
Journal of Computers Vol. 30 No. 5, 2019, pp. 252-267

doi:10.3966/199115992019103005020

252

Superpixel Segmentation Using Improved Lazy Random

Walk Framework Based on Texture Complexities

Yi-Xuan Zhan, Chin-Han Shen, Hsu-Feng Hsiao*

Department of Computer Science, National Chiao Tung University, Hsinchu 300, Taiwan, ROC

rlixaoi@gmail.com, fionaschs@nctu.edu.tw, hillhsiao@cs.nctu.edu.tw

Received 15 March 2019; Revised 30 June 2019; Accepted 4 September 2019

Abstract. Superpixel segmentation has been a very important pre-processing step of many

computer vision applications. By grouping the pixels with similar data properties, the

computation complexity can be reduced since the scale of data processing has been transformed

from pixel level to region level. In this paper, an improved superpixel segmentation approach

using a lazy random walk algorithm is proposed. Two major improvements are applied to obtain

the better visualization results: center relocation and splitting strategy modification. The

improved performance is confirmed with the subjective and objective performance comparison.

In particular, the sizes of the produced superpixels depend on texture complexities of different

regions which can be more appreciated

Keywords: image segmentation, lazy random walk, superpixel

1 Introduction

An image or a video frame is composed of many pixels. With the development of technologies, the

required resolution of multimedia applications escalates, and the amount of data requiring image

processing has also increased significantly. In order to efficiently process large amounts of data, an

efficient approach is to integrate homogenous units into a smaller number of new units. A technique

called superpixel segmentation has been developed for the classification of image pixels based on

homogeneity.

A superpixel is a collection of a few pixels of the same or similar characteristics, such as color and

intensity. It remains a challenge to have an excellent superpixel segmentation method. However, there are

some principles that are generally agreed on when designing a superpixel segmentation algorithm: [1-3]

‧ A superpixel segmentation method should assign each pixel just to a single superpixel; therefore, there

are no overlapped superpixels.

‧ Each superpixel should represent a connected set of pixels.

‧ Superpixels should adhere well to object boundaries.

‧ Superpixels should be generated as efficiently as possible.

Superpixel segmentation has been wildly used in the applications of computer vision and image

processing. The major advantage of superpixel representation is to increase computational efficiency.

Using superpixels can significantly reduce the number of units of an image, compared to using pixels.

Currently, the mainstream of researches using deep learning networks focuses on visual contents. The

huge amount of required processing has been one of the bottlenecks in such areas. One of the temporary

solutions is to limit the spatial resolution of an input image. Another favorable approach is to digest an

input image into an array of superpixels to reduce the dimension of an input data.

Due to the effectiveness in representation based on mid-level cues [4], computer vision tasks like

object segmentation and recognition [5-9], background subtraction [10], and multi-target tracking [11-12]

have adopted the superpixel segmentation. Visual tracking techniques often employ superpixels to handle

non-rigid and deformable targets [13-16]. Wang et al. [13] use superpixels for constructing the

* Corresponding Author

Journal of Computers Vol. 30 No. 5, 2019

253

discriminative appearance model to distinguish foreground objects from cluttered backgrounds. Particle

filtering is used to find the optimal target state. A dynamic Bayesian network tracking [14] adopts a

superpixel-based constellation model to deal with non-rigid deformations. Xiao et al. [15] and Hong et al.

[16] have developed the tracking techniques with more information levels to overcome the limitation of

flat representations. Three levels of features—pixel, superpixel, and bounding box have been used to

avoid the situation where the semantic relations between superpixels are not well-considered for

segmentation.

In this paper, an improved superpixel segmentation method, based on lazy random walk (LRW)

algorithm, is proposed. With the better performance of the proposed method, it can be a great benefit to

other researches of visual contents where computation efficiency matters. Also, the sizes of the produced

superpixels depend on texture complexities of different regions which can be more appreciated for the

applications where superpixels are used as delegates of an image.

The rest of the paper is organized as follows. We will review several superpixel segmentation

algorithms in Section 2. The details of our proposed method are in Section 3. The evaluation of the

proposed method and the comparison will be described in Section 4, followed by the conclusion in

Section 5.

2 Related Works

There are many superpixel segmentation algorithms in the literature. First, algorithms for generating

superpixels can be categorized as graph-based and gradient-based approaches. With the emersion of

Simple linear iterative clustering (SLIC), a new category called k-means based algorithms is getting

popular in the research of superpixel segmentation. Different methods have their advantages and

drawbacks, depending on the requirement of an application. For example, the graph-based methods are

appealing for generating superpixels adherent to object boundaries. However, if the superpixels are used

to build a graph, a method that produces a more regular lattice will be a better choice [1]. In the following,

some popular works of superpixel segmentation will be reviewed. The methodologies to evaluate a

superpixel segmentation algorithm will be depicted.

2.1 Graph-based Algorithms

As the title implies, graph-based approaches of superpixel segmentation take an input image as a graph

and each pixel is taken as a node in the graph. Connections between nodes pairs are called edges, which

contain the weights to measure similarity between two nodes. The objective of a typical graph-based

algorithm is to minimize the cost function defined over the graph to create the superpixels.

