
Journal of Computers Vol. 30 No. 5, 2019, pp. 111-127

doi:10.3966/199115992019103005009

111

Multi-offspring Genetic Algorithm with Two-point Crossover

and the Relationship between Number of

Offsprings and Computational Speed

Jiquan Wang1*, Zhiwen Cheng1, Okan K. Ersoy2, Panli Zhang1, Weiting Dai1

1 College of Engineering, Northeast Agricultural University, No. 600 ChangJiang Road,

Harbin, Heilongjiang, China

wangjiquan@neau.edu.cn, {chang1993621, PPenelope, dv15663580893}@163.com

2 Purdue University, School of Electrical and Computer Engineering West Lafayette, Indiana 47907-1285

ersoy@purdue.edu

Received 23 November 2017; Revised 31 March 2018; Accepted 2 June 2018

Abstract. This paper presents a multi-offspring genetic algorithm (MGA) with two-point

crossover in accordance with biology and mathematical ecological theory. For the MGA, the

main existing problems are generation methods of multi-offsprings with different crossover

methods, the best number of offsprings and the influence of the number of offsprings on the

speed of computation. To solve these problems, the paper first studies the relationship between

the number of offsprings and the computational speed of the MGA with two-point crossover.

Furthermore, the relationship between the generation method of multi-offsprings, the number of

offsprings and the computational speed is analyzed. The results with ten test functions show that

when the number of offsprings generated by the MGA based on two-point crossover equals 6,

the MGA with two-point crossover has significantly improved the computational speed and

reduced the number of iterations as compared to the basic genetic algorithm (BGA) and the

MGA of single-point crossover.

Keywords: computing speed, multi-offspring genetic algorithm, mutation, offspring individual

quantity, two-point crossover

1 Introduction

Genetic algorithm (GA) is a random global search optimization technology based on Darwin’s natural

evolution theory and Mendel’s genetics and mutation theory [1]. GA was proposed by Professor John H.

Holland and his student at Michigan University in the late 1960s and early 1970s [2-6]. De Jong

proposed an elitist reserved evolutionary strategy in his doctoral thesis in 1975, and later proposed a

variety of evolutionary strategies of elitist retention and selection instead of copying [7-10]; currently,

GA usually utilizes this evolutionary strategy.

In recent years, GA has attracted more attention because of its unique and superior performance. Many

scholars have conducted in-depth studies on GA and proposed improved algorithms, such as hierarchical

GA, CHC algorithm, messy GA, self-adaptive GA, GA based on niche technology, hybrid GA, and

parallel GA [11-17]. In these studies, common approaches are two parent individuals generating two

offsprings, multiple parents generating two offsprings [18-21], and one parent generating one offspring

[22]. Thus, the number of offsprings is less than or equal to the number of parents. When the crossover

probability equals 1, the number of offsprings equals that of parents; when the crossover probability is

less than 1, the number of offsprings is less than that of parents [23-25]. This is unlike the situation in the

biosphere for animals and plants for survival in nature. In recent years, some scholars have proposed the

concept of multi-offspring genetic algorithm [26-27]. Reference [26] showed the advantages of MGA by

* Corresponding Author

Multi-offspring Genetic Algorithm with Two-point Crossover and the Relationship between Number of Offsprings and Computational Speed

112

applying the schema theorem, given the generation method of multi-offsprings based on single-point

crossover. Reference [27] discusses the generation method of multi-offsprings based on single point

crossover. In these references, there is neither a discussion of the relationship between the number of

offsprings and the computational speed nor the estimation of the optimal number of offsprings.

To solve these problems, this paper proposes MGA with two-point crossover motivated by biology and

mathematical ecology theory. A generation method of multi-offsprings based on MGA with two-point

crossover, the relationship between the number of offsprings and computational speed, and the estimation

of the optimal number of offsprings are discussed. Results with ten test functions show that MGA with

two-point crossover has significantly reduced the average number of iterations and the average

computational time as compared to BGA and MGA based on single-point crossover.

2 Definition and Its Analysis of MGA

MGA and BGA are defined as follows:

Definition 1. If the number of offsprings generated by GA iteration is more than the number of parents,

then the GA is a MGA.

Definition 2. If the number of offsprings generated by GA iteration is less than or equal to the number of

parents, then the GA is a BGA.

In MGA, the number of offsprings is an integral multiple of the number of parents in general. If the

number of parents is n, and the number of offsprings is n1, the relationship between the number of

offsprings and the number of parents can be expressed as

1
n nβ= {2,3,4, }β ∈ � . (1)

Since the number of offsprings of MGA is more than that of BGA, survival pressure of MGA is larger

than that of BGA within populations. Based on the principle of survival of the fittest, winning individuals

survive and failed individuals are eliminated to maintain constant population size. More intense

competition with MGA results in faster computational speed as compared to BGA.

3 Theoretical Foundation of MGA

3.1 Biological Theory Foundation

Life on earth began as a result of a lengthy evolutionary process (e.g., simple to complex and disordered

to ordered). Many explanations for biological evolution have been proposed, and Darwin’s theory of

evolution is widely accepted [28]. Natural selection theory of biological evolution includes the following

factors: high fertility rate, struggle for existence, indeterminate mutation, and survival of the fittest. The

number of born individuals is remarkably more than the number of surviving individuals. High fertility

rate is a common phenomenon in the biosphere. For example, a plant may bear one thousand seeds each

year, however, the number of fruit seeds is less than one thousand. Thus, two parents often produce more

than two offsprings in the biosphere. Such species in the evolutionary process can both inherit parent

characteristics (i.e., more chances for survival in a complex, ever-changing natural environment), and

drive the continuous evolution of the biological species, thus producing more excellent individuals. By

contrast, a species in which two parents produce less than or equal to two offsprings does not exist; even

if it does exist, such species may eventually become extinct because of infertility, low fertility rate,

diseases, food, water, intraspecific and interspecific competition, and many other factors.

