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Abstract. Collaborative filtering is the basis of the recommendation system. Collaborative 

filtering generally finds users (neighbors) with the same interests as the target users among a 

large number of users. How to determine whether the users have the same interests as the target 

users and how to form the neighbors of the target users. Sorting directories has become a major 

issue. However, there are some shortcomings in the existing neighbor selection scheme. For 

example, when calculating the deviation of two users from the same group of items ratings, the 

existing two-layer neighbor selection scheme only considers the sum of the individual items 

rating differences. It is unfair to users who are not much different from the target users. We 

propose a trustworthiness calculation scheme based on Kendall correlation coefficient and 

standard deviation. Specifically, when the sum of the difference between the two neighbors and 

the target user is the same, the trustworthiness of the user with high Kendall correlation 

coefficient and small standard deviation is higher. 

Keywords:  Kendall correlation coefficient, neighbors, recommender system, standard deviation, 

trust 

1 Introduction 

With the rapid development of the Internet, the number of users has increased, and tens of thousands of 

messages have been generated every day. People are gradually entering the era of information overload 

from the era of information scarcity, so it is a big challenge for both information consumers and 

information producers. How can information consumers find the information they are interested in in a 

large amount of information, and how the information producers push the information they produce to 

consumers, so the recommendation system came into being. The recommendation system conducts 

personalized calculation by studying the user’s interest preference, and the system discovers the user’s 

interest points, thereby guiding the user to discover their own information needs [1]. 

Collaborative filtering recommendation is currently the most widely used and most successful 

recommendation system [2]. Collaborative filtering recommendation algorithms fall into two categories, 

namely user-based collaborating algorithm (user-based collaborating algorithm) and item-based 

collaborative filtering. The user-based collaborative filtering algorithm is to discover the user’s likes of 
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goods or content (such as product purchase, collection, content comment or sharing) through the user’s 

historical behavior data, and measure and score these preferences [3]. The relationship between users is 

calculated according to the attitudes and preferences of different users for the same product or content, 

and product recommendation is performed among users with the same preferences. So how to choose the 

user with the same interests as the target user is the key to the algorithm. 

This paper aims to improve the recommendation accuracy of the user-similarity based CF, The 

existing two-layer neighbor selection scheme introduces the Good value and the Bad value, and the Bad 

value represents the difference in rating between the neighboring user and the target user for the same 

items [4]. However, when calculating the Bad value, only the sum of the differences between the ratings 

of the two users is considered, and the influence degree of the different rating differences is ignored. We 

have improved the existing scheme and introduced the Kendall coefficient and standard deviation in 

calculating the Bad value, which improves the trustworthiness of the neighbors. 

2 Related Work 

In this section, we have detailed the shortcomings of the existing two-layer neighbor selection scheme 

towards online recommender systems. 

The existing two-layer neighbor selection scheme towards online recommender systems consists of 

two parts, the capability evaluation module and the trust evaluation module [5]. 

Ui stands for the user, Ii stands for the items (movie), and Ri stands for the user’s rating of the i project 

as shown in Table 1. 

Table 1. An example of a user-item rating metrix 

 I1 I2 I3 I4 I5 

U1 - 2 - - 4 

U2 2 2 3 3 5 

U3 5 1 - 3 1 

U4 3 3 4 5 1 

U5 1 3 2 4 5 

2.1 Capability Evaluation Module 

The existing two-layer neighbor selection scheme use one of the most popular similarity calculation 

methods, Pearson correlation coefficient [6], Pearson correlation coefficient is calculated as: 
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where Rui and Rvi are the ratings of user u and user v for item i, respectively; Iuv is the set of commonly 

rated items by both users; and Ru and Rv are the average rating values of user u and user v, respectively. 

A user v’s capability to be used for predicting target user u’s preferences (i.e. marked as ava(u, v)), is 

calculated as in below equation [4]. 
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In ava(u, v), ava(u, v) is set to 0 when the set of items rated by the neighboring user is a true subset of 

the item set of the target user(For example, the item rating set of the U1 user is the true subset of the U3 

user in Table 1). This solves the problem that neighbors cannot recommend each other. The Pearson 

correlation coefficient calculates the similarity of a pair of users, mainly based on their rating values for 

rating items, while ignoring the total number of these items. So the introduction of |Iuv|/|Iu| in ava(u, v) 

[7] solves this problem. 
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2.2 Trust Evaluation Module 

A user v’s behavior contains both a good portion (i.e. consistent preference) and a bad portion (i.e. 

inconsistent preference), marked as gi(u, v) or bi(u, v), each of which can be quantified as a continuous 

value in the range of (0, 1) [8]. Specifically, gi(u, v) and bi(u, v) are computed as follows.  
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Where Rmax and Rmin represent the maximum and minimum values in the recommended system, 

respectively, where Rmax is 5 and Rmin is 1. Furthermore, the total number of good/bad behaviors 

conducted by user v is calculated as the sum of his/her good/bad behavior values on all the commonly 

rated items [4]. 