A classical graph partitioning algorithm called Normalized Cuts (NCut) [17] has been commonly used

in image segmentation. The authors suggested that image partitioning should be done from the big

picture downward and proposed the approach which focuses on extracting the global impressions of an

image to the perceptual grouping problems. In order to avoid the unequal partition result of an image, the

partitioning criterion is used to measure the cut cost as a fraction of the total edge connections to all the

nodes in the graph. Visually, the segmentation result is regular and pleasant but the boundary adherence

of the generated superpixels are not ideal. Moreover, since the measurement of cut cost involves the

nodes in the whole graph, the computational cost becomes quite expensive when the number of

superpixels increases. An alternative graph-based approach was proposed by Felzenszwalb and

Huttenlocher [18]. First, the weights of this approach are measured by the region dissimilarity. Then the

graph is performed with agglomerative hierarchical clustering to classify the nodes in the graph. The

segmentation results are presented in several minimum spanning trees (MST).

Moore et al. [19] proposed a superpixel lattices method where an image is segmented into several

regions at the initialization step. The input used in this approach is a boundary map, which is a 2D array

measuring the probability of existence of a semantically meaningful boundary between two pixels. To

process the input more efficiently, the boundary map is normalized to boundary cost map. The superpixel

segmentation is to use the boundary cost map to find optimal paths along with the boundaries. To make

sure the grid segmentation is regular, two rules are employed to find the optimal paths: (1) the horizontal

and vertical paths only have single cross point, (2) the optimal paths with same direction must not cross

each other.

Superpixel Segmentation Using Improved Lazy Random Walk Framework Based on Texture Complexities

254

Veksler et al. [20] take the superpixel segmentation as an energy minimization framework and

optimize it with graph cut. In this approach, the basic energy function is defined as a trade-off. It depends

on whether the user needs a well boundary adherence result or a faster calculation. Shen et al. [21]

proposed a graph-based method which uses lazy random walk (LRW) as the mechanism of segmentation.

Two main steps are included in the approach: (1) the superpixel seeds initialization and (2) the energy

optimization to segment the superpixels. The method is able to segment the complicated texture data

result and preserve the weak boundary.

2.2 Gradient-based Algorithms

From a rough clustering of pixels, a typical gradient-based method iteratively refines the clusters until a

convergence criterion is met to form superpixels [2]. A geometric-flow-based algorithm was proposed by

Levinshtein et al. [3] for computing a dense over-segmentation of an image. The goal of the method is to

distribute the superpixels evenly in the whole image. The superpixels are constrained to have the uniform

size, compactness, and boundary adherence. The watershed approach proposed by Vincent and Soille [22]

fulfills the superpixel segmentation using gradient ascent approach from the local minima in the image.

The calculation speed of this method is relatively fast, but it does not provide the external control of

desired superpixel number and compactness. The completed superpixels are often with the irregular

shapes and sizes, and their lack of well boundary adherence can be a problem.

2.3 K-means-based Algorithms

K-means-based methods share the same conceptual process as the gradient-based algorithms. The major

difference between two types of algorithms is that K-means-based methods replace the gradient-ascent

calculation with K-means clustering method to generate the superpixels.

Achanta et al. [1] presented a well-known algorithm called simple linear iterative clustering (SLIC),

adopting the k-means clustering approach to generate superpixels. There are two major points: (1) the

number of distance calculations in the optimization is dramatically reduced by limiting the search space

to a region proportional to the superpixel size, (2) The measurement of the weighted distance combines

color similarity and spatial proximity while simultaneously providing external control to adjust the size

and compactness of the superpixels. Zeng et al. [23] proposed a structure sensitive over-segmentation

technique which adopts geometric flows to compute the geodesic distances among the pixels. The

generated superpixel size is verified with the variation of intensity or color. The superpixels with smaller

size are generated in structure dense regions with high intensity or color variation. On the other hand, the

superpixels with larger size are generated in structure-sparse regions.

A superpixels extracted via energy-driven sampling (SEEDS) approach based on a simple hill-

climbing optimization was proposed by Bergh et al [24]. After the initialization of superpixel, the

segmentation refinement is finished by iteratively modifying the boundaries. This algorithm defines an

energy function based on enforcing color similarity between the boundaries and superpixel color

histogram [26]. The method has the faster computational speed [26] but the generated shapes of

superpixels are irregular. The flooding based method with color, compactness and smoothness constraints

(FCCS) algorithm was proposed by Pan et al. [25]. Two main improvements were proposed in FCCS: a

new distance metric is defined for estimating pixels and seeds’ similarity with color, compactness and

smoothness constraints and a seeds update strategy based on Lloyd’s algorithm is adopted for optimizing

seeds location and superpixels’ contour regions [25]. The method can generate better boundary adherence

perceptually, compared with some previously mentioned works [1, 23].

2.4 Methodologies for Segmentation Results

To evaluate the superpixel segmentation performance, some commonly used benchmarks metrics from

the extended Berkeley segmentation benchmark were implemented by Stutz et al. [27]. In this subsection,

we will review the related works and definitions of the evaluation metrics for superpixel segmentation.