Darwin’s theory of evolution shows that a variety of biological organisms on earth universally have a

strong ability to reproduce and a tendency to increase in accordance with the geometric ratio, that is,

excessive reproduction is the basis of biological evolution. However, biological survival is limited by

food and space. A species must fight for survival. In the process of biological evolution in which the

struggle for existence is widespread, individuals with lower survival ability are eliminated, and excellent

individuals with higher survival ability survive. Thus, the number of surviving offsprings is less than that

of offsprings cross-generated by two parents. MGA proposed is based on such biological principles.

Journal of Computers Vol. 30 No. 5, 2019

113

3.2 Mathematical Ecological Theory Foundation

To illustrate the probability of species extinction, we suppose that one species has only one individual at

first. Then, at a certain time t, the probability of population size equaling 0 is given by

()

0 ()
(| 1)

t

t

e
p t i

e

λ μ

λ μ

μ μ

λ μ

−

−

−

= =

−

. (2)

where i is the size of initial population, µ is the mortality rate, and λ is the reproduction rate.

The probability for the population whose initial size equals i to be extinct with time is given by

()

0 0 ()
() [(| 1)]

i
t

i

t

e
p t p t i

e

λ μ

λ μ

μ μ

λ μ

−

−

⎛ ⎞−
= = = ⎜ ⎟

−⎝ ⎠
. (3)

As t tends to infinity, there are three situations as follows:

(1) When the reproduction rate is less than the mortality rate, i.e., λ μ< , the exponential term in Eq.

(2) would tend to 0 as t →∞ , resulting in

 0lim () 1
t

p t
→∞

= . (4)

The extinction probability of a population is equal to 1. Hence, the species must become extinct

eventually.

(2) When the reproduction rate is greater than the mortality rate, i.e.,λ μ> , Eq. (2) as t tends to ∞

can be represented as follows:

()

0 ()
()

i it

t

e
p t

e

λ μ

λ μ

μ μ

λ λ

−

−

⎛ ⎞ ⎛ ⎞
→ =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
. (5)

According to Eq. (4), such population cannot guarantee continual existence because there is still a

finite probability of extinction. However, if the reproduction rate is much greater than the mortality rate,

and if the initial population size is much larger, then the probability of biological extinction will be

smaller.

(3) When the reproduction rate is equal to the mortality rate, i.e., λ μ= , Eq. (2) can be expanded in a

series of exponential terms. Letting rλ μ− = ,
0
()p t as t tends to ∞ can be written as

2 2

0 2 2

2

1 2

(/ !)
()

(/ !)

i

rt r t
p t

rt r t

μ

λ μ

⎡ ⎤+ +
= ⎢ ⎥+ + + −⎣ ⎦

�

�

. (6)

When 0r→ , ignoring 2
r , and due to rλ μ− = , we get

0
()

() 1

i i

rt t
p t

rt t

μ λ

λ μ λ λ

⎡ ⎤ ⎛ ⎞
→ →⎜ ⎟⎢ ⎥− + +⎝ ⎠⎣ ⎦

. (7)

Hence,

 lim 1
1

i

t

t

t

λ

λ→∞

⎛ ⎞
=⎜ ⎟

+⎝ ⎠
. (8)

When the reproduction rate is equal to the mortality rate, Eq. (7) proves that the species must become

extinct eventually. Although the expectation size of population is constant, the species will be extinct

after a sufficiently long time while randomly fluctuating around the population expected size. Only when

λ μ> (i.e., when population has a positive increase in rate) will the population may survive forever (not

necessarily). Moreover, mathematical ecology indicates that the probability distribution of biological

population size depends on the product of reproduction rate and time when the biological initial

population size is known. Thus, a high reproductive rate for a shorter time and a low reproductive rate for

a long time, as long as each individual increase rate equals the product of time, would provide the same

Multi-offspring Genetic Algorithm with Two-point Crossover and the Relationship between Number of Offsprings and Computational Speed

114

results. Therefore, to get more excellent individuals in the shortest possible time, the reproduction rate of

species must be improved.

In conclusion, MGA has not only biological foundation, but also mathematical ecological foundation.

Therefore, MGA is feasible in theory.

4 MGA of Two-point Crossover

The basic operations of MGA and BGA include selection, crossover, and mutation. The main differences

between MGA of two-point crossover and BGA are due to the differences in crossover and mutation

operations. For BGA, two parent individuals generate two offspring individuals by crossover; however,

for MGA, two parent individuals generate two or more offspring individuals by crossover. Since the

number of cross-generated offsprings in MGA is higher, the number of mutation operations is also higher.

In MGA, to keep the population size constant, worse individuals are eliminated, and n excellent

individuals are preserved in accordance with the principle of survival of the fittest.

4.1 Selection

Let the population size be n, and the individuals in the population be expressed as X(t)=(X1(t), X2(t), …,

Xi(t), …, Xn(t)), wherein Xi(t)=(x
i1
(t), x

i2
(t), …, x

id
(t)), t is the iteration number. The individuals are sorted

in descending order according to objective function values, yielding
1 2

()= (), (), , (), , ())
i n

X t X t X t X t X t� �(.

Suppose β∈(0, 1), and the fitness of ()
i

X t is (())ieval X t . The fitness value of ()
i

X t is computed as

follows [14]:

1(()) (1) 1, 2, ,i

i
eval X t i nβ β −

= − = � . (9)

where)1,0(∈β is a constant, usually chosen between 0.01 and 0.3.

Then, the roulette wheel method is used to pair members [29]. The roulette wheel method is as follows:

The selection probability of the th
i member in the population is given by

 1

(())

(())

i

i n

i

i

eval X t
P

eval X t

=

=

∑

. (10)

Letting

 0
0PP = . (11)

 1

, 1, 2, ,
i

i i

j

PP P i n

=

= =∑ �

. (12)

The roulette wheel is rotated up to n times, and a random number η
k
∈(0, 1) is generated at each

rotation. When this random number satisfies PP
i-1
≤η

k
 ≤ PP

i
, the th

i member is selected to take part in

crossover.

4.2 Crossover Operation

To study the relationship between the number of offsprings and the computational speed of MGA, a

method for two parents to generate a number of offsprings by crossover is given below.

