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Abstract. As a manifold reduced dimensionality technique, neighborhood preserving 

discriminant embedding (NPDE) and its variant version have been proposed recently. But NPDE 

and its variant version have the so-called small-sample-size (SSS) problem. In this paper, the 

NPDE method is taken as the representative and an exponential neighborhood preserving 

discriminant embedding (ENPDE) is proposed to address the SSS problem. The main idea of 

ENPDE is that the matrix exponential is introduced to NPDE. ENPDE has two superiorities. 

First, ENPDE avoids the SSS problem. Second, ENPDE has a diffusion effect on the distance 

between samples belonging to different classes in the neighborhood, and then the discrimination 

property is emphasized. The experiments are conducted on three face databases: Yale, CMU-

PIE and AR. The proposed ENPDE method is compared with the global method, including PCA, 

LDA, EDA, and the unsupervised and supervised neighborhood preserving embedding methods, 

including NPE, ENPE, NPDE, and the two-dimension NPDE methods, including 2DDNPE, 

B2DNPDE. The experiment results show that the performance of ENPDE are better than those 

of the above methods. 

Keywords:  face recognition, manifold learning, matrix exponential, neighborhood preserving 

discriminant embedding, the small-sample-size problem  

1 Introduction 

Face recognition is an active research area in pattern recognition. In face recognition, high-dimensional 

data usually includes redundant information and is computationally heavy. So, dimensionality reduction 

is an effective approach to deal with this problem. The most well-known dimensionality reduction 

methods are principal component analysis (PCA) [1] and linear discriminant analysis (LDA) [2]. 

However, PCA and LDA aim only to preserve the global structures of the image samples and cannot 

uncover the essential manifold structure of the image. 

In the past decade, manifold learning is an active research area in pattern recognition field. A number 
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of manifold learning algorithms have been developed, such as locally linear embedding (LLE) [3], 

Isomap [4], local tangent space alignment (LTSA) [5], Laplacian eigenmaps (LE) [6]. These manifold 

learning algorithms discover the intrinsic geometry structure of a data set and have been widely used in 

the past decade. Unfortunately, all of these algorithms suffer from the out-of-sample problem [7]. To 

address this problem, a linearization procedure is developed, which construct a linear map from the 

original data space to new low-dimensionality space. Representative ones are local preserving projection 

(LPP) [8] and neighborhood preserving embedding (NPE) [9]. LPP is a linearization version of LE and 

NPE is a linearization version of LLE. In some sense, NPE and LPP provide two different ways to 

linearly approximate the eigenfunctions of the Laplace Beltrami operator [9], which method of the two is 

better remains unsettled. 

Due to its simplicity and effectiveness, NPE has become a popular method in pattern recognition field. 

But NPE is a type of unsupervised technique in which the class-specific information of data is not used. 

As a technique encoding the discriminant information on feature extraction, neighborhood preserving 

discriminant embedding (NPDE) [10-11] is proposed. Some of other discriminant neighborhood 

preserving embedding versions have also been investigated, such as [12-13]. NPDE and its variant 

versions are all based on the graph embedding and the Fisher’s criterion, and then the class discriminant 

information is considered into NPE. The difference of all versions is that the objective function 

constructed is in different form. So NPDE and its variant versions are similar in essence. Compared with 

NPE, the class specific information during training phase for constructing projection directions is utilized, 

so NPDE has more discriminant power.  

In the recent years, lots of improved versions of supervised NPE have been investigated. One way of 

NPDE extension is that the feature extraction is based on two-dimension image matrices. For example, 

the two-dimensional discriminant neighborhood preserving embedding method (2DDNPE) [14] and the 

bilateral two-dimension neighborhood preserving discriminant embedding method (B2DNPDE) [15]. 

Due to the two-dimension methods are based on the two-dimension image matrices, rather than one-

dimension image vectors, these methods avoid the SSS problem. Based on this, the two methods are used 

to compare with the proposed ENPDE method in this paper. Another way of NPDE extension is to 

combining sparse representation with neighborhood preserving discriminant embedding, for example 

[16-17]. In addition, there are some research combining the tensor with neighborhood preserving 

embedding, for example, the tensor train neighborhood preserving embedding (TTNPE) [18], the 

discriminant analysis via jointly L2,1-norm sparse tensor preserving embedding [19], etc. 

In most cases, the dimension of the sample is much larger than the number of the samples, like LDA, 

the generalized eigenvalue problem of NPDE may be unsolvable. This is the so-called small-sample-size 

(SSS) problem. NPDE and its variant version have to suffer from the SSS problem. In general, PCA can 

be adopted to reduce the dimensionality of the original image, and then NPDE can be used to extract the 

image feature. However, the processing results in the null spaces of the neighborhood scatter matrices 

can be discarded. But the null spaces may contain some discriminant information. As a consequence, 

some of significant information, which is contained in the original data, may be lost in the low-

dimensional embedded data. 