Journal of Computers Vol. 30 No. 5, 2019

255

2.4.1 Boundary Recall (BR)

The Boundary Recall (BR) introduced in [28] is part of the Precision-Recall framework to accurately

detect boundaries in natural scenes. It was originally designed for evaluating a boundary detection

algorithm. Higher BR value means that superpixels adhere well to the object boundaries in an image. For

the principle that the superpixel segmentation result shall match the objects boundary well, it is one of the

important objective indexes to measure the accuracy of segmentation.

Let
j

sp be a superpixel segmentation and
i

g be a ground truth segmentation, the BR is defined as

below:

| (,) |

(,)
(,) (,)

j i

j i

j i j i

TP sp g
BR sp g

TP sp g FN sp g
=

+

 (1)

where (,)TP sp g means true positives for the boundary pixels in g when there is a pixel in range r of

the boundaries of .sp (,)FN sp g means false negatives for the boundary pixels in g when there is no

pixel in range γ of the boundaries of sp .

2.4.2 Undersegmentation Error (UE)

The scenario of an undersegmentation error is shown in Fig. 1 where several superpixels are covered by a

region in the ground truth. There are various implementations of undersegmentation error metrics. To

avoid a serious penalty for large superpixels that have only a small overlap with the ground truth segment,

the undersegmentation error (UE) proposed by Neubert and Protzel [29] in the extended Berkeley

segmentation benchmark is defined as follows.

Fig. 1. Illustration of undersegmentation error

Three superpixels
j

sp (A, B, C) are covered with the groundtruth
i

g (center covered area)

1

(,) min{| |, | |}
i j ig G Sp g j i j iUE Sp g Sp g Sp g

N
φ∈ ∩ ≠

= Σ Σ ∩ − (2)

where N denotes the total number of pixels on the image, | |
j i

sp g∩ denotes the number of the pixels

which both belong to
j

sp and
i

g , and | |
j i

sp g− denotes the number of the pixels which belong to
j

sp

but not
i

g .

Superpixel Segmentation Using Improved Lazy Random Walk Framework Based on Texture Complexities

256

2.4.3 Achievable Segmentation Accuracy (ASA)

The Achievable Segmentation Accuracy (ASA) used by the extended Berkeley Segmentation Benchmark

is defined by Liu et al. [2]. It measures the highest accuracy achievable for object segmentation based on

superpixel units. Each superpixel is labeled with the ground truth segment which has the largest overlap.

Mathematically, the ASA is defined as the performance upper-bound of the segmentation results with the

equation written below:

1

(,) max {| |}
j iSp Sp g j iASA Sp g Sp g

N
∈

= Σ ∩ (3)

3 The Proposed Superpixel Segmentation

As mentioned in the previous section, lazy random walk (LRW) algorithm can be quite helpful for the

problem of superpixel segmentation [21]. Inspired by it, we improve the LRW for better superpixel

segmentation.

3.1 Foundation of Lazy Random Walk-based Superpixel Segmentation

The flow of the original LRW approach is shown in Fig. 2. First, the seeds initialization is fulfilled by

placing the central pixel averagely in the image plane. Then, each pixel is assigned to a unique initial

seed to form the superpixel using LRW algorithm. In order to make the superpixels have better

performance on edge preserving and compactness, an energy optimization algorithm is used to relocate

the seed positions and split the large superpixels into two small new superpixels in each iteration. The

process of the LRW for superpixel optimization will be terminated only when the number of the

segmented superpixels or the maximum number of the iterations reaches its threshold.

Fig. 2. The work flow of LRW for superpixel segmentation

The LRW algorithm is one of graph-based algorithms mentioned in the Section 2.1. The input image

()
i

I p is taken as an undirected graph (,).G V E= The input image is presented as a weighted graph

containing a set of nodes V and edges .E V V⊆ × Each pixel
i
p on the image is identified by a unique

node .

i
v V∈ The degree of each vertex is computed as

i j ij
d w= Σ for all the edges which connect to

i
v .

The weight
ij

w is defined by the similarity between two neighbor nodes
i
v and

j
v , and usually the

Journal of Computers Vol. 30 No. 5, 2019

257

pixel intensity is used in the form of Gaussian function. Many graph-based image segmentation methods

[30-32] have adopted the Gaussian weight as the following:

2

2

|| ||
exp()

2

i j

ij

Y Y
W

σ

−

= − (4)

where
i
Y and

j
Y denote the intensity values of the two nodes

i
v and

j
v . σ is the user defined parameter.