Suppose there are two parents P1 and P2 selected to take part in crossover. Two crossover points are

randomly generated, and P1 and P2 are divided into three sections. That is, P1 =D1E1F1, P2=D2E2F2, also

D1 and D2, E1 and E2, as well as F1 and F2 contain the same number of binary digits. The method for two

parents to generate a number of offsprings by crossover is as follows:

Two parents generating two offsprings by crossover. E1 and E2 exchange location to generate two

offspring individuals C1 and C2 (C1=D1E2F1, C2=D2E1F2); the specific method is shown in Table 1.

Journal of Computers Vol. 30 No. 5, 2019

115

Table 1. Two parent generate two offsprings by crossover

Parents Offsprings

CP1 CP2 CP1 CP2

P1=D1 E1 F1 C1 =D1 E2 F1

P2=D2 E2 F2 C2=D2 E1 F2

Two parents generating four offsprings by crossover. The generation method of C1 and C2 is the same

as that in (1). D1 and D2 exchange location to generate two offspring individuals C3 and C4 (C3=D2E1F1,

C4=D1E2F2). The specific method is shown in Table 2.

Table 2. Two parents generate four offsprings by crossover

Parents Offsprings

CP1 CP2 CP1 CP2 CP1 CP2

P1=D1 E1 F1 C1 =D1 E2 F1 C3 =D2 E1 F1

P2=D2 E2 F2 C2=D2 E1 F2 C4=D1 E2 F2

Two parents generating six offsprings by crossover. The generation method of C1, C2, C3, and C4 is

that same as that in (2). F1 is placed between D2 and E2, F2 is placed between D1 and E1, to obtain C5 and

C6 (C5=D1F2E1, C6=D2F1E2). The specific method is shown in Table 3.

Table 3. Two parents generate six offsprings by crossover

Parent individuals Offspring individuals

CP1 CP2 CP1 CP2 CP1 CP2

C1 =D1 E2 F1 C4 =D1 E1 F2

C2 =D2 E1 F2 C5 =D1 F2 E1
P1=D1

P2=D2

E1

E2

F1

F2
C3=D2 E1 F1 C6=D2 F1 E2

Two parents generating eight offsprings by crossover. The generation method of C1, C2, C3, C4, C5,

and C6 is the same as that in (3). E2 is placed behind D1 and F1, E1 is placed behind D2 and F2, to obtain

C7 and C8 (C7=D1F1E2, C8= D2F2E1); the specific method is shown in Table 4.

Table 4. Two parents generate eight offsprings by crossover

Parents Offsprings

CP1 CP2 CP1 CP2 CP1 CP2

C1 =D1 E2 F1 C5 =D1 F2 E1

C2 =D2 E1 F2 C6 =D2 F1 E2

C3 =D2 E1 F1 C7 =D1 F1 E2

P1=D1

P2=D2

E1

E2

F1

F2

C4=D1 E2 F2 C8=D2 F2 E1

Two parents generating 10 offspring individuals by crossover. The generation method of C1, C2, C3,

C4, C5, C6, C7, and C8 is the same as that in (4). F2 is placed behind D1 and E1, F1 is placed behind D2 and

E2, to obtain C9 and C10 (C9= D1E1F2, C10= D2E2F1); the specific method is shown in Table 5.

Table 5. Two parents generate 10 offsprings by crossover

Parents Offsprings

CP1 CP2 CP1 CP2 CP1 CP2

C1 =D1 E2 F1 C6 =D2 F1 E2

C2 =D2 E1 F2 C7 =D1 F1 E2

C3 =D2 E1 F1 C8 =D2 F2 E1

C4=D1 E2 F2 C9=D1 E1 F2

P1=D1

P2=D2

E1

E2

F1

F2

C5=D1 F2 E1 C10=D2 E2 F1

Two parents generating 12 offsprings by crossover. The generation method of C1, C2, C3, C4, C5, C6,

C7, C8, C9, and C10 is the same as that in (5). F2 is placed before D1 and E1, F1 is placed before D2 and E2,

to obtain C11 and C12 (C11= F2D1E1, C12= F1D2E2). The specific method is shown in Table 6.

Multi-offspring Genetic Algorithm with Two-point Crossover and the Relationship between Number of Offsprings and Computational Speed

116

Table 6. Two parents generate 12 offsprings by crossover

Parents Offsprings

CP1 CP2 CP1 CP2 CP1 CP2

C1 =D1 E2 F1 C7 =D1 F1 E2

C2 =D2 E1 F2 C8 =D2 F2 E1

C3 =D2 E1 F1 C9 =D1 E1 F2

C4=D1 E2 F2 C10=D2 E1 F1

C5=D1 F2 E1 C11=F2 D1 E1

P1=D1

P2=D2

E1

E2

F1

F2

C6=D2 F1 E2 C12=F1 D2 E2

Two parents generating fourteen offspring individuals by crossover. The generation method of C1, C2,

C3, C4, C5, C6, C7, C8, C9, C10, C11, and C12 is the same as that in (6). E2 is placed before D1 and F1, E1 is

placed before D2 and F2, to obtain C13 and C14 (C13= E2D1F1, C14= E1D2F2). The specific method is shown

in Table 7.

Table 7. Two parents generate 14 offsprings by crossover

Parents Offsprings

CP1 CP2 CP1 CP2 CP1 CP2

C1 =D1 E2 F1 C8 =D2 F2 E1

C2 =D2 E1 F2 C9 =D1 E1 F2

C3 =D2 E1 F1 C10 =D2 E2 F1

C4=D1 E2 F2 C11=F2 E1 E1

C5=D1 F2 E1 C12=F1 D2 E2

C6=D2 F1 E2 C13=E2 D1 F1

P1=D1

P2=D2

E1

E2

F1

F2

C7=D1 F1 E2 C14=E1 D2 F2

In Table 1 to Table 7, Ci (i=1, 2, …, 14) is cross-generated with the ith offspring individual.

A specific example is given below to illustrate the multi-offspring generation method. Suppose there

are two parents P1 and P2 selected to take part in crossover. Their binary number representations are P1 =

10101011101110 and P2 = 01010010100011. Two different crossover points are randomly generated as 5

and 11.

Crossover point 1 Crossover point 2

P1=10101

P2=01010

011101

010100

110

011

Letting D1=10101, E1=011101, F1=110, D2=01010, E2=010100, and F2=011, crossover operations are

performed with P1 and P2 according to the method in Table 1. The resulting offsprings are shown in Table

8.