As an effective method, exponential discriminant analysis (EDA) [20] is proposed to overcome the 

SSS problem of classical LDA. The main idea of EDA is that the matrix exponential is introduced to 

LDA. It replaces the between-class scatter matrix 
B

S  with the corresponding matrix exponential 

( )exp
B

S , and replaces the within-class scatter matrix 
W
S  with the corresponding matrix exponential 

( )exp
W
S , and so avoids the singularity of the matrix 

B
S  and

W
S .  

Since EDA was proposed, it is widely applied to solve the SSS problem, especially in the manifold 

learning field. Many of manifold learning algorithms, such as LPP [8], NPE [9], DLPP [21], LDE [22], 

SDE [23], have the SSS problem. The local preserving projection (LPP) is a linear projective map that 

arise by solving a variational problem that optimally preserves the neighborhood structure of the data set 

[8]. LPP is also a type of unsupervised technique. And then, based on the analysis of LDA, the 

discriminant locality preserving projection (DLPP) is proposed to improve the performance of LPP [21]. 

The local discriminant embedding (LDE) dissociates the sub-manifold of each class from one another, 

and specifically derives the embedding for nearest neighbor classification in a low-dimensional 

Euclidean space [22]. The semi-supervised discriminant embedding (SDE) is the semi-supervised 

extension of LDE [23]. Generally, this type of methods have to deal with high dimensional data, so the 
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SSS problem very often occurs. Then, the EDA method is introduced to address this problem. The 

exponential NPE (ENPE) [24], the exponential LPP (ELPP) [25], the exponential DLPP (EDLPP) [26], 

the exponential LDE (ELDE) [27] and the exponential SDE (ESDE) [28] are proposed. These methods 

are the exponential versions of the corresponding methods. They avoid the SSS problem and show better 

performance in face recognition. 

In this paper, for the SSS problem of NPDE and its variant versions, a general matrix exponential 

method is proposed to address the problem. Based on the similarity of NPDE and its variant version, the 

NPDE method is taken as the representative to discuss in this paper. For the other variant version, with 

the similar processing, the matrix exponential method expects to get the same benefits. For simplicity, we 

only discuss how to apply the matrix exponential method to NPDE.  

The main idea of ENPDE is that the matrix exponential is introduced to NPDE. The advantages of the 

proposed ENPDE method are two aspects. Firstly, ENPDE avoids the SSS problem of NPDE. Secondly, 

with the matrix exponential transformation, the neighborhood scatter matrices of NPDE are transformed 

to a new space, and then the NPDE criterion is applied in such a space. This transformation has the effect 

of distance diffusion, i.e., the distance between samples belonging to different classes in the 

neighborhood is enlarged. This is what we want in pattern classification. So, we can believe that ENPDE 

will show advantageous performance over NPDE and some other methods. It is proved by the experiment 

results in section 5. To the best of our knowledge, this paper is the first work to discuss and address this 

problem. 

The rest of this paper is organized as follows. In section 2, the neighborhood preserving discriminant 

embedding method is reviewed. In section 3, exponential neighborhood preserving discriminant 

embedding (ENPDE) is presented. Section 4 provides the theoretical analysis of the proposed ENPDE 

method. Experimental results are shown in section 5. Finally, section 6 concludes this study. 

2 Review of NPDE 

Let 

2

=

w w w T

i ij j

i j

y w y YM YΦ = −∑ ∑  represents the input data as D-dimensional data point. Each data 

point belongs to one of c classes 

2

=

w w w T

i ij j

i j

y w y YM YΦ = −∑ ∑ . Let r (=N/c) denotes the number of 

training samples belonging to the lth class. The main idea of NPDE [10] is from Fisher’s criterion and the 

class-specific information of data is used. NPDE seeks an optimal projection A to embed the D-

dimensional data set X into a low d-dimensional data set 

2

=

w w w T

i ij j

i j

y w y YM YΦ = −∑ ∑  

2

= ,
w w w T

i ij j

i j

y w y YM YΦ = −∑ ∑  namely, 

2

=

w w w T

i ij j

i j

y w y YM YΦ = −∑ ∑  

2

= .
w w w T

i ij j

i j

y w y YM YΦ = −∑ ∑  

And the local neighborhood structure of the original data set X can be preserved. 

The algorithm procedure of NPDE is stated below: 

NPDE first construct an adjacency graph on the data set. There are two ways to construct the 

adjacency graph. One way is k nearest neighbors (KNN), and another way is 
2

=

w w w T

i ij j

i j

y w y YM YΦ = −∑ ∑ -neighborhood. Usually, KNN method is adopted to construct an 

adjacency graph. 

Formulation of within-neighborhood scatter. 

Let 

2

=

w w w T

i ij j

i j

y w y YM YΦ = −∑ ∑  be a within-class reconstruction weight that is used to reconstruct 

xi from its neighbors 

2

=

w w w T

i ij j

i j

y w y YM YΦ = −∑ ∑ . 

