
Journal of Computers Vol. 30 No. 5, 2019, pp. 252-267 

doi:10.3966/199115992019103005020 

252 

Superpixel Segmentation Using Improved Lazy Random  

Walk Framework Based on Texture Complexities 

Yi-Xuan Zhan, Chin-Han Shen, Hsu-Feng Hsiao* 

Department of Computer Science, National Chiao Tung University, Hsinchu 300, Taiwan, ROC 

rlixaoi@gmail.com, fionaschs@nctu.edu.tw, hillhsiao@cs.nctu.edu.tw 

Received 15 March 2019; Revised 30 June 2019; Accepted 4 September 2019 

Abstract. Superpixel segmentation has been a very important pre-processing step of many 

computer vision applications. By grouping the pixels with similar data properties, the 

computation complexity can be reduced since the scale of data processing has been transformed 

from pixel level to region level. In this paper, an improved superpixel segmentation approach 

using a lazy random walk algorithm is proposed. Two major improvements are applied to obtain 

the better visualization results: center relocation and splitting strategy modification. The 

improved performance is confirmed with the subjective and objective performance comparison. 

In particular, the sizes of the produced superpixels depend on texture complexities of different 

regions which can be more appreciated 

Keywords:  image segmentation, lazy random walk, superpixel 

1 Introduction 

An image or a video frame is composed of many pixels. With the development of technologies, the 

required resolution of multimedia applications escalates, and the amount of data requiring image 

processing has also increased significantly. In order to efficiently process large amounts of data, an 

efficient approach is to integrate homogenous units into a smaller number of new units. A technique 

called superpixel segmentation has been developed for the classification of image pixels based on 

homogeneity.  

A superpixel is a collection of a few pixels of the same or similar characteristics, such as color and 

intensity. It remains a challenge to have an excellent superpixel segmentation method. However, there are 

some principles that are generally agreed on when designing a superpixel segmentation algorithm: [1-3] 

‧ A superpixel segmentation method should assign each pixel just to a single superpixel; therefore, there 

are no overlapped superpixels. 

‧ Each superpixel should represent a connected set of pixels. 

‧ Superpixels should adhere well to object boundaries. 

‧ Superpixels should be generated as efficiently as possible. 

Superpixel segmentation has been wildly used in the applications of computer vision and image 

processing. The major advantage of superpixel representation is to increase computational efficiency. 

Using superpixels can significantly reduce the number of units of an image, compared to using pixels. 

Currently, the mainstream of researches using deep learning networks focuses on visual contents. The 

huge amount of required processing has been one of the bottlenecks in such areas. One of the temporary 

solutions is to limit the spatial resolution of an input image. Another favorable approach is to digest an 

input image into an array of superpixels to reduce the dimension of an input data. 

Due to the effectiveness in representation based on mid-level cues [4], computer vision tasks like 

object segmentation and recognition [5-9], background subtraction [10], and multi-target tracking [11-12] 

have adopted the superpixel segmentation. Visual tracking techniques often employ superpixels to handle 

non-rigid and deformable targets [13-16]. Wang et al. [13] use superpixels for constructing the 
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discriminative appearance model to distinguish foreground objects from cluttered backgrounds. Particle 

filtering is used to find the optimal target state. A dynamic Bayesian network tracking [14] adopts a 

superpixel-based constellation model to deal with non-rigid deformations. Xiao et al. [15] and Hong et al. 

[16] have developed the tracking techniques with more information levels to overcome the limitation of 

flat representations. Three levels of features—pixel, superpixel, and bounding box have been used to 

avoid the situation where the semantic relations between superpixels are not well-considered for 

segmentation. 

In this paper, an improved superpixel segmentation method, based on lazy random walk (LRW) 

algorithm, is proposed. With the better performance of the proposed method, it can be a great benefit to 

other researches of visual contents where computation efficiency matters. Also, the sizes of the produced 

superpixels depend on texture complexities of different regions which can be more appreciated for the 

applications where superpixels are used as delegates of an image. 

The rest of the paper is organized as follows. We will review several superpixel segmentation 

algorithms in Section 2. The details of our proposed method are in Section 3. The evaluation of the 

proposed method and the comparison will be described in Section 4, followed by the conclusion in 

Section 5. 