Table 8. Two parents generate two offsprings by crossover

Parents Offsprings

CP1 CP2 CP1 CP2

P1=D1 E1 F1

P2=D2 E2 F2
C1 =10101

C2=01010

010100

011101

110

011

P1 and P2 perform crossover operation according to the method of Table 2. The resulting offsprings

individuals are shown in Table 9.

Journal of Computers Vol. 30 No. 5, 2019

117

Table 9. Two parents generate four offsprings by crossover

Parents Offsprings

CP1 CP2 CP1 CP2 CP1 CP2

P1=D1 E1 F1

P2=D2 E2 F2

C1 =10101

C2=01010

010100

011101

110

011

C3=01010

C4=10101

011101

010100

110

011

P1 and P2 perform crossover operation according to the method of Table 3; the resulting offsprings

individuals are shown in Table 10.

Table 10. Two parents generate six offsprings by crossover

Parents Offsprings

CP1 CP2 CP1 CP2 CP1 CP2

P1=D1 E1 F1

P2=D2 E2 F2

C1 =10101

C2=01010

C3=01010

010100

011101

011101

110

011

110

C4=10101

C5=10101

C6=01010

010100

011

110

011

011101

010100

P1 and P2 perform crossover operation according to the method of Table 4. The resulting offsprings

individuals are shown in Table 11.

Table 11. Two parents generate eight offsprings by crossover

Parents Offsprings

CP1 CP2 CP1 CP2 CP1 CP2

P1=D1 E1 F1

P2=D2 E2 F2

C1 =10101

C2=01010

C3=01010

C4=10101

010100

011101

011101

010100

110

011

110

011

C5=10101

C6=01010

C7=10101

C8=01010

011

110

110

011

011101

010100

010100

011101

P1 and P2 perform crossover operation according to the method of Table 5. The resulting offsprings are

shown in Table 12.

Table 12. Two parents generate 10 offsprings by crossover

Parents Offsprings

CP1 CP2 CP1 CP2 CP1 CP2

P1=D1 E1 F1

P2=D2 E2 F2

C1 =10101

C2=01010

C3=01010

C4=10101

C5=10101

010100

011101

011101

010100

011

110

011

110

011

011101

C6=01010

C7=10101

C8=01010

C9=10101

C10=01010

110

110

011

011101

010100

010100

010100

011101

011

110

P1 and P2 perform crossover operation according to the method of Table 6. The resulting offsprings are

shown in Table 13.

Table 13. Two parents generate 12 offsprings by crossover

Parents Offsprings

CP1 CP2 CP1 CP2 CP1 CP2

P1=D1 E1 F1

P2=D2 E2 F2

C1 =10101

C2=01010

C3=01010

C4=10101

C5=10101

C6=01010

010100

011101

011101

010100

011

110

110

011

110

011

011101

010100

C7=10101

C8=01010

C9=10101

C10=01010

C11=011

C12=110

110

011

011101

010100

10101

01010

010100

011101

011

110

011101

010100

P1 and P2 perform crossover operation according to the method of Table 7. The resulting offspring

individuals are shown in Table 14.

Multi-offspring Genetic Algorithm with Two-point Crossover and the Relationship between Number of Offsprings and Computational Speed

118

Table 14. Two parents generate 14 offsprings by crossover

Parents Offsprings

CP1 CP2 CP1 CP2 CP1 CP2

P1=D1 E1 F1

P2=D2 E2 F2

C1 =10101

C2=01010

C3=01010

C4=10101

C5=10101

C6=01010

C7=10101

010100

011101

011101

010100

011

110

110

110

011

110

011

011101

010100

010100

C8=01010

C9=10101

C10=01010

C11=011

C12=110

C13=010100

C14=011101

011

011101

010100

10101

01010

10101

01010

011101

011

110

011101

010100

110

011

4.3 Mutation Operation

All cross-generated offsprings undergo mutation in MGA and BGA. Suppose the mutation probability is

Pm, 1 2(, , , ,)i i i ij idX x x x x= � � is the ith individual to be mutated, and xij is the jth component of the ith

individual. Such a component is mutated as follows: A 0-1 uniformly distributed random number is

generated. If the random number is less than or equal to the mutation probability Pm, this bit is mutated,

otherwise, it is not be mutated. Thus, if a certain bit is 0, then the bit is 1 becomes 1 if mutated and vice

versa.

4.4 Evolutionary Strategy

4.4.1 Evolutionary Strategy of MGA

The evolutionary strategy of MGA is as follows. First, the initial population is generated to become the

first parent generation. All the members of the population are sorted in descending order according to

their calculated objective function values (if objective function solves maximum). Then, selection and

crossover operations are performed. Thirdly, retaining s elite individuals and n excellent individuals from

n parent individuals and cross-generated βn offspring individuals, n excellent individuals are mutated.

Finally, n excellent individuals are preserved from nPm mutated, unmutated n(1-Pm), and s elite

individuals. In this way, the new population is generated. If computing requirements are met, then

computing is stopped; if the computing requirements are not met, process is repeated with the new

population. The above steps are repeated until the computing requirements are met. The evolutionary

strategy of MGA is shown in Fig. 1.

4.4.2 Evolutionary Strategy of BGA

The evolutionary strategy of BGA is as follows. First, the initial population is generated. All the

individuals in the population are sorted in descending order according to their calculated objective

function values (if objective function solves maximum). Then, s elite individuals are preserved from n

parents. Next, selection, crossover and mutation operations are performed. Finally, s low ranked

individuals are replaced by s elite individuals. In this way, the new population is generated. If the

computing requirements are met, the process is stopped; else the process is repeated until the computing

requirements are met. The evolutionary strategy of BGA is shown in Fig. 2.

4.4.3 Comparative Analysis of Evolutionary Strategy

In the evolutionary strategy of BGA, the parents and cross-generated βn offsprings are likely to be

mutated. Hence, excellent cross-generated individuals may be destroyed during the mutation operation,

leading to lack of cross-generated excellent individuals. In the evolutionary strategy of MGA, s elite

individuals are preserved from parents and cross-generated offsprings. Hence, even though some elite

parents are destroyed during the crossover operation, the preserved s elite individuals within the new

offspring population are no worse than the elite individuals within the parent population. Based on such

analysis, in the evolutionary strategy of MGA, the crossover probability equals 1, the number of cross-

generated offsprings is βn, the number of cross-generated offsprings is far more than that of BGA,

leading to increase of the probabilty of generating excellent individuals and improved performance.