2

=

w w w T

i ij j

i j

y w y YM YΦ = −∑ ∑  if both the jth 
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local neighbor and the ith sample is from the same class; and 

2

=

w w

i ij j

i j

y w yΦ = −∑ ∑  w T
YM Y  

otherwise. And let the within-class reconstruct matrix 

2

=

w w w T

i ij j

i j

y w y YM YΦ = −∑ ∑ . The reconstruct 

matrix 

2

=

w w w T

i ij j

i j

y w y YM YΦ = −∑ ∑ can be solved by minimizing the following objective function: 

 

2

Φ =
w w w T

i ij j

i j

y w y YM Y= −∑ ∑   

2

=

w w w T

i ij j

i j

y w y YM YΦ = −∑ ∑ , (1) 

with constraint 

2

=

w w w T

i ij j

i j

y w y YM YΦ = −∑ ∑ .  

The cost function is defined as follows:  

 ( ) ( )
2

Φ = =
T

w w w T w w T

i ij j

i j

y w y YM Y Y I W I W Y= − − −∑ ∑ , 

where ( ) ( )
T

b T b b T
A X I W I W X AΦ = − −  with ( ) ( )

T
b T b b T

A X I W I W X AΦ = − −  is an identity matrix. 

Since T
Y A X= , the above cost function may be reformulated as: 

 ( ) ( )Φ =
T

w T w T T w w T
A XM X A A X I W I W X A= − − , (2) 

Formulation of between-neighborhood scatter. 

The between-neighborhood scatter is may be presented similar to within-neighborhood scatter. Let 

( ) ( )
T

b T b b T
A X I W I W X AΦ = − −  be a between-class reconstruction weight that is used to reconstruct 

xi from its neighbors 

2

=

w w w T

i ij j

i j

y w y YM YΦ = −∑ ∑ and the between-class reconstruct matrix 

( ) ( )
T

b T b b T
A X I W I W X AΦ = − − . The reconstruction errors are measured by minimizing the following 

objective function: 

 ( )
2

1 1

Φ

k
b b

i ij j

i j

W x w x

= =

= −∑ ∑   (3) 

with constraint ( ) ( )
T

b T b b T
A X I W I W X AΦ = − − .  

The cost function is defined as follows: 

 ( ) ( )
2

Φ =
T

b b b T b b T

i ij j

i j

y w y YM Y Y I W I W Y= − = − −∑ ∑ , 

where :
n n n n× ×

Θ →� �  with I an identity matrix. Since T
Y A X= , the cost function may be reformulated 

as: 

 ( ) ( )Φ
T

b T b T T b b T
A XM X A A X I W I W X A= = − − , (4) 

The optimal mapping transformation. 

The objective function of NPDE is to minimize Φw  and maximize Φb  at the same time, i.e., 
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Φ

argmin argmin
Φ

w T w

opt b T b
A A

A Ψ A

A

A Ψ A

= = ,  (5) 

where :
n n n n× ×

Θ →� �  and :
n n n n× ×

Θ →� � . 

As it is known, orthogonality is very important to discriminant analysis, because physically 

meaningless features through orthogonal transformation can be linked back to the same number of 

variables of the measurement space. The orthogonal NPDE has been investigated in [29-30]. Due to the 

importance of the orthogonality with respect to the discriminant analysis, some basic properties and 

crucial problems of the orthogonal discriminant analysis (ODA) methods have been explored and solved 

in [31]. Hence, the NPDE criterion may be defined by enforcing the projection matrix A in equation (5) 

to be orthogonal:  

 :
n n n n× ×

Θ →� � .  (6) 

According to the Rayleigh quotient and Lagrange multipliers method, the optimal mapping 

transformation vector may be obtained by solving the following generalized eigenvalue problem: 

 :
n n n n× ×

Θ →� � .  (7) 

Let the column vectors :
n n n n× ×

Θ →� �  be the solutions of equation (7), ordered according to their 

eigenvalues, :
n n n n× ×

Θ →� � , and then the matrix :
n n n n× ×

Θ →� �  is the transformation matrix. 

The detail about NPDE can be found in [10]. 

3 Exponential Neighborhood Preserving Discriminant Embedding (ENPDE) 

3.1 Matrix Exponential 

In this section, we firstly introduce the following definition and some properties of matrix exponential 

[32]. The matrix exponential is widely used in applications such as control theory, and Markov chain 

analysis. Given an n×n square matrix A, its exponential is defined as:  

 :
n n n n× ×

Θ →� � , (8) 

where I is the identity matrix. The properties of matrix exponential are listed as follows: 

(1) :
n n n n× ×

Θ →� �  is a finite matrix. 

(2) :
n n n n× ×

Θ →� �  is a full-rank matrix. 