2 Related Works 

There are many superpixel segmentation algorithms in the literature. First, algorithms for generating 

superpixels can be categorized as graph-based and gradient-based approaches. With the emersion of 

Simple linear iterative clustering (SLIC), a new category called k-means based algorithms is getting 

popular in the research of superpixel segmentation. Different methods have their advantages and 

drawbacks, depending on the requirement of an application. For example, the graph-based methods are 

appealing for generating superpixels adherent to object boundaries. However, if the superpixels are used 

to build a graph, a method that produces a more regular lattice will be a better choice [1]. In the following, 

some popular works of superpixel segmentation will be reviewed. The methodologies to evaluate a 

superpixel segmentation algorithm will be depicted. 

2.1 Graph-based Algorithms  

As the title implies, graph-based approaches of superpixel segmentation take an input image as a graph 

and each pixel is taken as a node in the graph. Connections between nodes pairs are called edges, which 

contain the weights to measure similarity between two nodes. The objective of a typical graph-based 

algorithm is to minimize the cost function defined over the graph to create the superpixels. 

A classical graph partitioning algorithm called Normalized Cuts (NCut) [17] has been commonly used 

in image segmentation. The authors suggested that image partitioning should be done from the big 

picture downward and proposed the approach which focuses on extracting the global impressions of an 

image to the perceptual grouping problems. In order to avoid the unequal partition result of an image, the 

partitioning criterion is used to measure the cut cost as a fraction of the total edge connections to all the 

nodes in the graph. Visually, the segmentation result is regular and pleasant but the boundary adherence 

of the generated superpixels are not ideal. Moreover, since the measurement of cut cost involves the 

nodes in the whole graph, the computational cost becomes quite expensive when the number of 

superpixels increases. An alternative graph-based approach was proposed by Felzenszwalb and 

Huttenlocher [18]. First, the weights of this approach are measured by the region dissimilarity. Then the 

graph is performed with agglomerative hierarchical clustering to classify the nodes in the graph. The 

segmentation results are presented in several minimum spanning trees (MST). 

Moore et al. [19] proposed a superpixel lattices method where an image is segmented into several 

regions at the initialization step. The input used in this approach is a boundary map, which is a 2D array 

measuring the probability of existence of a semantically meaningful boundary between two pixels. To 

process the input more efficiently, the boundary map is normalized to boundary cost map. The superpixel 

segmentation is to use the boundary cost map to find optimal paths along with the boundaries. To make 

sure the grid segmentation is regular, two rules are employed to find the optimal paths: (1) the horizontal 

and vertical paths only have single cross point, (2) the optimal paths with same direction must not cross 

each other.  
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Veksler et al. [20] take the superpixel segmentation as an energy minimization framework and 

optimize it with graph cut. In this approach, the basic energy function is defined as a trade-off. It depends 

on whether the user needs a well boundary adherence result or a faster calculation. Shen et al. [21] 

proposed a graph-based method which uses lazy random walk (LRW) as the mechanism of segmentation. 

Two main steps are included in the approach: (1) the superpixel seeds initialization and (2) the energy 

optimization to segment the superpixels. The method is able to segment the complicated texture data 

result and preserve the weak boundary. 

2.2 Gradient-based Algorithms  

From a rough clustering of pixels, a typical gradient-based method iteratively refines the clusters until a 

convergence criterion is met to form superpixels [2]. A geometric-flow-based algorithm was proposed by 

Levinshtein et al. [3] for computing a dense over-segmentation of an image. The goal of the method is to 

distribute the superpixels evenly in the whole image. The superpixels are constrained to have the uniform 

size, compactness, and boundary adherence. The watershed approach proposed by Vincent and Soille [22] 

fulfills the superpixel segmentation using gradient ascent approach from the local minima in the image. 

The calculation speed of this method is relatively fast, but it does not provide the external control of 

desired superpixel number and compactness. The completed superpixels are often with the irregular 

shapes and sizes, and their lack of well boundary adherence can be a problem. 

2.3 K-means-based Algorithms 

K-means-based methods share the same conceptual process as the gradient-based algorithms. The major 

difference between two types of algorithms is that K-means-based methods replace the gradient-ascent 

calculation with K-means clustering method to generate the superpixels. 