Journal of Computers Vol. 30 No. 5, 2019

119

Start

Generate initial population (population size is n)

Current Population

Sort all individuals according to objective function value

Calculate the fitness value of each individual

Selection

Crossover

Mutation

Preserve s elitist individuals from parents

and cross-generated βn individuals

n excellent individuals were chosen as offspring

Whether meet the computing

requirements?

End

Yes

No

Preserve n excellent individuals from

parents and cross-generated βn individuals

Fig. 1. The evolutionary strategy block diagram of MGA

Fig. 2. The evolution strategy block diagram of BGA

Preserve s elitist members from all

parents and cross-generated n offsprings

Generate initial population of size n

Start

Current population

Sort all members in ascending order

Calculate the fitness value of each individual

Selection

Crossover

Mutation

Preserve s elitist individuals and n excellent

individuals to constitute new population

Is the stop condition

satisfied?

End

Yes

No

Multi-offspring Genetic Algorithm with Two-point Crossover and the Relationship between Number of Offsprings and Computational Speed

120

5 Iteration Terminal Condition

Both with MGA and BGA, the chosen iteration termination condition is chosen as follows:

*

, 1, 2, ,
i i i
f f i pε− ≤ = �

.
 (13)

where f
*

i is the theoretical global maximum or minimum of the ith test function, fi is the ith test function’s

optimal value found by MGA or BGA, and ε
i
is the given precision requirement of the ith test function.

6 Algorithm testing and analysis

6.1 Selection of Test Functions

To compare the performance of MGA in comparison to BGA, as well as to investigate the relationship

between number of offsprings and computational speed of MGA, ten common test functions with

considerable complexity were adopted as described below [30-31].

Test function 1

2

2 2 2

1 2 2

3
max (,) () 5.12 , 5.12

0.05 ()
f x y x y x y

x y

⎡ ⎤
= + + − ≤ ≤⎢ ⎥+ +⎣ ⎦

. (15)

The global optimal solution of function f1 is surrounded by the worst solution, and function f1 has four

local minima; determining the global optimal solution is like searching for a needle in a haystack.

Therefore, the function is also known as needle in a haystack problem. The global optimal value of f1 is

3600, and the optimal solution is (x, y)=(0, 0).

Test function 2

2 2

1 2

2 1 2 1 2 1 2
min (,) sin() cos() exp 1 10 , 10

π

x x
f x x x x x x

⎛ ⎞+
⎜ ⎟= − − − ≤ ≤
⎜ ⎟
⎝ ⎠

. (16)

Function f2 is called Holder Table function. It has many local minima and four global minima.

Determining the local optima is relatively easy, whereas the global optimal solutions are difficult to find.

The four global optimal solutions of function are (x1, x2) = (8.05502, 9.66459), (x1, x2) =

(8.05502,−9.66459), (x1, x2) = (−8.05502, 9.66459), (x1, x2) = (−8.05502,−9.66459), and the global

minimum value is −19.2085.

Test function 3

 ()
4

2 2 2 21

3 1 1 1 2 2 2 1 2
min () 4 2.1 4 4 3 3, 2 2

3

x
f x x x x x x x x x

⎛ ⎞
= − + + + − + − ≤ ≤ − ≤ ≤⎜ ⎟
⎝ ⎠

. (17)

Function f3 is a six-hump camel back function, which has six local minima, two of which are global.

The global minimum value of function f3 is −1.0316, and the global optimal solutions are (x1, x2) =

(−0.0898, 0.7126) and (x1, x2) = (0.0898,−0.7126).

Test function 4

3

4

1

2(10comin () 10)) s(2π
i

i i
xf x x

=

− +=∑ 1 2 3
-5.12 , , 5.12x x x≤ ≤ . (18)

Function f4 is called generalized Rastrigin function. It has many local minima. The function is a typical

complex multimodal function with a large number of local optimal points. Determining the local optima

is relatively easy, whereas finding the global optimal solution is difficult. The global optimal solution of

function f4 is (x1, x2)=(0, 0), and the global minimum value is 0.

Test function 5

Journal of Computers Vol. 30 No. 5, 2019

121

 ()2 2

1 2

5 1 22 2

1 2

1 cos 12
min () 5.12 , 5.12

0.5() 2

x x
f X x x

x x

+ +

= − ≤ ≤

+ +

. (19)

Function f
5 is called Drop-Wave function. It is multimodal and highly complex, with many local

minima, and a single global optimal solution which is (x
1
, x

2
)=(0, 0), with the global minimum value

equal to -1.

Test function 6

 2 2 2 2

6 1 2 2 1 1
min (,) 100*() (1)f x x x x x= − + −

1 2
10 , 10x x− ≤ ≤ . (20)

Function f
6 is the Rosenbrock function, also referred to as the Valley or Banana function. It is a popular

test problem for gradient-based optimization algorithms. The function is unimodal, and the global

minimum lies in a narrow, parabolic valley. Even though this valley is easy to find, convergence to the

minimum is difficult. The global optimal solution of function f
6
 is (x

1
, x

2
)=(1, 1), and the global minimum

value is 0.

Test function 7

2 2

7 1 2 1 2 1 2
min (,) (2 7) (2 5)f x x x x x x= + − + + −

1 2
10 , 10x x− ≤ ≤ . (21)

Function f
7
 is the booth function. Its global optimal solution is at (x

1
, x

2
)=(1, 3), and its global

minimum value is 0.

Test function 8

 ()2 2

8 1 2 1 2
min () cos() cos() exp () ()f X x x x xπ π= − − − − −

1 2
100 , 100x x− ≤ ≤ . (22)

Function f
8
 is the Easom function, and has several local minima. It is unimodal, and the global

minimum has a small area relative to the search space. Its global optimal solution is at f
8
 is (x

1
, x

2
)=(π, π),

and the global minimum value is -1.