(3) If square matrix A commutes with the matrix B, i.e., AB = BA, then 

 :
n n n n× ×

Θ →� � .  (9) 

(4) For an arbitrary square matrix A, there exists the inverse of :
n n n n× ×

Θ →� � . This is given by 

 :
n n n n× ×

Θ →� � .  (10) 

(5) If T is a nonsingular matrix, then  

 :
n n n n× ×

Θ →� � . (11) 

(6) If :
n n n n× ×

Θ →� �  are eigenvectors of A that correspond to the eigenvalues :
n n n n× ×

Θ →� � , then 

:
n n n n× ×

Θ →� � are  

also eigenvectors of :
n n n n× ×

Θ →� �  that correspond to the eigenvalues :
n n n n× ×

Θ →� � . 

3.2 The SSS Problem of NPDE 

About the ranks of the matrices :
n n n n× ×

Θ →� �  and :
n n n n× ×

Θ →� � presented in section 2, the 

following conclusion holds: 
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Theorem 1. Let N be the number of samples, and D is dimension of the samples, if :
n n n n× ×

Θ →� � , then 

the ranks of the matrices :
n n n n× ×

Θ →� �  and :
n n n n× ×

Θ →� �  are at most N–1, i.e. :
n n n n× ×

Θ →� �  and 

:
n n n n× ×

Θ →� � . 

Proof. According to the section 2, we have  

 :
n n n n× ×

Θ →� � . 

Note that is :
n n n n× ×

Θ →� �  an N-order matrix, and the row elements of the matrix :
n n n n× ×

Θ →� �  are 

with constraint :
n n n n× ×

Θ →� � , so it easy to know that the rank of the matrix :
n n n n× ×

Θ →� �  is at most 

N–1. It is known that the maximum possible rank of the product of two matrices is smaller than or equal 

to the smaller of the ranks of the two matrices. And so the rank of the matrix :
n n n n× ×

Θ →� �  is at most 

N–1, and then the rank of :
n n n n× ×

Θ →� �  is at most N–1, i.e., 

 :
n n n n× ×

Θ →� � . 

Similarly, it is easy to know that the rank of :
n n n n× ×

Θ →� �  is at most N–1, i.e., 

 :
n n n n× ×

Θ →� � . 

Note that :
n n n n× ×

Θ →� �  and :
n n n n× ×

Θ →� �  are D-dimension matrices. According to Theorem 1, both 

the matrices :
n n n n× ×

Θ →� �  and :
n n n n× ×

Θ →� �  can be singular. This stems from the fact that, in most 

cases, the number of samples is much smaller than the dimension of the samples, i.e., :
n n n n× ×

Θ →� � . 

This is known as the small-sample-size (SSS) problem and NPDE suffers from the difficulty. 

3.3 ENPDE 

According to the above Theorem 1, both the matrices :
n n n n× ×

Θ →� �  and :
n n n n× ×

Θ →� �  can be 

singular in most cases, it is from fact that there are some 0 eigenvalues in the matrices :
n n n n× ×

Θ →� �  

and :
n n n n× ×

Θ →� � . The exponential NPDE (ENPDE) is proposed to address the problem.  

According to the section 2, the objective function of NPDE is equation (5): 

 
Φ

argmin argmin
Φ

w T w

opt b T b
A A

A Ψ A

A

A Ψ A

= = . 

In ENPDE, we replaces the matrices :
n n n n× ×

Θ →� �  and :
n n n n× ×

Θ →� �  with the matrix exponential 

:
n n n n× ×

Θ →� �  and :
n n n n× ×

Θ →� � , i.e., 

 :
n n n n× ×

Θ →� � .  (12) 

Furthermore, if the projection matrix A is imposed to be orthogonal, the equation (12) may be 

formulated as: 

 :
n n n n× ×

Θ →� � . (13) 

According to the Rayleigh quotient and Lagrange multipliers method, the optimal mapping 

transformation vector may be obtained by solving the following generalized eigenvalue problem: 

 :
n n n n× ×

Θ →� � . (14) 

And then, we select d generalized eigenvectors :
n n n n× ×

Θ →� �  of the equation (14), associated with the 

largest d eigenvalues of the equation (14) and ordered according to eigenvalues, i.e., :
n n n n× ×

Θ →� � . 

Let :
n n n n× ×

Θ →� � , namely, the matrix A is composed of the d largest generalized eigenvectors, and 

then A is the optimal transformation matrix. 
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4 Theoretical Analysis of ENPDE 

4.1 Solving the SSS Problem 

From the section 3.2, NPDE method suffers from the SSS problem. To overcome the complication of 

singular matrices, PCA can be adopted to reduce the dimensionality of the original image to r dimension. 