Achanta et al. [1] presented a well-known algorithm called simple linear iterative clustering (SLIC), 

adopting the k-means clustering approach to generate superpixels. There are two major points: (1) the 

number of distance calculations in the optimization is dramatically reduced by limiting the search space 

to a region proportional to the superpixel size, (2) The measurement of the weighted distance combines 

color similarity and spatial proximity while simultaneously providing external control to adjust the size 

and compactness of the superpixels. Zeng et al. [23] proposed a structure sensitive over-segmentation 

technique which adopts geometric flows to compute the geodesic distances among the pixels. The 

generated superpixel size is verified with the variation of intensity or color. The superpixels with smaller 

size are generated in structure dense regions with high intensity or color variation. On the other hand, the 

superpixels with larger size are generated in structure-sparse regions. 

A superpixels extracted via energy-driven sampling (SEEDS) approach based on a simple hill-

climbing optimization was proposed by Bergh et al [24]. After the initialization of superpixel, the 

segmentation refinement is finished by iteratively modifying the boundaries. This algorithm defines an 

energy function based on enforcing color similarity between the boundaries and superpixel color 

histogram [26]. The method has the faster computational speed [26] but the generated shapes of 

superpixels are irregular. The flooding based method with color, compactness and smoothness constraints 

(FCCS) algorithm was proposed by Pan et al. [25]. Two main improvements were proposed in FCCS: a 

new distance metric is defined for estimating pixels and seeds’ similarity with color, compactness and 

smoothness constraints and a seeds update strategy based on Lloyd’s algorithm is adopted for optimizing 

seeds location and superpixels’ contour regions [25]. The method can generate better boundary adherence 

perceptually, compared with some previously mentioned works [1, 23]. 

2.4 Methodologies for Segmentation Results 

To evaluate the superpixel segmentation performance, some commonly used benchmarks metrics from 

the extended Berkeley segmentation benchmark were implemented by Stutz et al. [27]. In this subsection, 

we will review the related works and definitions of the evaluation metrics for superpixel segmentation. 
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2.4.1 Boundary Recall (BR) 

The Boundary Recall (BR) introduced in [28] is part of the Precision-Recall framework to accurately 

detect boundaries in natural scenes. It was originally designed for evaluating a boundary detection 

algorithm. Higher BR value means that superpixels adhere well to the object boundaries in an image. For 

the principle that the superpixel segmentation result shall match the objects boundary well, it is one of the 

important objective indexes to measure the accuracy of segmentation. 

Let 
j

sp  be a superpixel segmentation and 
i

g  be a ground truth segmentation, the BR is defined as 

below: 

 
| ( , ) |

( , )
( , ) ( , )

j i

j i

j i j i

TP sp g
BR sp g

TP sp g FN sp g
=

+

 (1) 

where ( , )TP sp g  means true positives for the boundary pixels in g  when there is a pixel in range r  of 

the boundaries of .sp  ( , )FN sp g  means false negatives for the boundary pixels in g  when there is no 

pixel in range γ  of the boundaries of sp . 

2.4.2 Undersegmentation Error (UE) 

The scenario of an undersegmentation error is shown in Fig. 1 where several superpixels are covered by a 

region in the ground truth. There are various implementations of undersegmentation error metrics. To 

avoid a serious penalty for large superpixels that have only a small overlap with the ground truth segment, 

the undersegmentation error (UE) proposed by Neubert and Protzel [29] in the extended Berkeley 

segmentation benchmark is defined as follows. 

 

Fig. 1. Illustration of undersegmentation error 

Three superpixels 
j

sp  (A, B, C) are covered with the groundtruth 
i

g  (center covered area) 

 
1

( , ) min{| |, | |}
i j ig G Sp g j i j iUE Sp g Sp g Sp g

N
φ∈ ∩ ≠

= Σ Σ ∩ −  (2) 

where N  denotes the total number of pixels on the image, | |
j i

sp g∩  denotes the number of the pixels 

which both belong to 
j

sp  and
i

g , and | |
j i

sp g−  denotes the number of the pixels which belong to 
j

sp  

but not 
i

g . 
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2.4.3 Achievable Segmentation Accuracy (ASA) 

The Achievable Segmentation Accuracy (ASA) used by the extended Berkeley Segmentation Benchmark 

is defined by Liu et al. [2]. It measures the highest accuracy achievable for object segmentation based on 

superpixel units. Each superpixel is labeled with the ground truth segment which has the largest overlap. 