The LRW graph has the property that a lazy random walk remains at the same node by adding a self-

loop to each vertex aiming to solve the segmentation problem in weak boundary and complex texture

regions [21]. The input graph could be turned into an adjacency matrix
ij

w defined as

1 , ,

, ,

0,

ij ij i j

if i j

W w if v and v are neighbors

otherwise

α

α

⎧ − =
⎪

= ⋅⎨
⎪
⎩

 (5)

where α is a control parameter of self-loop in the range (0, 1). The adjacency matrix W is a sparse and

symmetric matrix whose nonzero elements are positive. From equation (5), the adjacency matrix
ij

W is

transformed to Laplacian matrix L D Wα= − , where D is a diagonal matrix and
ii

D is the degree of the

i-th node
i
v . In LRW algorithm, the commute time

ij
CT [33-34] denotes the expected quantities of steps

that starts at node
i
v to reach node

j
v and then goes back to node

i
v . From the definition above, both the

Laplacian matrix L and its inverse matrix 1
L
− are symmetric matrices and we can express it with

1 1

ij ji
L L
− −

= . Therefore, the normalized Laplacian 1/ 2 1/ 2()L I D WDα
− −

= − is obtained and the normalized

commute time CJ is defined as the following:

1
1 , ,

1 ,

ij

ij

L if i j
CT

if i j

−⎧ − ≠⎪
= ⎨

=⎪⎩
 (6)

where l is the identity matrix. Due to the property that the probability is inversely proportion to the

commute time, the likelihood probabilities of superpixel label l can be defined as the following equation:

1

1l ij ijProb CT L
−

= − = (7)

From the equation (7), a defined matrix 1/ 2 1/ 2
S D W

− −

= is used to rewrite the likelihood probabilities

of superpixel label l as:

1()

l l
Prob I S fα

−

= − (8)

where
l

Prob is a 1N × vector and the probabilities of the nodes are assigned the superpixel label l. Then

l
f is a 1N × column vector whose all the elements are zero except that the seed pixels are one. When

() 1
l i
f p = means

i
p is labeled with l, and if () 0

l i
f p = , otherwise.

3.1.1 LRW based Superpixel Initialization

During the phase of LRW-based superpixel initialization in Fig. 2, the first step is to place the superpixel

seeds distributed over the image as even as possible. However, if there is any seed located near a strong

edge, it can be the false basis of subsequent segmentation process. Hence, the positions of the initial

seeds are moved along the gradient direction of their intensity values after being placed evenly over the

image.

After the generation of seed position, the next step is using LRW algorithm to assign each pixel to a

unique superpixel seed. The LRW algorithm will converge at a pixel
i
p with the likelihood probabilities

()
k
l i

Prob p from the equation (8). As a result, the set of the pixels which belong to the l-th superpixel can

be obtained from the commute time as the following equation:

Superpixel Segmentation Using Improved Lazy Random Walk Framework Based on Texture Complexities

258

 () min (,) max ()
k k k k

i l l i l l i
R p arg CT c p arg Prob p= = (9)

where
k
l
c denotes the central pixel of the l-th superpixel. Finally, the initial superpixels are obtained by

{ | () }
k
l i i k

Sp p R p l= = where { 1, 2, , }i N= … and { 1, 2, , }k M= … . And N is the number of the pixels in

an image and M is the number of the initial superpixels.

3.1.2 Superpixel Optimization

In order to make the superpixels with better performance both on edge preserving and compactness, the

proposed energy optimization function composed of data term and smooth term is expressed as:

 �
2 2(() ()) (,)n

pl l l lE Area Sp Area Sp W CT c p= Σ − + Σ (10)

The data term locates at the front part of equation (10) is used to make the texture information of a

superpixel more homogeneous. ()
l

Area Sp denotes the area of superpixel
l

Sp and ()Area Sp denotes the

average area of all superpixels. The smooth term in the later part of equation (10) is used to make the

superpixels adhere well to object/region boundaries. � pW is defined as
�

(,) /
l

CT c p
pW e

β−

= with a

normalization factor β , and it is a penalty function to measure the inconsistency under the specific

superpixel label.

Since the equation (10) is a nonconvex function, the energy optimization function can be solved

iteratively. First, the smooth term in equation (10) is minimized by computing the first derivative on the

variable n

l
c as the following.

�

�
1

1

2 (,) (,)

2 (,) 0
|| ||

n n
pl l ln

l

n
n l

p l n
l l

E
W CT c p CT c p

c

p c
W CT c p

p c

−

−

∂
= Σ ∇

∂

−
≈ =

−
∑

 (11)

where n is the number of iterations and 0

l
c is the initial central position of superpixel

l
Sp . The new

central position of superpixel
l

Sp can be relocated according to the following equation:

�

�

1

1

1

1

(,)

|| ||

(,)

|| ||

n

l
pl n

n l
l n

l
pl n

l

CT c p
W p

p c
c

CT c p
W

p c

−

−

−

−

Σ
−

=

Σ
−

 (12)

Second, according to equation (10), when ()
l

Area Sp is equal to ()Area Sp , the data item will have the

minimum value. The value of ()
l

Area Sp presents the texture complexity of the specific superpixel
l

Sp ;

therefore, the local binary pattern (LBP) [35] can be used to compute the texture simplicity of a

superpixel. The LBP of a pixel p is define as below:

1

,

0

() ()2
Q

Q R q

q p

q

LBP p s L L
−

=

= −∑ (13)

where

1, 0

()
1, 0

x

s x

x

≥⎧
= ⎨

<⎩
 (14)

where 2q is a binomial factor, and R is the radius of the circle that forms a circularly symmetric neighbor

set for the pixel p. The parameters 8Q = and 1R = are set to compute the constrained LBP value.