 ( , ) ( , )
uv

i I i
G u v g u v

∈
= Σ  (5) 

 ( , ) ( , )
uv

i I i
B u v b u v

∈
= Σ  (6) 

At the end, the trustworthiness of user v from target user u’s perspective (i.e. marked as tru(u, v)) is 

calculated as in (7). The more good behaviors a user v conducts, the higher trust value he/she will obtain 

[4, 9]. 
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3 Proposed Scheme 

In this section, we have detailed the shortcomings of the existing two-layer neighbor selection scheme, 

and discuss the proposed scheme in details. 

3.1 Inadequacies of the Trust Evaluation Module 

The difference in preference between the neighbor user and the target user is mainly measured by the bad 

behavior value of the neighbor user, that is, B(u, v). However, even when B(u1, v) = B(u2, v), the 

difference between User 1 and User 2 and the target user is different. 

Table 2.  

 I1 I2 I3 I4 I5 

U1 1 1 1 1 1 

U2 5 1 1 1 1 

U3 2 2 2 2 1 

U4 4 2 1 1 1 

U5 3 2 2 1 1 

 

Assume that user U1 is the target user, and calculate the B (Ui, U1) values of users U2, U3, U4, U5 

and user U1 respectively. It can be seen that the B (Ui, U1) values of each neighbor are equal. Intuitively, 

User 3 should be most similar to target User 1 in comparison with other users, because User 3’s 

preference for each project is similar to Target User 1, which is relatively stable. However, User 2’s 

rating for item 1 is completely opposite to that of the target user, and interest preference fluctuations are 

relatively large. 
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3.2 Improved Trust Evaluation Module 

We propose a trust evaluation module that uses Kendall correlation coefficient and standard deviations. 

At the end, the proposal of a two-layer neighbor selection strategy is presented. 

Kendall correlation coefficient. The Kendall correlation coefficient is a statistical value used to measure 

the correlation between two random variables [10]. The calculated correlation coefficient is used to test 

the statistical dependence of two random variables. Suppose that the score sets of two neighbor users for 

the item are X and Y respectively, and the number of their elements is N. The i-th (1<=i<=N) values in 

the two sets are represented by Xi and Yi respectively. 

Let (X1, Y1), (X2, Y2), …, (Xn, Yn) be a set of observations of the joint random variables X and Y 

respectively, such that all the values of (Xi) and (Yi) are unique. Any pair of observations (Xi, Yi) and (Xi, 

Yi), where i<j, are said to be concordant if the ranks for both elements (more precisely, the sort order by 

X and by Y) agree: that is, if both (Xi>Xj) and (Yi>Yj) ; or if both (Xi<Xj) and (Yi<Yj). They are said to 

be discordant, if (Xi>Xj) and (Yi<Yj); or if (Xi<Xj) and(Yi>Yj). If (Xi=Xj) or (Yi>Yj), the pair is neither 

concordant nor discordant [11]. 

There are formulas for calculating the value of the Kendall correlation coefficient [12]. 
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Where C is number of concordant pairs, D is number of discordant pairs. N1 and N2 are calculated for 

the sets X and Y, respectively. Now take the calculation of N1 as an example: 

Combine the same elements in X into small sets, s represents the number of small sets in set X (for 

example, X contains elements: 1 2 3 4 3 3 2, then the s obtained here is 2, because only 2, 3 There are the 

same elements), Ui represents the number of elements contained in the i-th small set. 

Table 3.  

 I1 I2 I3 I4 I5 I6 

U1 1 1 2 2 3 3 

U2 1 2 2 3 3 2 

 

Assume U1 is the target user, X=[1, 1, 2, 2, 3, 3], Y=[1, 2, 2, 3, 3, 2]. Calculated C=7, D=1, SX=3, 

SY=2 

Standard deviation. According to the deficiencies in Table 2, We introduce standard deviation factors 

into the scheme, and the standard deviation [13] reflects the degree of dispersion of a data set. The 

standard deviation of user U3 (
3

σ )was found to be the smallest, which is consistent with the subjective 

situation. 

