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Abstract. Recently a huge trend in internet of things and an exponential increase in number of 

malware are helping malware producers to change malware variants through several automated 

techniques. Automated techniques may reuse some malware segments to produce variants, and 

these reuse segments can be helpful to distinguish malware families. Malware variants 

belonging to same class seem to be much analogous in structure and texture. For this reason, the 

similarity among malware variants can be used for malware variant family classification. This 

paper introduces a new malware feature extraction method for capturing local and global 

properties of images as preliminary features of malware families. The proposed method also 

reduces the feature dimensions through encoding based feature selection. The experiment is 

analyzed on three publically available datasets of windows system software. Preliminary 

experimental results indicate that proposed technique is effective to identify malware family. 

Keywords:  fisher encoding, GIST, hybrid feature extraction, image visualization, malware 

classification 

1 Introduction 

The Internet has become an important part of our daily life. Nearly 57% of the world's population is 

connected to the Internet [1]. We use it for banking, communicating, entertainment, shopping, and 

various other commercial and non-commercial activities. While another end, the proliferation of malware 

at an ever-increasing rate poses a serious threat in the post-internet world. Panda labs identified 227,000 

Malware samples every day in 2016. Malware detection and classification has become one of the most 

critical problems in the field of cyber security [2]. Malware is an abbreviation for Malicious Software. 

Malware is defined as “Any software that does something that causes harm to a user, a computer, or a 

network”. Malware is in the form of a script, an executable or any other software program. Generally, 

malware is classified as Worms, Viruses, Trojans, Ransom wares, Adware, Spywares, Bots, PUPs1, 

Rootkits, Shareware, and other malicious programs. 

Malware analysis is a process of both malware detection and classification. Detection is a way of 

labeling malware as benign or malign. Whereas the classification is a process of figuring out the exact 

family of given malware. Malware analysis can be carried out in two ways static and dynamic. Static 

analysis detects binary file without real-time execution of code. It works by capturing format signatures 

of malware binary. There are various malware signature identification techniques such as string 

signatures, byte sequence n-grams, API calls and structure of the disassembled program to perform static 

analysis. According to latest survey of Shabtai et al. [3], static analysis achieved high rate of 

identification with machine learning classifiers. Also, it is complex due to unpacking of binary and 

mostly suffers from code obfuscation. Whereas dynamic analysis evaluates binary through real-time 

execution of code. It executes malware binary in a sandbox environment or Virtual machine. It identifies 
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malware through system call monitoring, instruction trace and registry tracking activities. Compared to 

static analysis, dynamic analysis less suffers from code obfuscation. However, dynamic analysis is time 

intensive, and resource consuming as each malware binary execute for particular time duration [4]. 

Except for Static and dynamic analysis, there are several different ways to analyze malware binary such 

as Machine learning based methods, which operate on datasets of malware and benign files. They extract 

features from files in dataset to train different machine learning classifiers for malware detection. 

Since malware authors are producing new malware quickly, and capability to detect unknown malware 

is still challenging for conventional techniques. Such as these methods are able to detect malware of 

specific operating system. They cannot work without having to know the nuances of each system. They 

do not operate without disassembling, unpack and execution. Also, they are less accurate, time and 

resource consuming. Currently different types of research have been made to detect malware using image 

processing methods such as graph entropy, image matrices, and texture analysis. However, binary texture 

features are more powerful to detect code obfuscation as they compute similarity using machine learning 

classifiers. Some authors tried to mention limitations of binary texture analysis in their studies. For 

example, Shaid and Maarof [5] highlighted that malware images normally contain information of code, 

data, text and program resources, while traditional malware image analysis fails to present entire 

information of malware image. Also, they have failed to detect code obfuscation. Similarly, Qixin et al. 

[6] mentioned that the binary texture analysis through GIST features is very time-consuming. Thus, 

methods which can identify modern malware upon being created are needed. 

The paper presents a novel Local Global Malicious Pattern (LGMP) which uses hybrid visual features 

from binary files to detect malware. Firstly, it transforms binary files into 2D signals; Secondly, It 

extracts hybrid visual features of the image corresponding to each binary file using D-SIFT [7] and GIST 

[8]; Thirdly, it reduces feature dimensions using encode based feature selection; finally, these features 

use to train machine learning classifiers. Experimental results presented in Section 4 show that LGMP is 

simple and efficient; it separates malware families with high classification accuracy. Considering the 

obtained results LGMP operates without disassembling, and without having to know internal format of 

executable of any operating system. Also, LGMP is quite promising to extract proper features from 

binary level data. 

Our contributions are: 

‧ LGMP detects malware of any operating system without having to know internal structure of a file. 

‧ LGMP enhances internal similarity between malware families through hybrid local and global features 

extraction. 

‧ LGMP reduces time consumption and enhances overall detection accuracy through encode based 

features selection. 