Journal of Computers Vol. 30 No. 5, 2019

259

According to the texture feature presented by the LBP value, the area of a superpixel
l

Sp and the average

area of superpixels are defined as the following equations (15) and (16):

 () ()
l

l p SpArea Sp LBP p
∈

= Σ (15)

()

() l
p Sp

sp

LBP p
Area Sp

N

∈
Σ

= (16)

where
sp

N is the user defined number of superpixels to achieve. When the value of ()
l

Area Sp is larger,

the texture information of
l

Sp is more complicated. Hence, a threshold
LBP

TH is adopted for checking

the LBP value if the superpixel is diverse enough to be divided into two new superpixels. The splitting

condition is achieved when () / ()
l LBP

Area Sp Area Sp TH≥ to split the current superpixel into two parts.

Next, the splitting method chooses the principal components analysis (PCA) to divide the superpixel.

The superpixel
l

Sp is divided along the direction of the eigenvector S with the largest eigenvalue of the

covariance matrix which consists of the commute time and the shape of superpixel
l

Sp . The direction is

determined by () 0
l

p c S− ⋅ = and the covariance matrix of superpixel
i

Sp is defined as the following

equation:

2

{ | , } 2

(,)
()()

|| ||l l

Tl
p p Sp p c l l

l

CT c p
p c p c

p c
∈ ∉

Σ − −
−

 (17)

As a result, after splitting superpixel
l

Sp with the covariance matrix ()
l

Cov Sp into two small

superpixels, the two new central positions of the small superpixels can be obtained as below:

�

�

�

�

, 1

, 2

{ | ,() 0}

{ | ,() 0}

{ | ,() 0}

{ | ,() 0}

(,)

|| ||

(,)

|| ||

(,)

|| ||

(,)

|| ||

l l

new

l l

l l

new

l l

l
pp p Sp p c S

l
l

l
pp p Sp p c S

l

l
pp p Sp p c S

l
l

l
pp p Sp p c S

l

CT c p
W p

p c
c

CT c p
W

p c

CT c p
W p

p c
c

CT c p
W

p c

∈ − ⋅ >

∈ − ⋅ >

∈ − ⋅ <

∈ − ⋅ <

Σ
−

=

Σ
−

Σ
−

=

Σ
−

 (18)

3.2 The Proposed Modification of LRW for Superpixel Segmentation

The proposed superpixel segmentation framework with our improvements is showed in Fig. 3. First,

we generate the initial seeds by evenly placing the positions of superpixel seeds over the image. Then,

according to the gradient of intensity values, we move the seeds to the locations which have the local

minimum variety of gradient to avoid locating the seeds close to the object boundaries. Before using

LRW to initialize the superpixels with the initial seeds, we use the equation (5) to compute the edge

weight
ij

w between two neighbor pixels
i
p and

j
p . Then we construct the sparse adjacency matrix

ij
W

in equation (6) and compute the commute time using the equation (7). After that, the LRW algorithm is

used to assign each pixel to a unique superpixel labeled by the equation (8). It can approach the

optimization of the superpixel segmentation in each iteration. Two main improvements for superpixel

optimization are proposed: adjusting the position after superpixel relocation and the new proposed

splitting condition in splitting strategy, which will be described in details as follows.

3.2.1 The Quad-segments Relocation

At the beginning of each iteration, each pixel is assigned to a unique superpixel label with the maximum

likelihood probability using the LRW method. Then we relocate each superpixel center by the equation

Superpixel Segmentation Using Improved Lazy Random Walk Framework Based on Texture Complexities

260

(12). At this step, the original mechanism of center relocation sometimes wrongly assigns the central

pixel for the superpixel. When the shape of this superpixel is concave, it may not locate the superpixel

center inside the superpixel. This situation will be a bad foundation in the next iteration. Therefore, we

adjust the location of superpixel center if it does not belong to this superpixel with the proposed quad-

segments relocation method.

Fig. 3. The framework of the proposed LRW for superpixel segmentation

First, the gravity center ()g lC Sp of the superpixel
l

Sp is computed using the following equation:

1

() (,)
i l

n

g l i i

p Sp

C Sp x y
N

∈

= ∑ (19)

where N is the number of pixels belong to
l

Sp , and (,)
i i
x y denote the x and y coordinates of pixel

i
p . If

the pixel which locates at ()g lC Sp belongs to
i

Sp , then the center of
i

Sp is ()g lC Sp ; otherwise, we use

the proposed quad-segments relocation method to obtain the appropriate superpixel center.

In the first step, we obtain the rectangular bounding box of the superpixel region, and the position of

middle center
m

C in the bounding box. The superpixel is divided into four segments by a vertical line

and a horizontal line crossed at the position
m

C , which is illustrated in Fig. 4. The points marked in

different colors denote the pixels from four segments. Each segment is presented in
k
s , and has its own

gravity center gkC computation according to the member pixels.

Journal of Computers Vol. 30 No. 5, 2019

261

Fig. 4. Illustration of the bounding box and the four parts of the superpixel
l

Sp (marked in area with

colored dots)

1

() (,)
k

k

i k

N

g k i i

p sk

C s x y
N

∈

= ∑ (20)

k =1, …, 4 and
k

N is the number of pixels in segment
k
s .