So that the resulting matrix w w T

r r r
Ψ X M X=  and b b T

r r r
Ψ X M X=  are nonsingular, and then the optimal 

mapping transformation vector may be obtained by solving the following generalized eigenvalue problem: 

 :
n n n n× ×

Θ →� � . (15) 

However, the null spaces of the matrices :
n n n n× ×

Θ →� �  and :
n n n n× ×

Θ →� � , in which some of the 

eigenvalues of :
n n n n× ×

Θ →� �  and :
n n n n× ×

Θ →� �  are equal to 0, are often be discarded. The fact is 

from that the data :
n n n n× ×

Θ →� �  instead of the original data X is used. But the null spaces may contain 

some discriminant information. Consequently, some of significant information, which is contained in the 

original data, may be lost in the low-dimensional mapped data y, due to the processing PCA step. 

Based on the section 3.3, ENPDE method sets the optical projection axes ai to the eigenvectors of the 

following generalized eigenvalue problem, i.e., equation (14): 

 :
n n n n× ×

Θ →� � . 

Obviously, the matrices :
n n n n× ×

Θ →� �  and :
n n n n× ×

Θ →� �  are full-rank matrices. Furthermore, all the 

information that is contained in :
n n n n× ×

Θ →� �  and :
n n n n× ×

Θ →� �  can be extracted by the ENPDE 

method. Even when the SSS problem occurs, the information contained in the null-space of 

:
n n n n× ×

Θ →� �  and :
n n n n× ×

Θ →� �  will not be discarded. And so, we can believe that the ENPDE 

method has more discriminant power than NPDE. 

4.2 Distance Diffusion Mapping 

In fact, for ENPDE, there exists a non-linear mapping function Θ:
n n n n× ×

→� �  such that the 

neighborhood preserving scatter matrices are mapped into a new space, i.e., 

 Θ:
n n n n× ×

→� � , (16) 

 ( ) ( )exp
b b b
→Θ =Ψ Ψ Ψ , (17) 

 ( ) ( )exp
w w w

→Θ =Ψ Ψ Ψ . (18) 

Recall that NPDE finds an optimal projection by simultaneously maximizing the between-class 

neighborhood cost function b
Φ  and minimizing the within-class neighborhood cost function w

Φ  in local 

neighborhoods. Note that b
Φ  means that between-class scatter in the neighborhood, and w

Φ  means that 

within-class scatter in the neighborhood. Using simple matrix algebra, the between-class neighborhood 

cost function b
Φ  becomes: 

 ( ) ( ) ( ) ( )
2 T

b b T b T T b T

i ij j i ij j i ij j

i j i j j

Φ w w w
⎛ ⎞ ⎛ ⎞

= − = − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ ∑ ∑y y A x A x A x A x  

             

T

b T b

i ij j i ij j

i j j

w w

⎛ ⎞ ⎛ ⎞
= − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ∑x x AA x x .  (19) 

From section 2, optimal transformation matrix A may be imposed the constraint condition that the A an 

orthogonal matrix, i.e., T
=AA I , then the equation (19) becomes:  

 ( ) ( )( ) ( )
T

T
b b b b b T b

i ij j i ij j

i j j

Φ w w tr tr
⎛ ⎞ ⎛ ⎞

= − − = − − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑x x x x X I W I W X Ψ ,  (20) 



Face Recognition Based on Exponential Neighborhood Preserving Discriminant Embedding 

8 

where ( )tr ⋅  is the trace of a matrix. 

Similarly, the within-class neighborhood cost function w

Φ  becomes: 

 ( ) ( )( ) ( )
2

T
w w w w T w

i ij j

i j

Φ w tr tr= − = − − =∑ ∑y y X I W I W X Ψ .  (21) 

Since the neighborhood preserving scatter matrices b
Ψ  and w

Ψ  are symmetric and positive semi-

definite, they can be written as b T

b b b
=Ψ φ Λ φ  and w T

w w w
=Ψ φ Λ φ . The matrices 

b
φ  and 

w
φ  are two 

orthogonal matrices, which contain the eigenvectors of the matrices b
Ψ  and w

Ψ  respectively. The 

matrices:  

 ( )1 2
, , ,

b b b bD
diag λ λ λ=Λ � ,  

 ( )1 2
, , ,

w w w wD
diag λ λ λ=Λ � ,   (22) 

are two diagonal matrices, where ( )1,2, ,
bi

i Dλ = �  and ( )1,2, ,
wi

i Dλ = �  are the eigenvalues of the 

matrices b
Ψ  and w

Ψ  respectively. And then, the between-class neighborhood cost function b
Φ  and the 

within-class neighborhood cost function w

Φ  become: 

 ( )
2

1 2

b b b

i ij j b b bD

i j

Φ w tr λ λ λ= − = = + + +∑ ∑ �y y Ψ , (23) 

and  

 ( )
2

1 2

w w w

i ij j w w wD

i j

Φ w tr λ λ λ= − = = + + +∑ ∑y y Ψ � .  (24) 

Note that b
Ψ  and w

Ψ  are semi-definite matrices, all of the eigenvalues are positive or equal to zero. 