Test function 9

()
()

2

2 2

1 2

9 2
2 2

1 2

sin 0.5
min () 0.5

1 0.001()

x x
f X

x x

−

+ −

= +

+ +

1 2
100 , 100x x− ≤ ≤ . (23)

Function f
9
 is the Schaffer function, and has thousands of local minima. It is a multimodal function

with only one global minimum. Its global optimal solution is at (x
1
, x

2
) = (0, 0), and the global minimum

value is 0.

Test function 10

5 5

10 1 2

1 1

min () cos((1)) cos(1))
i i

f X i i x i i i x i
= =

⎛ ⎞⎛ ⎞
= + + + +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∑ ∑ 1 2

10 , 10x x− ≤ ≤ . (24)

Function f
10

 is Shubert function, has 760 local minima and 18 global minima. Its global optimal

solution is at (x
1
, x2)=(-1.42513,-0.80032), and the global minimum value is -186.7309.

6.2 The Relationship between the Number of Offsprings and the Computational Speed

0-1 encoding and two-point crossover are adopted with MGA, and BGA; the initial population is

randomly generated; the population size is n=100; the precision of encoding is c=10; the mutation

probability is Pm=0.1; the number of elite individuals is s=10; computing precisions of the ten test

functions are, respectively, ε
i
=10−4(i=1, 2, …, 10), and β is equal to 0.15 in Eq. (9).

The range of variables in the test functions are given in Eqs. (15) to (24). Each method was run 500

times with each test function on the same computer. The average running times and average numbers of

iterations are shown in Table 15.

Multi-offspring Genetic Algorithm with Two-point Crossover and the Relationship between Number of Offsprings and Computational Speed

122

Table 15. Test results

Test functions Methods Average running time Average number of iterations

BGA 0.3223 19.3133

MGA of 4 offsprings 0.3017 15.1900

MGA of 6 offsprings 0.2824 12.7367

MGA of 8 offsprings 0.3662 11.5900

MGA of 10 offsprings 0.4164 11.2340

MGA of 12 offsprings 0.4455 10.6420

f
1

MGA of 14 offsprings 0.5029 10.4620

BGA 0.5741 38.1740

MGA of 4 offsprings 0.5318 23.8460

MGA of 6 offsprings 0.1778 6.6460

MGA of 8 offsprings 0.2172 5.8620

MGA of 10 offsprings 0.2362 5.3420

MGA of 12 offsprings 0.2649 5.1900

f
2

MGA of 14 offsprings 0.2890 5.0760

BGA 0.1972 12.3533

MGA of 4 offsprings 0.1327 5.9000

MGA of 6 offsprings 0.1118 4.0133

MGA of 8 offsprings 0.1215 3.5467

MGA of 10 offsprings 0.1300 3.4680

MGA of 12 offsprings 0.1455 3.3980

f
3

MGA of 14 offsprings 0.1663 3.3460

BGA 0.5861 29.2000

MGA of 4 offsprings 0.5621 20.1633

MGA of 6 offsprings 0.5416 15.0233

MGA of 8 offsprings 0.6045 13.7133

MGA of 10 offsprings 0.6633 12.8240

MGA of 12 offsprings 0.7763 12.9580

f
4

MGA of 14 offsprings 0.8918 12.2120

BGA 0.6912 117.0000

MGA of 4 offsprings 0.6698 96.6030

MGA of 6 offsprings 0.2482 30.7060

MGA of 8 offsprings 0.2596 21.4740

MGA of 10 offsprings 0.2640 19.1200

MGA of 12 offsprings 0.2703 17.4620

f
5

MGA of 14 offsprings 0.2908 16.4790

BGA 6.5208 1207.9400

MGA of 4 offsprings 4.4131 581.7100

MGA of 6 offsprings 2.9366 310.8800

MGA of 8 offsprings 3.0437 240.0100

MGA of 10 offsprings 3.2007 225.5100

MGA of 12 offsprings 3.5715 210.2500

f
6

MGA of 14 offsprings 3.7472 203.1900

BGA 0.8546 52.3920

MGA of 4 offsprings 0.6722 44.4530

MGA of 6 offsprings 0.4456 19.5760

MGA of 8 offsprings 0.4836 14.9220

MGA of 10 offsprings 0.5096 14.6850

MGA of 12 offsprings 0.5524 14.2900

f
7

MGA of 14 offsprings 0.6336 14.0760

BGA 1.4451 272.7260

MGA of 4 offsprings 1.2930 209.0300

MGA of 6 offsprings 1.2159 178.9560

MGA of 8 offsprings 1.2647 131.4720

MGA of 10 offsprings 1.3665 124.7500

MGA of 12 offsprings 1.6981 113.4340

f
8

MGA of 14 offsprings 1.7279 103.926

Journal of Computers Vol. 30 No. 5, 2019

123

Table 15. Test results (continue)

Test functions Methods Average running time Average number of iterations

BGA 0.8213 142.4320

MGA of 4 offsprings 0.7915 105.6830

MGA of 6 offsprings 0.2291 23.0140

MGA of 8 offsprings 0.2447 19.6690

MGA of 10 offsprings 0.2731 18.1400

MGA of 12 offsprings 0.2860 17.2120

f
9

MGA of 14 offsprings 0.3309 16.9250

BGA 0.6224 50.4980

MGA of 4 offsprings 0.2782 38.0200

MGA of 6 offsprings 0.1600 17.9570

MGA of 8 offsprings 0.1820 15.9470

MGA of 10 offsprings 0.1909 15.1260

MGA of 12 offsprings 0.2040 14.1280

f
10

MGA of 14 offsprings 0.2670 13.9170

Corresponding to each test function, the average number of iterations and average running times as a

function of the number of offsprings are shown in Fig. 2 and Fig. 3.