Mathematically, the ASA is defined as the performance upper-bound of the segmentation results with the 

equation written below: 

 
1

( , ) max {| |}
j iSp Sp g j iASA Sp g Sp g

N
∈

= Σ ∩  (3) 

3 The Proposed Superpixel Segmentation 

As mentioned in the previous section, lazy random walk (LRW) algorithm can be quite helpful for the 

problem of superpixel segmentation [21]. Inspired by it, we improve the LRW for better superpixel 

segmentation. 

3.1 Foundation of Lazy Random Walk-based Superpixel Segmentation  

The flow of the original LRW approach is shown in Fig. 2. First, the seeds initialization is fulfilled by 

placing the central pixel averagely in the image plane. Then, each pixel is assigned to a unique initial 

seed to form the superpixel using LRW algorithm. In order to make the superpixels have better 

performance on edge preserving and compactness, an energy optimization algorithm is used to relocate 

the seed positions and split the large superpixels into two small new superpixels in each iteration. The 

process of the LRW for superpixel optimization will be terminated only when the number of the 

segmented superpixels or the maximum number of the iterations reaches its threshold. 

 

Fig. 2. The work flow of LRW for superpixel segmentation 

The LRW algorithm is one of graph-based algorithms mentioned in the Section 2.1. The input image 

( )
i

I p  is taken as an undirected graph ( , ).G V E=  The input image is presented as a weighted graph 

containing a set of nodes V  and edges .E V V⊆ ×  Each pixel 
i
p  on the image is identified by a unique 

node .

i
v V∈  The degree of each vertex is computed as 

i j ij
d w= Σ  for all the edges which connect to 

i
v .  

The weight 
ij

w  is defined by the similarity between two neighbor nodes 
i
v  and 

j
v , and usually the 
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pixel intensity is used in the form of Gaussian function. Many graph-based image segmentation methods 

[30-32] have adopted the Gaussian weight as the following: 

 

2

2

|| ||
exp( )

2

i j

ij

Y Y
W

σ

−

= −  (4) 

where 
i
Y  and 

j
Y  denote the intensity values of the two nodes 

i
v  and 

j
v . σ  is the user defined parameter. 

The LRW graph has the property that a lazy random walk remains at the same node by adding a self-

loop to each vertex aiming to solve the segmentation problem in weak boundary and complex texture 

regions [21]. The input graph could be turned into an adjacency matrix 
ij

w  defined as  

 

1 , ,

, ,

0,

ij ij i j

if i j

W w if v and v are neighbors

otherwise

α

α

⎧ − =
⎪

= ⋅⎨
⎪
⎩

 (5) 

where α  is a control parameter of self-loop in the range (0, 1). The adjacency matrix W is a sparse and 

symmetric matrix whose nonzero elements are positive. From equation (5), the adjacency matrix 
ij

W  is 

transformed to Laplacian matrix L D Wα= − , where D is a diagonal matrix and 
ii

D  is the degree of the 

i-th node 
i
v . In LRW algorithm, the commute time 

ij
CT  [33-34] denotes the expected quantities of steps 

that starts at node 
i
v  to reach node 

j
v  and then goes back to node 

i
v . From the definition above, both the 

Laplacian matrix L and its inverse matrix 1
L
−  are symmetric matrices and we can express it with 

1 1

ij ji
L L
− −

= . Therefore, the normalized Laplacian 1/ 2 1/ 2( )L I D WDα
− −

= −  is obtained and the normalized 

commute time CJ is defined as the following: 

 

1
1 , ,

1 ,

ij

ij

L if i j
CT

if i j

−⎧ − ≠⎪
= ⎨

=⎪⎩
 (6) 

where l is the identity matrix. Due to the property that the probability is inversely proportion to the 

commute time, the likelihood probabilities of superpixel label l can be defined as the following equation: 

 
1

1l ij ijProb CT L
−

= − =  (7) 

From the equation (7), a defined matrix 1/ 2 1/ 2
S D W

− −

=  is used to rewrite the likelihood probabilities 

of superpixel label l as: 

 
1( )

l l
Prob I S fα

−

= −  (8) 

where 
l

Prob  is a 1N ×  vector and the probabilities of the nodes are assigned the superpixel label l. Then 

l
f  is a 1N ×  column vector whose all the elements are zero except that the seed pixels are one. When 

( ) 1
l i
f p =  means 

i
p  is labeled with l, and if ( ) 0

l i
f p = , otherwise. 