By using the mappings, i.e., equation (17) and equation (18): 

 ( ) ( )exp
b b b
→Θ =Ψ Ψ Ψ , 

and 

 ( ) ( )exp
w w w

→Θ =Ψ Ψ Ψ , 

there will be an implicit mapping of samples, in the same input space, such that the cost function b
Φ  and 

w

Φ  are replaced by b

e
Φ  and w

e
Φ , 

 ( )( ) 1 2exp b b bDb b

e
Φ tr e e e

λ λ λ
= = + + +Ψ � , (25) 

 ( )( ) 1 2exp w w wDw w

e
Φ tr e e e

λ λ λ
= = + + +Ψ � . (26) 

In general, the distance between samples in different classes is bigger than the related distance 

between samples in the same class in the neighborhood, we have b w
Φ Φ> . So, for most of the eigenvalues 

in equation (23) and equation (24), we can have the inequality 
bi wi

λ λ> . And then we have bi wi
e e
λ λ

> . So 

we have 

 
bi

wi

bi

wi

e

e

λ

λ

λ

λ
> . (27) 

As shown, the non-linear mapping function Θ  has the effect of distance diffusion. And the diffusion 

scale to the between-class distance is larger than that to the within-class distance in the neighborhood. 

Hence, the distances between different class samples in all the neighborhoods are enlarged. This is what 

we want for getting good discrimination.  
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4.3 Comparison with the Other Relevant Works 

In this section, we compare the proposed ENPDE method with the other relevant works: (1) the classical 

and global dimensionality reduction methods, PCA [1], LDA [2] and EDA [20]. (2) The unsupervised 

and supervised neighborhood preserving embedding methods, including NPE [9], the exponential NPE 

(ENPE) [24] and NPDE [10]. (3) The recently proposed two-dimension NPDE methods, 2DDNPE [14] 

and B2DNPDE [15]. The feature extraction of the two methods are based on the two-dimension image 

matrices, not image vectors, so they avoided the SSS problem of NPDE effectively. The proposed 

ENPDE method is order to resolve the SSS problem of the NPDE method. And so, the two two-

dimension methods are selected to compare with ENPDE. 

PCA and LDA are global method and can only preserve the global structures of the image samples. As 

manifold reduced dimensionality technique, LPP, NPE, ENPE, NPDE and ENPDE can uncover the 

essential manifold structure of the image. These manifold algorithms have the better classification power, 

which have been proved in [8-10, 24]. 

The NPE and the recently proposed ENPE are unsupervised technique. NPDE and ENPDE are 

supervised technique, in which the class-specific information of data is used, so the classification 

performance of the proposed ENPDE is better than that of NPE and ENPE. From the sections 4.1 and 4.2, 

on the one hand, the proposed ENPDE method addressed the SSS problems of NPDE methods 

effectively, more information can be extracted by ENPDE in contrast to NPDE. On the other hand, 

importantly, with the matrix exponential transformation, ENPDE has the effect of distance diffusion, i.e., 

the distance between samples belonging to different classes in the neighborhood is enlarged. It is helpful 

for improving the performance of classification. And so, we can believe that ENPDE will show 

advantageous performance over NPDE.  

The two-dimension NPDE methods, 2DDNPE and B2DNPDE, extract the image feature directly from 

image matrices and then avoid the SSS problem of NPDE. The ENPDE method not only avoids the SSS 

problem, but also has distance diffusion effect, and then the discrimination property is largely 

emphasized. And so, ENPDE will show better discrimination performance than 2DDNPE and B2DNPDE, 

which is proved in the experiment. 

5 Experiment Results and Discussion 

In this section, we evaluate the face recognition performance of the proposed ENPDE method. The 

experiments are made on the three face image databases: Yale [33], CMU-PIE [34] and AR [35]. 

5.1 Yale Face Database 

The Yale face database was taken from the Yale Center for Computational Vision and Control. It contains 

165 gray scale images of 15 individuals. The images demonstrate variation with the following 

expressions or configurations: (1) lighting (i.e., center light, left light, and right light); (2) with/without 

glasses; and (3) facial expressions (i.e., normal, happy, sad, sleepy, surprised, and winking). The original 

image size is 320×243 pixels. Some sample images of one subject from Yale face database are shown in 

the following Fig. 1. In this experiment, all images are aligned based on eye coordinates and are cropped 

and scaled to 24×24.  

 

Fig. 1. Some sample images of one individual from Yale face database 

5.2  CMU-PIE Face Database 

The CMU-PIE face database contains 68 subjects, with a total of 41368 face images. The face images 

were captured across 13 different poses, under 43 different illumination conditions, and 4 different 

expressions. In our experiment, the subset C09 is chosen for testing, and each subject has 24 frontal face 
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images that were taken under variations in pose, illumination, and expression. Some sample images of 

one subject from CMU–PIE face database are shown in the following Fig. 2. In our experiment, all face 

images are scaled to 28×28 pixels. 