The rest of the paper is organized as follows. In Section 2, literature review is presented. In Section 3, 

the proposed malware analysis technique is described. The experimental results and discussion is 

explained in Section 4. Finally, the paper is concluded in Section 5. 

2 Literature Review 

More researches have been conducted on malware visualization to achieve high classification 

performance and reduce time. These studies classify as either static or dynamic visual analysis.  

Trinius et al. [9] proposed dynamic malware detection model to analyze executable by using malware 

tree map and thread graph visualization. They collected information about API calls and operations of the 

performed actions in the sandbox. Syed Zainudeen et al. [5] proposed a malware behavior visualization 

technique. They captured the behavior of malware sample by executing it in a virtual environment. After 

that, they transformed the behavior to a color image using color map. Their model achieved detection 

rates ranging from 95.92%-98% while taking the 1102 samples. 

Jae et al. [10] introduced static visualization using Image similarity matrix. Firstly, their method 

selected opcode sequences to generate image matrices and then computed the similarity using selective 

area matching. Their technique achieved 98% similarity rate. Eul et al. [11] proposed graph-based static 

visualization. Their method first converted executable files into grayscale images, and then generated 

entropy graphs from grayscale images. Their model achieved 97.9% similarity rate. 

Ban et al. [12] developed a malware detection model that first extracts local features from each 
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malware image using SURF descriptor and then computes similarity through LSH (Local sensitive 

hashing) scheme. Their method achieved 85% classification accuracy. Lakshman et al. [8] proposed 

another static visual analysis method. It first extracts global features from each malware image using 

GIST descriptor and then computes similarity through the nearest neighbor classifier. Their experimental 

results showed 97.4% classification accuracy. Aziz and Anita [13] first extracts global features using 

GIST descriptor and then applies them to feed forward artificial neural network for classification. Their 

model achieved 96.3% classification rate. Barath et al. [14] introduced a new static visualization 

technique that first extracts global features using principal component analysis (PCA), and then uses 

nearest neighbor classification. Their method attained 96% classification accuracy. Kosmidis and 

Kalloniatis [15] detected malware in 25 families using GIST feature extraction technique. Their model 

achieved 91.6% detection accuracy using random forest classification. 

Recently Agarap and Pepito [16] proposed a deep learning malware detection model. It first converts 

each malware binary to grayscale image and then trained the following DL models1 to classify each 

malware family: CNN-SVM, GRU-SVM, and MLP-SVM. The maximum classification accuracy 84.92% 

achieved with GRU-SVM deep learning model. Similar to above method, Singh et al. [17] presented a 

CNN based malware image classification approach. Their technique showed 96.08% classification rate 

for detecting 25 malware families. 

Different from other binary texture analysis methods [8, 12-15], LGMP computes cohesion between 

samples of a family using hybrid local and global features. The main attention of these methods is either 

on local features’ extraction or global features’ extraction. Consequently, LGMP reduces 

misclassification risk and enhances classification rate. Also, our method pays more focus to feature 

selection and machine learning classification to reduce computational overheads. The methods [16] are 

faster to compute large datasets than LGMP, while LGMP is more accurate in large scale malware 

detection. 

3 The Proposed Method 

LGMP consists of three main stages, namely, malware binary preprocessing, features extraction and 

classification. In the first stage, it converted binary files into grayscale images for visualization. In the 

second stage, it used hybrid visual features of the image corresponding to each binary file using D-SIFT 

and GIST descriptors. Apart this, it reduced the dimensionality of features using encode based features 

selection. In the final stage, these features applied to train machine learning classifiers. The entire 

architecture of LGMP shown in Fig. 1. The detailed steps presented below. 

 

Fig. 1. Methodology of LGMP model 
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3.1 Malware Binary Preprocessing 

The executable file normally contains DOS- header, NT-header, text, data and resource information of a 

program as shown in Fig. 2. In [8], the authors introduced a method to visualize the structure of an 

executable file as a grayscale image. LGMP selected their method for image visualization, as many of 

previous works referred to this standard.  

 

Fig. 2. Various Sections of PE file 

In the first step, LGMP separated text, data and resource sections of the executable file and then read 

the bytes of each section. The process based on bytes to decimal conversion. The decimal displayed a 

grayscale image in the range [0-255]. The final image consisted of API calls, DLLs, and resources of the 

program. While rest of the parts such as DOS- header, and NT-header merged at the end of the image file. 

The width of each gray scale malware was 256 pixels, while height depended on file size. The results 

indicated that malware image in each family appeared in different texture styles and it was much difficult 

to find internal similarity between them as shown in Fig. 3. According to results, the images appear in the 

family always displayed different styles. The only texture features’ extraction was not enough to classify 

malware as malware producers, usually modify program icons and other resources to fraud users. 