3.1.1 LRW based Superpixel Initialization  

During the phase of LRW-based superpixel initialization in Fig. 2, the first step is to place the superpixel 

seeds distributed over the image as even as possible. However, if there is any seed located near a strong 

edge, it can be the false basis of subsequent segmentation process. Hence, the positions of the initial 

seeds are moved along the gradient direction of their intensity values after being placed evenly over the 

image. 

After the generation of seed position, the next step is using LRW algorithm to assign each pixel to a 

unique superpixel seed. The LRW algorithm will converge at a pixel 
i
p  with the likelihood probabilities 

( )
k
l i

Prob p  from the equation (8). As a result, the set of the pixels which belong to the l-th superpixel can 

be obtained from the commute time as the following equation: 
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 ( ) min ( , ) max ( )
k k k k

i l l i l l i
R p arg CT c p arg Prob p= =  (9) 

where 
k
l
c  denotes the central pixel of the l-th superpixel. Finally, the initial superpixels are obtained by 

{ | ( ) }
k
l i i k

Sp p R p l= =  where { 1, 2, , }i N= …  and { 1, 2, , }k M= … . And N is the number of the pixels in 

an image and M is the number of the initial superpixels. 

3.1.2 Superpixel Optimization 

In order to make the superpixels with better performance both on edge preserving and compactness, the 

proposed energy optimization function composed of data term and smooth term is expressed as: 

 �
2 2( ( ) ( )) ( , )n

pl l l lE Area Sp Area Sp W CT c p= Σ − + Σ  (10) 

The data term locates at the front part of equation (10) is used to make the texture information of a 

superpixel more homogeneous. ( )
l

Area Sp  denotes the area of superpixel 
l

Sp  and ( )Area Sp  denotes the 

average area of all superpixels. The smooth term in the later part of equation (10) is used to make the 

superpixels adhere well to object/region boundaries. � pW  is defined as 
�

( , ) /
l

CT c p
pW e

β−

=  with a 

normalization factor β , and it is a penalty function to measure the inconsistency under the specific 

superpixel label. 

Since the equation (10) is a nonconvex function, the energy optimization function can be solved 

iteratively. First, the smooth term in equation (10) is minimized by computing the first derivative on the 

variable n

l
c  as the following. 

 

�

�
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1
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n
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E
W CT c p CT c p
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−

−

∂
= Σ ∇

∂

−
≈ =

−
∑

 (11) 

where n is the number of iterations and 0

l
c  is the initial central position of superpixel 

l
Sp . The new 

central position of superpixel 
l

Sp  can be relocated according to the following equation: 

 

�

�

1

1

1

1
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|| ||
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|| ||

n

l
pl n

n l
l n

l
pl n

l

CT c p
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p c
c

CT c p
W

p c

−

−

−

−

Σ
−

=

Σ
−

 (12) 

Second, according to equation (10), when ( )
l

Area Sp  is equal to ( )Area Sp , the data item will have the 

minimum value. The value of ( )
l

Area Sp  presents the texture complexity of the specific superpixel 
l

Sp ; 

therefore, the local binary pattern (LBP) [35] can be used to compute the texture simplicity of a 

superpixel. The LBP of a pixel p is define as below: 

 
1

,

0

( ) ( )2
Q

Q R q

q p

q

LBP p s L L
−

=

= −∑  (13) 

where 

 
1, 0

( )
1, 0

x

s x

x

≥⎧
= ⎨

<⎩
 (14) 

where 2q  is a binomial factor, and R is the radius of the circle that forms a circularly symmetric neighbor 

set for the pixel p. The parameters 8Q =  and 1R =  are set to compute the constrained LBP value. 
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According to the texture feature presented by the LBP value, the area of a superpixel 
l

Sp  and the average 

area of superpixels are defined as the following equations (15) and (16): 

 ( ) ( )
l

l p SpArea Sp LBP p
∈

= Σ  (15) 

 
( )

( ) l
p Sp

sp

LBP p
Area Sp

N

∈
Σ

=  (16) 

where 
sp

N  is the user defined number of superpixels to achieve. When the value of ( )
l

Area Sp  is larger, 

the texture information of 
l

Sp  is more complicated. Hence, a threshold 
LBP

TH  is adopted for checking 

the LBP value if the superpixel is diverse enough to be divided into two new superpixels. The splitting 

condition is achieved when ( ) / ( )
l LBP

Area Sp Area Sp TH≥  to split the current superpixel into two parts. 