 

Fig. 2. Some sample images of one individual from PIE face database 

5.3 AR Face Database 

AR face database was created by Aleix Martinez and Robert Benavente in the Computer Vision Center 

(CVC) at the U.A.B. It contains over 4000 color images corresponding to 126 people’s faces (70 men and 

56 women). Images feature frontal view faces with different facial expressions, illumination conditions, 

and occlusions. The pictures were taken at the CVC under strictly controlled conditions. Each person 

participated in two sessions, separated by two weeks (14 days) time. The same pictures were taken in 

both sessions. As an example, some sample images of one individual from AR face database are shown 

in Fig. 3. In our experiment, each image is manually cropped and resized to 40×50 pixels. 

 

Fig. 3. Some sample images of one individual from AR face database 

From the analysis in section 4.3, in our experiments, the proposed ENPDE method is compared with 

the PCA, LDA, EDA, NPE, the exponential NPE (ENPE), NPDE, and the two-dimension NPDE 

methods, including 2DDNPE [14], B2DNPDE [15].  

For the methods suffering from the SSS problem (LDA and NPDE), PCA technique is firstly used to 

reduce the dimension of the original image vector to avoid the singularity of the matrix. Where, we 

reserve 98% of the principal components in the PCA stage.  

A random subset with p images for each individual is taken to form the training set, and the remaining 

images are used as the testing set.  

For the PCA, LDA and EDA, when the training sample p and the subspace dimension are fixed, the 

average value of the 20 recognition accuracies, from the 20 times random splits, is regarded as the 

recognition ratio of the corresponding method in this case.  

For the neighborhood preserving discriminant embedding methods, NPE, ENPE, NPDE and ENPDE, 

for a split, when the training sample p and the subspace dimension is fixed, the neighborhood parameter k 

is searched from { }2,3, , 1−� N and with step size=10, where N is the training sample number. For 

convenience, denote 
1

1
10

N
m

−⎡ ⎤
= +⎢ ⎥⎣ ⎦

. There are m recognition accuracies corresponding to the m values of 

k for each split. For each random split, we report the top-1 recognition accuracy from the best parameter 

k configuration. And so, there are 20 maximal recognition accuracies, and then we get the average value 

of the 20 maximal recognition accuracies and regard it as the recognition rate of the corresponding 

method in this case. 

Let the face image size is r×s. For the two-dimension methods 2DDNPE and B2DNPDE, the size of 

feature matrices reduced subspace are r×d and d×d respectively, where d is the number of selected 

eigenvectors. Similarly, when the training sample p and the subspace dimension d is fixed, the 20 times 

random train sample splits are made, and then the average value of the 20 recognition accuracies is 

regarded as the recognition rate of the corresponding method in this case. 

In general, the recognition performance varies with the dimension of the face subspace. In the 

experiment, let the subspace dimension d is from a range of dimensions with the step size=10, i.e. from 

d=10, 20,… , dlast. For every subspace dimension, the above process is repeated to calculate the 

recognition rate. Note that, for some databases, NPDE do not have a large number of eigenvectors. It is 
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from the fact that they are suffered from the SSS problem. The maximum number of eigenvectors of 

these methods is depended on the retained fixed principal components of the PCA stage. This is related to 

the database and the training sample number. And LDA method may get the maximal C-1 subspace 

dimension, where C is the sample class numbers. But for the matrix exponential methods, including EDA 

and ENPDE, there is no intrinsic subspace dimensionality limitation. 

The best average performance obtained by the above methods as well as the corresponding dimension 

is summarized in Table 1 to Table 3. The experiment results in Yale face database are illustrated in Table 

1, where the training sample number is 5, 6, 7. The experiment results in CMU-PIE face database are 

illustrated in Table 2, where the training sample number is 8, 9, 10. The experiment results in AR face 

database are illustrated in Table 3, where the training sample number is 5, 6, 7. The number appearing in 

parenthesis is the optimal subspace dimension. 

Table 1. Best average recognition accuracy on Yale database over 20 random splits. The number 

appearing in parenthesis corresponds to the optimal subspace dimensionality 

Method 5 trains(%) 6 trains(%) 7 trains(%) 

PCA 79.00(50) 80.67(90) 86.17(50) 

LDA 80.56(14) 80.53(14) 86.40(14) 

EDA 80.89(50) 84.40(90) 86.50(50) 

NPE 82.59(30) 87.56(53) 85.00(40) 

ENPE 83.67(30) 88.78(60) 87.00(50) 

2DDNPE 84.00(24×5) 89.00(24×6) 90.25(24×8) 

B2DNPDE 86.28(13×13) 88.73(11×11) 87.00(9×9) 

NPDE 87.41(30) 88.89(50) 90.55(40) 

ENPDE 88.52(30) 90.67(80) 92.44(40) 

Table 2. Best average recognition accuracy on PIE face database over 20 random splits. The number 

appearing in parenthesis corresponds to the optimal subspace dimensionality 

Method 8 trains(%) 9 trains(%) 10 trains(%) 

