay Router (SOR), which is used to build overlay

network using SDN technology. This paper also presents a stateful and a stateless algorithms based on

OpenFlow protocol to establish a tunnel without the requirement of global IP address in a simple and

scalable manner. The stateful algorithm modifies incoming packets according to a database of four tuples

mapping relationship, then forwards modified packets based on Linux kernel routing table through

established tunnel, and finally reconstructs received packets and transfers to the original destination.

While stateless algorithm benefits from using IP transition algorithm without the need of maintaining

four tuples mapping relationship, which largely reduces the number of OpenFlow rules need to be

updated and the latency taken to establish overlay path. Finally we implement the two algorithms in SOR,

totally based on Open Source software, which reduces the development and maintenance costs.

Traffic Engineering Algorithms between Different Tunnels: Stateful and Stateless

110

To evaluate performance gained by using SOR, this paper conducted several experiments by

constructing a testing environment across several autonomous systems (AS). By measuring link

bandwidth and packet loss rate under network with SOR and without SOR, we come to a conclusion that

the algorithms presented in this paper can largely improve the utilization of network link resources. By

comparing the two algorithms, it is concluded that stateless algorithm can greatly reduce the number of

OpenFlow rules needed to be installed, the latency elapsed before the overlay path established and the

memory usage of SORs.

The limitation of SOR is that it leverages OpenVPN to build TCP based VPN tunnel, which is CPU

intensive. So the further study is to integrate Stateless Transport Tunneling (STT) [14] protocol into SOR.

STT utilizes the capabilities of the network interface card to improve performance, the magic behind this

is in its TCP like header. Through this way, we can further reduce the CPU usage of SOR without

decreasing the performance.

References

[1] N. McKeown, T. Anderson, H. Balakrishnan, OpenFlow: enabling innovation in campus networks, ACM SIGCOMM

Computer Communication Review 38(2)(2008) 69-74.

[2] H.-H. Cho, C.-F. Lai, T. K. Shih, H.-C. Chao, Integration of SDR and SDN for 5G, IEEE Access 2(2014) 1196-1204.

[3] C. Cai, F. Cai, X. Sun, CRONets: Cloud-Routed Overlay Networks, in: Proc. 2016 International Conference on Distributed

Computing Systems, 2016.

[4] Y. Liu, D. Niu, B. Li, Delay-optimized video traffic routing in software-defined inter-datacenter networks, IEEE

Transactions on Multimedia 18(5)(2016) 865-878.

[5] K. Kannan, S. Banerjee, Scissors: dealing with header redundancies in data centers through SDN, in: Proc. 2012

International Conference on Network and Service Management. International Federation for Information Processing, 2012.

[6] R. Kawashima, H. Matsuo, Non-tunneling Edge-Overlay model using OpenFlow for cloud datacenter networks, in: Proc.

2013 IEEE International Conference on Cloud Computing Technology and Science, 2013.

[7] M.T. Arashloo, P. Shirshov, R. Gandhi, A scalable VPN gateway for multi-tenant cloud services, ACM SIGCOMM

Computer Communication Review 48(1)(2018) 49-55.

[8] S. Yang, Q. Zhang, X. Li, A tunnel broker based IPv6 access system for a small scale network with IPv4 upstream, in: Proc.

2016 Information Technology, Networking, Electronic and Automation Control Conference, 2016.

[9] A. Rodriguez, J. Paillisse, F. Coras, Programmable overlays via openoverlayrouter. IEEE Communications Magazine

55(6)(2017) 32-38.

[10] J. Zhao, C. Bao, X. Li, Building a tunnel through NAT using OpenFlow, in: Proc. 2018 Proceedings of ACM Ubiquitous

Information Management and Communication, 2018.

[11] G. Han, C. Bao, X. Li, S. Liu, IPv6 transition for the other billions, in: Proc. 2015 International Conference on Computer

Communication and Networks, 2015.

[12] D. Ren, Y. Xu, S.H. Chan, Beyond 1mbps global overlay live streaming: the case of proxy helpers, ACM Transactions on

Multimedia Computing Communications & Applications 11(2)(2015) 1-22.

[13] F.H. Tseng, K.D. Chang, S.C. Liao, H.C. Chao, V.C. Leung, sPing: a user-centred debugging mechanism for software

defined networks, IET Networks 6(2)(2017) 39-46.

[14] Nicira Networks Inc., A stateless transport tunneling protocol for network virtualization (STT). <https://datatracker.

ietf.org/doc/draft-davie-stt/>, 2016 (accessed 18.03.10).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