Next, the splitting method chooses the principal components analysis (PCA) to divide the superpixel. 

The superpixel 
l

Sp  is divided along the direction of the eigenvector S with the largest eigenvalue of the 

covariance matrix which consists of the commute time and the shape of superpixel 
l

Sp . The direction is 

determined by ( ) 0
l

p c S− ⋅ =  and the covariance matrix of superpixel 
i

Sp  is defined as the following 

equation: 

 
2

{ | , } 2

( , )
( )( )

|| ||l l

Tl
p p Sp p c l l

l

CT c p
p c p c

p c
∈ ∉

Σ − −
−

 (17) 

As a result, after splitting superpixel 
l

Sp  with the covariance matrix ( )
l

Cov Sp  into two small 

superpixels, the two new central positions of the small superpixels can be obtained as below: 
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 (18) 

3.2 The Proposed Modification of LRW for Superpixel Segmentation 

The proposed superpixel segmentation framework with our improvements is showed in Fig. 3. First, 

we generate the initial seeds by evenly placing the positions of superpixel seeds over the image. Then, 

according to the gradient of intensity values, we move the seeds to the locations which have the local 

minimum variety of gradient to avoid locating the seeds close to the object boundaries. Before using 

LRW to initialize the superpixels with the initial seeds, we use the equation (5) to compute the edge 

weight 
ij

w  between two neighbor pixels 
i
p  and 

j
p . Then we construct the sparse adjacency matrix 

ij
W  

in equation (6) and compute the commute time using the equation (7). After that, the LRW algorithm is 

used to assign each pixel to a unique superpixel labeled by the equation (8). It can approach the 

optimization of the superpixel segmentation in each iteration. Two main improvements for superpixel 

optimization are proposed: adjusting the position after superpixel relocation and the new proposed 

splitting condition in splitting strategy, which will be described in details as follows. 

3.2.1 The Quad-segments Relocation 

At the beginning of each iteration, each pixel is assigned to a unique superpixel label with the maximum 

likelihood probability using the LRW method. Then we relocate each superpixel center by the equation 
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(12). At this step, the original mechanism of center relocation sometimes wrongly assigns the central 

pixel for the superpixel. When the shape of this superpixel is concave, it may not locate the superpixel 

center inside the superpixel. This situation will be a bad foundation in the next iteration. Therefore, we 

adjust the location of superpixel center if it does not belong to this superpixel with the proposed quad-

segments relocation method. 

 

Fig. 3. The framework of the proposed LRW for superpixel segmentation 

First, the gravity center ( )g lC Sp  of the superpixel 
l

Sp  is computed using the following equation: 

 
1

( ) ( , )
i l

n

g l i i

p Sp

C Sp x y
N

∈

= ∑  (19) 

where N is the number of pixels belong to 
l

Sp , and ( , )
i i
x y  denote the x and y coordinates of pixel 

i
p . If 

the pixel which locates at ( )g lC Sp  belongs to 
i

Sp , then the center of 
i

Sp  is ( )g lC Sp ; otherwise, we use 

the proposed quad-segments relocation method to obtain the appropriate superpixel center. 

In the first step, we obtain the rectangular bounding box of the superpixel region, and the position of 

middle center 
m

C  in the bounding box. The superpixel is divided into four segments by a vertical line 

and a horizontal line crossed at the position 
m

C , which is illustrated in Fig. 4. The points marked in 

different colors denote the pixels from four segments. Each segment is presented in 
k
s , and has its own 

gravity center gkC  computation according to the member pixels. 
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Fig. 4. Illustration of the bounding box and the four parts of the superpixel 
l

Sp  (marked in area with 

colored dots) 

 
1

( ) ( , )
k

k

i k

N

g k i i

p sk

C s x y
N

∈

= ∑  (20) 

k =1, …, 4 and 
k

N  is the number of pixels in segment 
k
s . 