In the second step, we pick the four calculated gkC locate inside
i

Sp to compute the sum of geometric

distances from all the pixels belong to
l

Sp to gkC as below:

2 2() () ()

k k k

i l

N

g i x i x

p Sp

dist C x c y c
∈

= − + −∑ (21)

where (,)xk ykc c denotes the x and y coordinates of the gravity center gkC .

In the final step, check if the gravity center (,)gk xk ykc c c= with the minimum ()gkdist C is inside the

range of superpixel
l

Sp or not. If the selected gravity center gkC is not inside the superpixel range, the

quad-segments relocation is applied in each segment to find the center candidates in minor level until the

suitable center of
l

Sp is found. Otherwise, the gravity center gkC with the minimum ()gkdist C is

selected to be the new reallocation center. This quad-segments relocation will be applied whenever

dividing a large superpixel in the superpixel splitting strategy.

3.2.2 The Splitting Strategy of a Superpixel

After adjusting the relocation of the current superpixel
l

Sp , another critical issue of image segmentation

is the splitting strategy. Using LBP as the splitting strategy is not a good option. According to the

equation (13) and (14), when ()s x is equal to 1, a large LBP value will be generated and wrongly

estimate the member pixels that have the same intensity values in
l

Sp . The superpixels with sufficient

homogeneity may still be split into two smaller superpixels.

Therefore, we propose the splitting condition to decide whether or not
l

Sp shall be split. There are two

kinds of measurement involved in the proposed splitting condition: a simple metric to measure the

texture complexity called the sum of local binary difference (SLBD) and the intensity variance of a

superpixel. We design the splitting condition such that the sizes of the produced superpixels depend on

texture complexities of different regions.

The SLBD value of a pixel p is defined as below:

1

0

() (| |)
Q

q p

q

SLBD p s L L
−

=

= −∑ (22)

Superpixel Segmentation Using Improved Lazy Random Walk Framework Based on Texture Complexities

262

and

1, 0

()
0, 0

x

s x

x

>⎧
= ⎨

=⎩
 (23)

where
p

L and
q

L are the intensity values of pixel p and pixel q.

We set 8Q = to denote the 8-neighbors of the pixel p. We define the ratio of SLBD value of the

superpixel
l

Sp as the following:

1

()
()

() /

l
p Sp

SLBD l N

j sp

j

SLBD p
Ratio Sp

SLBD p N

∈

=

Σ
=

∑

 (24)

where N is the total number of pixels and
sp

N is the user defined number of the expected superpixels.

We then use a dynamic threshold
SLBD

TH to control the process of splitting. First, we set a
SLBD

TH to a

strict value to make the superpixels with larger texture complexity have the higher priority to be split in

the first few iterations. When there are no superpixels divided in two consecutive iterations, a more

relaxed
SLBD

TH is used to split more superpixels.

In addition to the SLBD value, we also compute the variance of a superpixel as another guidance.

Because the SLBD value only considers the neighbor information of a pixel in local, we use another fast

measurement, which is the variance of the superpixel, to measure the intensity diversity within the

superpixel
l

Sp . The variance of the superpixel
l

Sp is defined as the following equation:

21

() (())
i l

i l

n

l p Sp

p Sp

Var Sp L Mean L
N

∈

= −∑ (25)

where
pi

L denotes the intensity value of pixel
i
p . ()

l
Sp

Mean L denotes the mean of the pixel intensity

values from
l

Sp , and N is the number of pixels belong to
l

Sp . When ()
l

Var Sp is large, It means the

intensity consistency is not unanimous enough among the member pixels in current superpixel
l

Sp .

Hence, the superpixel with large enough variance should be divided too. Two thresholds
var

TH and

SLBD
TH are used to control the splitting condition. When both ()

SLBD l SLBD
Ratio Sp TH≥ and

()
l var

Var Sp TH≥ conditions are satisfied, the superpixel is split by the equation (17). In our empiricism,

we set
SLBD

TH to 1.35 as initial value and set
var

TH to 0.005 for good superpixel segmentation results.

The new split superpixels will be assigned to the new superpixel centers according the equation (18)

4 Experimental Evaluation and Discussion

In this section, we are going to examine the segmentation results of the proposed method. From the

design of the proposed method, we expect the results to be more homogeneous in each segment and the

size of a superpixel reflect the complexity of a region. The subjective and objective performance of the

proposed method will be compared with: (a) the well-known simple linear iterative clustering (SLIC) [1]

and (b) the original lazy random walks (Original-LRW) algorithm [21].

4.1 Results of Subjective Evaluation

We have visualized the segmentation results with several image examples from the Berkeley database

(BSD500) [36]. In the Fig. 5 and Fig. 6, our proposed methods have the best object boundary adherence

performance. For the segmentation accuracy, our proposed method can generate more regular superpixels

with highly homogeneous texture.