PCA 79.18(80) 79.61(80) 84.43(90) 

LDA 95.75(10) 94.96(10) 88.04(50) 

EDA 82.37(80) 84.96(80) 89.39(50) 

NPE 78.80(70) 74.12(50) 79.65(60) 

ENPE 79.98(60) 76.32(70) 81.67(60) 

2DDNPE 86.21(28×6) 87.33(28×9) 89.35(28×12) 

B2DNPDE 88.23(12×12) 90.45(10×10) 91.37(11×11) 

NPDE 91.95(72) 93.35(50) 93.55(74) 

ENPDE 93.55(80) 96.27(70) 95.77(90) 

Table 3.Best average recognition accuracy on AR face database over 20 random splits. The number 

appearing in parenthesis corresponds to the optimal subspace dimensionality 

Method 5 trains(%) 6 trains(%) 7 trains(%) 

PCA 88.08(100) 88.14(90) 90.50(100) 

LDA 92.33(100) 94.70(70) 98.72(50) 

EDA 93.39(100) 96.65(40) 98.07(50) 

NPE 91.57(90) 92.08(70) 91.78(100) 

ENPE 92.68(90) 94.01(80) 93.38(90) 

2DDNPE 94.31(40×26) 95.53(40×29) 95.36(40×22) 

B2DNPDE 94.23(50×50) 96.65(45×45) 96.37(47×47) 

NPDE 97.78(90) 98.13(90) 98.07(100) 

ENPDE 98.80(30) 99.17(90) 99.17(90) 

 

The recognition rates (versus dimension) of the supervised methods, including LDA, EDA, NPDE and 

the proposed ENPDE are shown in Fig. 4 to Fig. 6. Where, 2DDNPE and B2DNPDE are also supervised 

methods, but the feature extraction of the two methods are based on the image matrices and then the 

subspaces are two-dimension, so the two methods are not compared with the other supervised methods in 

the form of curves. Fig. 4 is for Yale face database, where the training sample number is six. Fig. 5 is for 
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CMU-PIE face database, where the training sample number is ten. Fig. 6 is for AR face database, where 

the training sample number is five. These plots are the average over 20 random splits. 

 

Fig. 4. Recognition accuracy (in percent) of the supervised methods versus the projected dimensions  

on the Yale face database (six training images) 

 

Fig. 5. Recognition accuracy (in percent) of the supervised methods versus the projected dimensions  

on the CMU-PIE face database (ten training images) 

From the experiment results, we can observe that: (1) compared with NPDE and the other methods, 

ENPDE has better performance over all subspace dimensions in all the database; (2) in the different face 

database, ENPDE shows stable and robust in the all cases. This is what we want in face recognition; (3) 

the exponential methods, including the ENPDE, ENPE and EDA, have no dimensionality limit. However, 

LDA and NPDE have to suffer from the SSS problem, so PCA step has to be used to reduce the 

dimensionality of the original data and then the subspace dimension has to be limited, which are shown 

in Fig. 4 and Fig. 5. In AR face database, because the face image class is large, this problem is not shown 

in the range of 10-100 subspace dimensions. 
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Fig. 6. Recognition accuracy (in percent) of the supervised methods versus the projected dimensions 

on the AR face database (five training images) 

6 Conclusions 

In this paper, the small-size-sample (SSS) problem of NPDE and its variant version has been investigated. 

A general exponential neighborhood preserving discriminant embedding (ENPDE) is proposed to 

improve NPDE method. The main idea of ENPDE is that the matrix exponential is introduced to NPDE. 

ENPDE has two superiorities: (1) unlike the NPDE method, the ENPDE method avoids the SSS problem, 

and it can extract more discriminant information. (2) ENPDE has the effect of distance diffusion mapping. 

With the help of distance diffusion mapping, the margin between samples belonging to different classes 

in the neighborhood is enlarged, which is helpful in improving the performance of classification. The 

experiments are conducted on three face databases: Yale, CMU-PIE and AR. In the experiments, ENPDE 

is compared with the global methods, including PCA, LDA, EDA, and the unsupervised and supervised 

neighborhood preserving embedding methods, including NPE, ENPE, NPDE, and the two-dimension 

NPDE methods, including 2DDNPE, B2DNPDE method. The experiment results have validated the 

effectiveness of the propose ENPDE method and proved that ENPDE has advantageous performance 

over the above methods in face recognition. The limitation of the ENPDE method is that the solution of 

the generalized eigenvalue problem of matrix exponential needs larger computation cost because of the 

characteristics of matrix exponential. So, it is expected that the better algorithm about the calculation of 

matrix exponential is proposed. The ENPDE method may be further researched. For example, a general 

exponential base a ( )a e> , not the Euler number e, may be selected to build the matrix exponential. In 

fact, based on the property of the exponential function, the exponential base is larger, the distance 

diffusion mapping of the exponential NPDE method is stronger, and then the better classification 

performance may be gotten.  
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