2 4 6 8 10 12 14
0

10

20

30

40

50

60

The number of offspring individual

A
v

er
ag

e
it

er
at

io
n

 n
u

m
b

er

function f1

function f2

functin f3

function f4

function f7

function f10

2 4 6 8 10 12 14
0

200

400

600

800

1000

1200

1400

The number of offspring individual

A
v

er
ag

e
it

er
at

io
n

 n
u

m
b

er

function f5

function f6

functin f8

function f9

Fig. 2. Average iteration number as a function of number of offsprings

2 4 6 8 10 12 14
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

the number of offspring individual

A
v
e
ra

g
e
 c

o
m

p
u
ti
n
g
 t
im

e
 /
s

function f1

function f2

function f3

function f4

function f5

function f7

function f9

function f10

2 4 6 8 10 12 14
1

2

3

4

5

6

7

the number of offspring individual

A
v
e
ra

g
e
 c

o
m

p
u
ti
n
g
 t
im

e
 /
s

function f6

function f8

Fig. 3. Average computational time as a function of number of offsprings

The number of offsprings generated by crossover with two parents is significantly increased in MGA

as compared with BGA. The increase of number of offsprings improves the probability of generating

excellent individuals, and improves the convergence speed of MGA, and saves search time. On the other

hand, the calculation time of the crossover operation increases due to generation of more offspring. Thus,

a certain relationship exists between the number of cross-generated offspring and the computational

speed of MGA.

Table 15, Fig. 2, and Fig. 3 show that the average number of iterations decreases gradually, and the

average number of iterations of MGA is significantly less than the average number of iterations of BGA.

The average running time first decreases gradually with the increase in the number of cross-generated

offsprings. When the number of cross-generated offsprings exceeds a threshold value, the average

Multi-offspring Genetic Algorithm with Two-point Crossover and the Relationship between Number of Offsprings and Computational Speed

124

running time gradually increases with the number of cross-generated offsprings. The test results show

that, for all functions, when the number of cross-generated offsprings exceeds 6, the average running

time of MGA gradually increases with the number of cross-generated offsprings; when the number of

cross-generated offsprings is less than or equal to 6, the average running time of MGA gradually

decreases with the increase of the number of cross-generated offsprings, and the average running time of

MGA is significantly less than the average running time of BGA. For functions f
2 , f3

, f
5 , f6

, f
7
, f

9 and f
10,

when the number of cross-generated offsprings exceeds 6, the average running time of MGA is less than

the average running time of BGA. For function f
1
, f

4
 and f

8
, when the number of cross-generated offspring

individual exceeds some threshold value, the average running time of MGA is greater than the average

running time of BGA.

In conclusion, when the number of cross-generated offsprings by two parents equals to 6, the average

number of iterations and average running time of MGA are significantly less than those of BGA.

6.3 Comparison and Analysis of Algorithm Performance

In order to verify the validity and feasibility of MGA, it was compared with references [20, 26-

27]. The selection, crossover, mutation, evolution strategy and parameter setting of MGA are as

described above, and the number of offsprings of MGA is chosen equal to 6. In addition, the selection,

crossover, mutation, evolutionary strategy, and parameter setting were chosen the same as those in [20,

26-27]. The iterative termination conditions for all algorithms are given in Section 5. The average

running time and average number of iterations are shown in Table 16.

Table 16. The computational results with all the algorithms

Test function f
1
 f

2
 f

3
 f

4
 f

5
 f

6
 f

7
 f

8
 f

9
 f

10

Average

computational time
0.3263 0.5583 0.1806 0.5780 0.6870 6.2270 0.7362 1.4062 0.8062 0.6046

Reference

[20] Average number of

iterations
16.3890 33.6240 11.5342 28.7250 116.2680 1183.6820 50.2680 268.5732 140.2680 49.6752

Average

computational time
0.3027 0.5283 0.1407 0.5716 0.6432 4.3869 0.6682 1.2832 0.8023 0.2760

Reference

[26] Average number of

iterations
16.1460 24.7580 6.2640 20.6840 95.7820 579.6320 43.6582 206.2040 106.3210 37.9020

Average

computational time
0.3125 0.5267 0.1377 0.5672 0.6742 4.4632 0.6702 1.2906 0.7982 0.2774

Reference

[27] Average number of

iterations
16.1720 24.6640 6.0820 20.1730 96.5320 582.1020 44.3230 208.6750 106.3620 38.1620

Average

computational time
0.2824 0.1778 0.1118 0.5416 0.2482 2.9366 0.4456 1.2159 0.2291 0.1600

MGA
Average number of

iterations
12.7367 6.6460 4.0133 15.0233 30.7060 310.8800 19.5760 178.9560 23.0140 17.9570

From Table 16, it can be seen that the average running time and the average number of iterations of the

MGA are significantly better than those of the references [20, 26-27].

7 Conclusions, Significance and Limitations

7.1 Conclusions

The conclusions can be itemized as follows:

(1) A MGA method is proposed in accordance with biological and mathematical ecological theories;

the feasibility of MGA is discussed in theory.

(2) A method to generate multi-offsprings by two-point crossover is given.

(3) In MGA, when the number of cross-generated offsprings by two parents is less than or equal to

some threshold value, the average running time of MGA is less than those of BGA and references [20,

26-27].

Journal of Computers Vol. 30 No. 5, 2019

125

(4) The paper gives the change rule of the average number of iterations and average running time of

MGA with the increase of number of cross-generated offspring individual.

(5) Test results with ten test functions show that MGA is faster than BGA and the methods used in

references [20, 26-27]. When the number of cross-generated offsprings by two parents equals 6, the

running speed of MGA is the fastest. In addition, the average number of iterations of MGA significantly

decreases with the increase in the number of cross-generated offsprings.

The conclusions given above are valid for MGA based on the two-point crossover. There are many

issues worth further studying, such as offspring generation method in multi-offspring real-coded genetic

algorithm, the corresponding best number of offsprings and the relationship between the number of

offsprings and the computational time.

7.2 Significance, Limitation and Expectation

The significance of this paper lies in: (1) Gives the theoretical basis of biological and mathematical

ecology of MGA; (2) Gives the offspring generation method of MGA based on two-point crossover; (3)

Gives the relationship between the offspring number and running speed and the optimal number of

offspring individuals of MGA based on two-point crossover; (4) Lays the foundation for subsequent

research on MGA.

The limitations of this paper lies in: the conclusions given in this paper are valid only for MGA based

on the two-point crossover.

MO-GA has many issues worth further studying, for example, offspring generation method of multi-

offspring real-coded genetic algorithm, the best number of offspring individuals and the influence of the

number of offspring individuals on the running speed, and so on.