Journal of Computers Vol. 30 No. 5, 2019

263

(a) Results by SLIC (b) Results by Original-LRW

(c) Results by the proposed-LRW

Fig. 5. Visual comparison (Boundary adherence)

(a) Results by SLIC (b) Results by Original-LRW (c) Results by Proposed-LRW

Fig. 6. Visual comparison (Segmentation accuracy)

On the other hand, the shapes of superpixels using the SLIC method are much irregular, and the

segmentation results using the original LRW method shows less object boundary adherence, compared

with our proposed method.

In addition, it is clear to see that the sizes of superpixels using our method can match the region

complexity much better. In other words, the sizes of superpixels can be larger for regions with less details,

and the sizes get smaller for regions with richer texture details. An ideal situation of segmentation is that

the size of segments is adapted to the actual texture complexity of the image while fulfilling the

homogeneousness and superpixel quantity requirement by an application. As a pre-processing step of

other applications, the segmentation results are able to represent regional homogeneity with appropriate

shape and size, which may improve the computation efficiency in the subsequent missions.

4.2 Results of Objective Evaluation

In order to evaluate the objective quality, we have applied three benchmark metrics mentioned in the

section 2.4 to our proposed method and the compared methods: the boundary recall (BR), the

undersegmentation error (UE) and the achievable segmentation accuracy (ASA).

We firstly evaluate the boundary adherence objectively in the Fig. 8. SLIC has the best BR value since

the boundary has adapted the texture complexity with more irregular segmentation contours. As for our

proposed method, we have outperformed the original-LRW on the objective evaluation of boundary

adherence.

Superpixel Segmentation Using Improved Lazy Random Walk Framework Based on Texture Complexities

264

(a) Results by SLIC

(b) Results by Original-LRW

(c) Results by Proposed-LRW

Fig. 7. Visual comparison (texture adaption)

Fig. 8. Benchmark evaluation by Boundary Recall (BR)

Journal of Computers Vol. 30 No. 5, 2019

265

In Fig. 9, our method has the lowest UE values compared with SLIC and the original LRW method. It

means that our method has the lowest possible segmentation error. The segmentation accuracy has been

improved under our proposed strategies, especially for larger number of superpixels. In the Fig. 10, the

ASA values of our method outperform the others when the needed quantity of superpixels grows. For

both of evaluations, our results have better outcome when the segmentation quantity increases.

Fig. 9. Benchmark evaluation by Undersegmentation Error (UE)

Fig. 10. Benchmark evaluation by Achievable Segmentation Accuracy (ASA)

Currently, our method is implemented on Matlab. To finish superpixel segmentation of an image to

produce 500 superpixels, it takes around several hundred seconds on a personal computer with CPU

i6700 and 16G RAM to reach convergence. We noticed that our method requires large memory space for

part of the calculation and it takes time for context switching when it is out of memory. Therefore,

efficient programming implementation and larger memory shall be quite helpful in the future.

5 Conclusion

In this paper, we propose an improved superpixel segmentation approach using a lazy random walk

algorithm. Through the better center relocation and improved splitting strategy, the sizes of the produced

Superpixel Segmentation Using Improved Lazy Random Walk Framework Based on Texture Complexities

266

superpixels can adapt to texture complexities of different regions while preserving the boundary

adherence and better segmentation precision. The improved results are verified both subjectively and

objectively. For a long-term vision, the temporal concept of video data is also a considerable feature to

extend the improvements into the supervoxel segmentation.

References

[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, S. Süsstrunk, SLIC Superpixels compared to state-of-the-art Superpixel

methods, IEEE Transactions on Pattern Analysis and Machine Intelligence 34(11)(2012) 2274-2282.

[2] M. Liu, O. Tuzel, S. Ramalingam, R. Chellappa, Entropy rate superpixel segmentation, in: Proc. IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, 2011.

[3] A. Levinshtein, A. Stere, K.N. Kutulakos, D.J. Fleet, S.J. Dickinson, K. Siddiqi, TurboPixels: fast Superpixels using

geometric flows, IEEE Transactions on Pattern Analysis and Machine Intelligence 31(12)(2009) 2290-2297.

[4] D. Yeo, J. Son, B. Han, J.H. Han, Superpixel-based tracking-by-segmentation using Markov chains, in: Proc. IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[5] T. Cour, J. Shi, Recognizing objects by piecing together the segmentation puzzle, in: Proc. IEEE Conference on Computer

Vision and Pattern Recognition, 2007.

[6] B. Fulkerson, A. Vedaldi, S. Soatto, Class segmentation and object localization with superpixel neighborhoods, in: IEEE

12th International Conference on Computer Vision, 2009.

[7] A. Lucchi, Y. Li, K. Smith, P. Fua, Structured image segmentation using kernelized features, in: Proc. European Conference

on Computer Vision, 2012.

[8] X. Ren, J. Malik, Learning a classification model for segmentation, in: Proc. Ninth IEEE International Conference on

Computer Vision, 2003.

[9] A. Rosenfeld, D. Weinshall, Extracting foreground masks towards object recognition, in: Proc. International Conference on

Computer Vision, Barcelona, 2011.

[10] J. Lim, B. Han, Generalized background subtraction using superpixels with label integrated motion estimation, in: Proc.

European Conference on Computer Vision, 2014.