In the second step, we pick the four calculated gkC  locate inside 
i

Sp  to compute the sum of geometric 

distances from all the pixels belong to 
l

Sp  to gkC  as below: 

 
2 2( ) ( ) ( )

k k k

i l

N

g i x i x

p Sp

dist C x c y c
∈

= − + −∑  (21) 

where ( , )xk ykc c  denotes the x and y coordinates of the gravity center gkC .  

In the final step, check if the gravity center ( , )gk xk ykc c c=  with the minimum ( )gkdist C  is inside the 

range of superpixel 
l

Sp  or not. If the selected gravity center gkC  is not inside the superpixel range, the 

quad-segments relocation is applied in each segment to find the center candidates in minor level until the 

suitable center of 
l

Sp  is found. Otherwise, the gravity center gkC  with the minimum ( )gkdist C  is 

selected to be the new reallocation center. This quad-segments relocation will be applied whenever 

dividing a large superpixel in the superpixel splitting strategy. 

3.2.2 The Splitting Strategy of a Superpixel 

After adjusting the relocation of the current superpixel 
l

Sp , another critical issue of image segmentation 

is the splitting strategy. Using LBP as the splitting strategy is not a good option. According to the 

equation (13) and (14), when ( )s x  is equal to 1, a large LBP value will be generated and wrongly 

estimate the member pixels that have the same intensity values in 
l

Sp . The superpixels with sufficient 

homogeneity may still be split into two smaller superpixels.  

Therefore, we propose the splitting condition to decide whether or not 
l

Sp  shall be split. There are two 

kinds of measurement involved in the proposed splitting condition: a simple metric to measure the 

texture complexity called the sum of local binary difference (SLBD) and the intensity variance of a 

superpixel. We design the splitting condition such that the sizes of the produced superpixels depend on 

texture complexities of different regions. 

The SLBD value of a pixel p is defined as below: 

 
1

0

( ) (| |)
Q

q p

q

SLBD p s L L
−

=

= −∑  (22) 
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and 

 
1, 0

( )
0, 0

x

s x

x

>⎧
= ⎨

=⎩
 (23) 

where 
p

L  and 
q

L  are the intensity values of pixel p and pixel q. 

We set 8Q =  to denote the 8-neighbors of the pixel p. We define the ratio of SLBD value of the 

superpixel 
l

Sp  as the following: 

 

1

( )
( )

( ) /

l
p Sp

SLBD l N

j sp

j

SLBD p
Ratio Sp

SLBD p N

∈

=

Σ
=

∑

 (24) 

where N is the total number of pixels and 
sp

N  is the user defined number of the expected superpixels. 

We then use a dynamic threshold 
SLBD

TH  to control the process of splitting. First, we set a 
SLBD

TH  to a 

strict value to make the superpixels with larger texture complexity have the higher priority to be split in 

the first few iterations. When there are no superpixels divided in two consecutive iterations, a more 

relaxed 
SLBD

TH  is used to split more superpixels. 

In addition to the SLBD value, we also compute the variance of a superpixel as another guidance. 

Because the SLBD value only considers the neighbor information of a pixel in local, we use another fast 

measurement, which is the variance of the superpixel, to measure the intensity diversity within the 

superpixel 
l

Sp . The variance of the superpixel 
l

Sp  is defined as the following equation: 

 
21

( ) ( ( ))
i l

i l

n

l p Sp

p Sp

Var Sp L Mean L
N

∈

= −∑  (25) 

where 
pi

L  denotes the intensity value of pixel 
i
p . ( )

l
Sp

Mean L  denotes the mean of the pixel intensity 

values from 
l

Sp , and N is the number of pixels belong to 
l

Sp . When ( )
l

Var Sp  is large, It means the 

intensity consistency is not unanimous enough among the member pixels in current superpixel 
l

Sp . 

Hence, the superpixel with large enough variance should be divided too. Two thresholds 
var

TH  and 

SLBD
TH  are used to control the splitting condition. When both ( )

SLBD l SLBD
Ratio Sp TH≥  and 

( )
l var

Var Sp TH≥  conditions are satisfied, the superpixel is split by the equation (17). In our empiricism, 

we set 
SLBD

TH  to 1.35 as initial value and set 
var

TH  to 0.005 for good superpixel segmentation results. 