 

In summary, the improved trust evaluation module is: 
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3.3 Neighbor Selection Strategy 

Among the traditional collaborative filtering algorithms, there are two most popular neighbor selection 

methods. One is to select a fixed number of neighbors with the highest similarity score, but when a target 

user has fewer neighbors with higher similarity scores, selecting a fixed number of neighbors will result 

in lower trust in the set of neighbor users. The neighbors will downgrade the accuracy of the 

recommendation system. The other is to select the part of the neighbor whose similarity score is above a 

certain threshold, but you need to set different thresholds again in different environments [14]. 

Assuming that K users are selected as the neighbors of the target user, the existing two-layer neighbor 

selection scheme uses the capability evaluation module to select the first-level neighbors. Set the 

parameter K’, calculate ava(u, v) according to formula (2), sort in descending order by size, and select 

the first K’ users as the first layer neighbor. K’ is calculated as follows: 

 [ ]K e K′ = ×  (13) 

When the number of users whose ava(u, v) is not 0 is greater than K’, the former K’ users are selected 

as the first-level neighbors, which are recorded as N’(U); when ava(u, v) is not When the number of users 

with 0 is less than K’, the user who is not 0 is selected as the first-level neighbor and is recorded as N’(U). 

The improved trust evaluation module is used to select the second layer of neighbors. For the user in 

N’(U), calculate tru(u, v) according to formula (12), sort by descending order, and select the first K users 

as the second layer neighbor.  

When the number of users that are not 0 in tru(u, v) is greater than K, the first K users are selected as 

the first layer neighbors, which are recorded as N(U) [15]; when tru(u, v) is not 0, the user is not 0. When 

the number is less than K, the user who is not 0 is selected as the first layer neighbor and is recorded as 

N(U). 

4 Experimental Results 

In this section, to validate the effectiveness of the proposed improvement, we conducted experiments 

based on real user data sets. These experiments were performed on an Intel i7 2.5 GHz, 8 GB RAM, 

Windows 10 computer using the Python programming language. We conduct experiments using the 

MovieLens-100k dataset collected by the GroupLens Research Project at the University of Minnesota. 

4.1 Performance Evaluation Metric 

First, we predict the target user’s rating for each movie based on the selected N neighbor users, which is 

calculated according to Equation (14). 
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To measure the effectiveness of the proposed method, we use Mean Absolute Error (MAE) and Root 

Mean Square Error (RMSE), which are widely accepted by the research community. MAE and RMSE 

are used to compute the deviation between the predicted ratings and the actual ratings in all experiments. 

Specifically, the MAE and RMSE are calculated as [4]. 
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In the above formula, ri represents the actual score value of the target user for item i, and pi is the 

corresponding predicted score value. N is the total number of items scored by the target user in the test 

set. The smaller the MAE or RMSE, the better the performance. 
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4.2 Module Testing 

Firstly, the optimal N values of the two schemes are determined. We separately select the N values for 

the existing two-layer neighbor selection scheme and the improved two-layer neighbor selection scheme. 

It can be seen from Fig. 1 that when N=20 and e=2.1, the MAE has a minimum value. As can be seen 

from Fig. 2, for the improved scheme, when N=40 and e=2.43, the MAE has a minimum value. Because 

when the number of selected neighbors is small, more users with similar interests to the target users 

cannot be obtained; when too many neighbors are selected, users with lower scores are included. 

 

Fig. 1. The existing two-layer neighbor selection scheme 

 

Fig. 2. The improved two-layer neighbor selection scheme 

Fig. 3 shows the performances of different schemes with different e values, where the x-axis represent 

the e value and the y-axis represent the MAE, respectively. In Fig. 3, we observe that the proposed 

scheme achieves the best MAE for all different e values. Fig. 4 shows the performances of different 

schemes with different e values, where the x-axis represent the e value and the y-axis represent the 

RMSE, when the e value is less than 2.93, the RMSE value of our proposed scheme is smaller than the 

existing neighbor selection scheme. And get the best RMSE when e value is equal to 2.71. 
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Fig. 3. Impact of parameter e on MAE 

 

Fig. 4. Impact of parameter e on RMSE 

6 Conclusion 

In this work, an improved two-layer neighbor selection scheme is proposed for collaborative filtering 

recommender systems, aiming at improving the recommendation accuracy by introduced Kendall 

correlation coefficient and standard deviation in the trust evaluation module. Specifically, when 

calculating the difference between the rating of the neighboring user and the target user for a group of 

identical items, (1) the rating of the target user is set to set X, the rating of the neighboring user is set to 

set Y, and then the Kendall correlation coefficient of the set X, Y is calculated to obtain the value t. (2) 

Calculate the standard deviation of the set X, Y to get the value σ . 

To evaluate the performance of the proposed scheme, experiments are conducted on the MovieLens-

100K dataset. The experimental results show that the proposed scheme has higher recommendation 

accuracy and is superior to the existing neighbor selection scheme. 
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