Acknowledgments

The authors thank the editors and anonymous referees who commented on this paper. This work was

supported in part by project of the social science foundation of Heilongjiang Province (Grant No.

16JYB06), and in part by Liaoning Provincial Department of Education Project (Grant No.

JQW201714407). The authors thank the anonymous reviewers for their valuable and constructive

comments that greatly helped improve the quality and completeness of this paper.

References

[1] Z.M. Liu, J.L. Zhou, Q. Ao, The analysis on running mechanism of crossover in genetic algorithms, Journal of Sichuan

University (Natural Science Edition) 39(5)(2002) 857-860.

[2] M.Q. Li, The Basic Theory and Application of Genetic Algorithm, Science Press, Beijing, 2002.

[3] Y.L. Zhu, Research on optimization problems based on genetic algorithm, [dissertation] Xian: University of Electronic and

Technology of China, 2010.

[4] J.H. Holland, Adaptation in Natural and Artificial Systems: an Introductory Analysis With Application to Biology, Control

and Artificial Intelligence, University of Michigan Press, Ann Arbor, 1975.

[5] D.L. Liu, S.W. Xu, Inward-outward crossover based genetic algorithm for constrained optimization problem, System

Engineering-Theory & Practice 32(1)(2012) 189-195.

[6] T. Dede, S. Bekiroglu, Y. Ayvaz, Weight minimization of trusses with genetic algorithm, Applied Soft Computing

11(2)(2011) 2565-2575.

[7] K.A. De Jong, An analysis of the behavior of a class of genetic adaptive systems, [dissertation] Holland: University of

Michigan, 1975.

[8] Q. Liu, X.Y. Wang, Q.M. Fu, Double elite coevolutionary genetic algorithm, Journal of Software 23(4)(2012) 765-775.

Multi-offspring Genetic Algorithm with Two-point Crossover and the Relationship between Number of Offsprings and Computational Speed

126

[9] S.Y. Yu, S.Q, Kuang, Convergence and convergence rate analysis of elitist genetic algorithm based on martingale approach,

Control Theory & Applications 27(7)(2010) 843-848.

[10] R.B. Qi, F. Qian, W.L. Du, Multiobjective genetic algorithm based on elitist selection and individual migration, Control

and Decision 22(2)(2007)164-168.

[11] X.P. Wang, L.M. Cao, Genetic Algorithm-Theory Application and Software Implementation, Xi’an Jiaotong University

Press, Xian, 2005.

[12] M. Li, Q. Wang, J.Y. Dai, PID parameter adjustment based on niche hybrid genetic algorithm, Computer Simulation

26(4)(2009) 233-236.

[13] G. Garai, B.B. Chaudhuri, A distributed hierarchical genetic algorithm for efficient optimization and pattern matching,

Pattern Recognition 40(2007) 212-228.

[14] F.L. Wang, J.Q. Wang, C.Y. Wu, The improved research on actual number genetic algorithm, Journal of Biomathematics

21(1)(2006) 153-158.

[15] L. Wang, H. Wu, F. Tang, Hybrid quantum genetic algorithm and performance analysis, Control and Decision 20(2)(2005)

156-158.

[16] C.Y. Liu, An improved adaptive genetic algorithm for the multi-depot vehicle routing problem with time window, Journal

of Networks 8(5)(2013) 1035-1042.

[17] T.M. Cheng, R.Z. Yan, Integrating messy genetic algorithms and simulation to optimize resource utilization, Computer-

Aided Civil and Infrastructure Engineering 24(6)(2009) 401-415.

[18] P. Li, J.Y. Wu, J.H. Zheng, Theoretical analysis and application research on multi-parent genetic algorithm, Computer

Engineering and Design 27(4)(2006)581-583.

[19] I. Saracoglu, S. Topaloglu, T. Keskinturk, A genetic algorithm approach for multi-product multi-period continuous review

inventory models, Expert Systems with Applications 41(18)(2014) 8189-8202.

[20] F.H. Tseng, X. Wang, L.D. Chou, H.-C. Chao, V.C.M. Leung, Dynamic resource prediction and allocation for cloud data

center using the multiobjective genetic algorithm, IEEE Systems Journal PP(99)(2017) 1-12.

[21] M.Z. Ali, N.H. Awad, P.N. Suganthan, A.M. Shatnawi, R.G. Reynolds, An improved class of real-coded genetic algorithms

for numerical optimization, Neurocomputing 275(2018)155-166.

[22] M.J. Li, Partheno genetic algorithm theory and its application, [dissertation] Changsha: Hunan University, 2002.

[23] J. Wu, H. Wang, Partheno genetic algorithm for the foundersequence reconstruction problem, Journal of Computers

(Finland) 8(11)(2013) 2934-2941.

[24] K. Katayama, H. Narihisa, On fundamental design of parthenogenetic algorithm for the binary quadratic programming

problem, in: Proc. the 2001 Congress on Evolutionary Computation, 2001.

[25] S.C. Tsai, S.Y. Fu, Genetic-algorithm-based simulation optimization considering a single stochastic constraint, European

Journal of Operational Research 236(1)(2014)113-125.

[26] F.L. Wang, X.M. Fu, H.X. Zhu, The multi-child genetic algorithm, International Journal of Innovative Computing

Information & Control 11(5)(2015) 1811-1821.

[27] L. Ma, Q.T. Li, M.Q. Ma, et al., Optimization and application of single-point crossover and multi-offspring genetic

algorithm, International Journal of Hybrid Information Technology 9(1)(2016) 1-8.

[28] C. Darwin, On the Origin of Species by Means of Natural Selection, John Murry, London, 1859.

[29] D.W. Wang, J.W. Wang, H.F. Wang, Intelligent Optimization Method, Higher Education Press, Beijing, 2007.

Journal of Computers Vol. 30 No. 5, 2019

127

[30] L. Ma, G. Zhu, A.B. Ning, Ant Colony Optimization Algorithm, Science Press, Beijing, 2008.

[31] Z. Ji, H.L. Liao, Q.H. Wu, Particle Swarm Optimization and Application, Science Press, Beijing, 2009.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