The new split superpixels will be assigned to the new superpixel centers according the equation (18) 

4 Experimental Evaluation and Discussion 

In this section, we are going to examine the segmentation results of the proposed method. From the 

design of the proposed method, we expect the results to be more homogeneous in each segment and the 

size of a superpixel reflect the complexity of a region. The subjective and objective performance of the 

proposed method will be compared with: (a) the well-known simple linear iterative clustering (SLIC) [1] 

and (b) the original lazy random walks (Original-LRW) algorithm [21]. 

4.1 Results of Subjective Evaluation 

We have visualized the segmentation results with several image examples from the Berkeley database 

(BSD500) [36]. In the Fig. 5 and Fig. 6, our proposed methods have the best object boundary adherence 

performance. For the segmentation accuracy, our proposed method can generate more regular superpixels 

with highly homogeneous texture.  
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(a) Results by SLIC (b) Results by Original-LRW 

 

(c) Results by the proposed-LRW 

Fig. 5. Visual comparison (Boundary adherence) 

  

(a) Results by SLIC (b) Results by Original-LRW (c) Results by Proposed-LRW 

Fig. 6. Visual comparison (Segmentation accuracy) 

On the other hand, the shapes of superpixels using the SLIC method are much irregular, and the 

segmentation results using the original LRW method shows less object boundary adherence, compared 

with our proposed method. 

In addition, it is clear to see that the sizes of superpixels using our method can match the region 

complexity much better. In other words, the sizes of superpixels can be larger for regions with less details, 

and the sizes get smaller for regions with richer texture details. An ideal situation of segmentation is that 

the size of segments is adapted to the actual texture complexity of the image while fulfilling the 

homogeneousness and superpixel quantity requirement by an application. As a pre-processing step of 

other applications, the segmentation results are able to represent regional homogeneity with appropriate 

shape and size, which may improve the computation efficiency in the subsequent missions.  

4.2 Results of Objective Evaluation 

In order to evaluate the objective quality, we have applied three benchmark metrics mentioned in the 

section 2.4 to our proposed method and the compared methods: the boundary recall (BR), the 

undersegmentation error (UE) and the achievable segmentation accuracy (ASA). 

We firstly evaluate the boundary adherence objectively in the Fig. 8. SLIC has the best BR value since 

the boundary has adapted the texture complexity with more irregular segmentation contours. As for our 

proposed method, we have outperformed the original-LRW on the objective evaluation of boundary 

adherence.  
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(a) Results by SLIC 

 

(b) Results by Original-LRW 

 

(c) Results by Proposed-LRW 

Fig. 7. Visual comparison (texture adaption) 

 

Fig. 8. Benchmark evaluation by Boundary Recall (BR) 
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In Fig. 9, our method has the lowest UE values compared with SLIC and the original LRW method. It 

means that our method has the lowest possible segmentation error. The segmentation accuracy has been 

improved under our proposed strategies, especially for larger number of superpixels. In the Fig. 10, the 

ASA values of our method outperform the others when the needed quantity of superpixels grows. For 

both of evaluations, our results have better outcome when the segmentation quantity increases.  

 

Fig. 9. Benchmark evaluation by Undersegmentation Error (UE) 

 

Fig. 10. Benchmark evaluation by Achievable Segmentation Accuracy (ASA) 

Currently, our method is implemented on Matlab. To finish superpixel segmentation of an image to 

produce 500 superpixels, it takes around several hundred seconds on a personal computer with CPU 

i6700 and 16G RAM to reach convergence. We noticed that our method requires large memory space for 

part of the calculation and it takes time for context switching when it is out of memory. Therefore, 

efficient programming implementation and larger memory shall be quite helpful in the future. 

5 Conclusion 

In this paper, we propose an improved superpixel segmentation approach using a lazy random walk 

algorithm. Through the better center relocation and improved splitting strategy, the sizes of the produced 
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superpixels can adapt to texture complexities of different regions while preserving the boundary 

adherence and better segmentation precision. The improved results are verified both subjectively and 

objectively. For a long-term vision, the temporal concept of video data is also a considerable feature to 

extend the improvements into the supervoxel segmentation. 
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