[11] L. Liu, J. Xing, H. Ai, S. Lao, Semantic superpixel based vehicle tracking, in: Proc. 21st International Conference on

Pattern Recognition (ICPR), 2012.

[12] A. Milan, L. Leal-Taixé, K. Schindler, I. Reid, Joint tracking and segmentation of multiple targets, in: Proc. IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

[13] S. Wang, H. Lu, F. Yang, M.-H. Yang, Superpixel tracking, in: Proc. International Conference on Computer Vision, 2011.

[14] W. Wang, R. Nevatia, Robust object tracking using constellation model with superpixel, in: Proc. Asian Conference on

Computer Vision, 2013.

[15] J. Xiao, R. Stolkin, A. Leonardis, Single target tracking using adaptive clustered decision trees and dynamic multilevel

appearance models, in: Proc. IEEE Conference on Computer Vision and Pattern Recognition, 2015.

[16] Z. Hong, C. Wang, X. Mei, D. Prokhorov, D. Tao, Tracking using multilevel quantizations, in: Proc. European Conference

on Computer Vision, 2014.

[17] J Shi, J. Malik, Normalized cuts and image segmentation, in: IEEE Transactions on Pattern Analysis and Machine

Intelligence 22(8)(2000) 888-905.

Journal of Computers Vol. 30 No. 5, 2019

267

[18] P.F. Felzenszwalb, D.P. Huttenlocher, Efficient Graph-Based Image Segmentation, Int. J. Comput. Vision 59(2)(2004) 167-

181.

[19] A.P. Moore, S.J.D. Prince, J. Warrell, U. Mohammed, G. Jones, Superpixel lattices, in: Proc. IEEE Conference on

Computer Vision and Pattern Recognition, Anchorage, 2008.

[20] O. Veksler, Y. Boykov, P. Mehrani, Superpixels and supervoxels in an energy optimization framework, in: Proc. 11th

European conference on Computer vision: Part V (ECCV), 2010.

[21] J. Shen, Y. Du, W. Wang, X. Li, Lazy random walks for Superpixel segmentation, IEEE Transactions on Image Processing

23(4)(2014) 1451-1462.

[22] L. Vincent, P. Soille, Watersheds in digital spaces: an efficient algorithm based on immersion simulations, IEEE

Transactions on Pattern Analysis & Machine Intelligence 13(6)(1991) 583-598.

[23] G. Zeng, P. Wang, J. Wang, R. Gan, H. Zha, Structure-sensitive superpixels via geodesic distance, in: Proc. International

Conference on Computer Vision, 2011.

[24] M. Van den Bergh, X. Boix, G. Roig, B. de Capitani, L. Van Gool, SEEDS: Superpixels extracted via energy-driven

sampling, in: Proc. European Conference on Computer Vision, 2012.

[25] X. Pan, Y. Zhou, C. Zhang, Q. Liu, Flooding based superpixels generation with color, compactness and smoothness

constraints, in: Proc. IEEE International Conference on Image Processing (ICIP), 2014.

[26] Y. Zhang, X. Li, X. Gao, C. Zhang, A simple algorithm of superpixel segmentation with boundary constraint, IEEE

Transactions on Circuits and Systems for Video Technology 27(7)(2017) 1502-1514.

[27] D. Stutz, A. Hermans, B. Leibe, Superpixel segmentation using depth information, [dissertation] Aachen, Germany: RWTH

Aachen University, 2014.

[28] D.R. Martin, C.C. Fowlkes, J. Malik, Learning to detect natural image boundaries using local brightness, color, and texture

cues, IEEE Transactions on Pattern Analysis & Machine Intelligence 26(5)(2004) 530-549.

[29] P. Neubert, P. Protzel, Superpixel benchmark and comparison, in: Proc. Forum Bildverarbeitung, 2012.

[30] X. Ren, J. Malik, Learning a classification model for segmentation, in: Proc. Ninth IEEE International Conference on

Computer Vision, 2003.

[31] L. Grady, Random walks for image segmentation, IEEE Transactions on Pattern Analysis & Machine Intelligence

28(11)(2006) 1768-1783.

[32] V. Gopalakrishnan, Y. Hu, D. Rajan, Random walks on graphs for salient object detection in images, IEEE Transactions on

Image Processing 19(12)(2010) 3232-3242.

[33] J. Ham, D.D. Lee, S. Mika, B. Schölkopf, A kernel view of the dimensionality reduction of manifolds, in: Proc. Twenty-

First International Conference On Machine Learning, 2004.

[34] D. Zhou, B. Schölkopf, Learning from labeled and unlabeled data using random walks, in: Proc. Joint Pattern Recognition

Symposium, 2004.

[35] T. Ojala, M. Pietikainen, T. Maenpaa, Multiresolution gray-scale and rotation invariant texture classification with local

binary patterns, IEEE Transactions on Pattern Analysis & Machine Intelligence 24(7)(2002) 971-987.

[36] P. Arbelaez, M. Maire, C. Fowlkes, J. Malik, Contour detection and hierarchical image segmentation, IEEE Transactions on

Pattern Analysis and Machine Intelligence 33(5)(2010) 898-916.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