            

Malware.Zbot Malware.Rbot Malware.Ircbot 

Fig. 3. A chunk of converted malware gray scale images of three malware families 

3.2 Feature Extraction 

Local features description. In the first phase, LGMP extracted local features of malware image using D-

SIFT feature description. D-SIFT firstly selected a dense grid of patches to detect interest points on 

malware image and then extracted 128-dimensional features from each patch. The total dimensionality of 

D-SIFT features computed by Eq. (1). 
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of Features (BOF) model used for key features’ selection, and reduced total dimensionality of D-SIFT 
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detected and then extracted using D-SIFT features descriptor as discussed in the previous phase. (2) 

Secondly, the dictionary of local features created using feature encoding schemes. To decrease dictionary 

creation time, fisher vector encoding scheme adopted. Fisher vector encoding executed by learning 

Gaussian mixture model (GMM). The parameters of GMM estimated by performing expectation-

maximization on D-SIFT features’ description as shown in Eq (2). 
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Global features description. In the first phase, global features of malware image extracted by using 

GIST features description [8]. GIST firstly used multistate and multidirectional Gabor filtration and then 

extracted global features of the image. Global features for malware images extracted by using the 

formula in Eq. (4). 
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Where g(x, y) denoted Gabor filter, m

a
−  the represented scale factor of wavelet expansion, m denoted 

number of scales and n represented number of directions, θ represented filter direction respectively. 

Finally, the dimension of global features reduced up to 256. In our case, we selected n=5 and θ=5 for 

feature selection. 

Features integration. The method of merging local and global features is known as features integration. 

LGMP combined local and global features using gradient weighting scheme as shown in Eq. (5). 

 _ (1 )hybrid features wLocal w Global= + −  (5) 

The value of w selected according to the contribution of both features. The gradient weight for each 

pixel of malware image computed using Eq. (6). 
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The dimensionality of proposed hybrid features set was 356. 
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4 Datasets and Experiments 

4.1 Datasets 

Three different datasets are used to evaluate the LGMP. Each dataset has samples having different 

patterns. Dataset number 1 has 1245 files including nine windows network based Trojan malware 

families. The samples are obtained from vision research lab of University California (https://vision.ece. 

ucsb.edu/research/signal-processing-malware-analysis). Dataset number 2 has 5195 samples consisting of 

25 windows malware families. The samples are obtained from vision research lab of University 

California (https://vision.ece.ucsb.edu/research/signal-processing-malware-analysis). The samples belong 

to Trojan, Virus, Worm, PWS, TDownloader, Backdoor and Rogue malware types. Finally, the dataset 

used in [18] is considered as dataset number 3. (https://drive.google.com/drive/folders/0B8tDVm9mNuus 

VDJodWkzU3BfUGs). It includes 4000 android malware samples and 2000 benign samples respectively. 

4.2 Experimental Setup and Evaluation Metrics 

The experiments performed on CPU version Intel i5-4258U @ 240 GHz, the RAM was 4.0 GB, the 

operating system was Windows 10, and Matlab version R2017a developed the proposed method. Matlab 

Vlfeat library used to apply machine learning classification on the collected dataset. The LGMP tested on 

two machine learning classifiers named Nearest Neighbor (KNN) and Support Vector Machine (SVM). 

However, the main classifier used in this paper is SVM. The reason for this choice is that LGMP 

achieved better results on that classifier. To evaluate the proposed method, two measures are used which 

are very popular in the machine learning context. These measures are as follows: 

Three kinds of matrices True positive rate (TPR), True negative rate (TNR), False positive rate (FPR), 

F-measure and accuracy are used to evaluate performance. TP represents the number of malware samples 

of family A which classifies as A; FN represents the number of malware samples of family A which 

classifies as malware samples of another family as shown in Eq. (7). 

 =

+

TP
TPR

TP FN
   (7) 

FP represents the number of malware samples of another family which classifies as malware samples 

of family A, and TN represents the number of malware samples of another family which classifies as not 

A as expressed in Eq (8). 
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+
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FPR
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 (8) 

The overall classification performance assumed by accuracy, which is equal to the sum of all the 

families correctly classify divide by the whole number of dataset instances. The formulas of overall 

accuracy and F-measure shown in Eq (9) and Eq (10) respectively. 

 =

TP+TN
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TP+TN +FP+FN
 (9) 
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4.3 Experimental Results 

To evaluate the proposed LGMP, the two most common classification methods compared by randomly 

selecting the training set of 0.8 and a test set of 0.2 from malware dataset number3. The experiment 

performed on two traditional classifiers named KNN and SVM. The classification outcomes for both 

methods shown in Table. 1. The results showed that SVM was superior to KNN and SVM for LGMP. 

Due to the risk of the imbalanced dataset, the F-measure chose for comparison of all classifiers. The F-

measure of SVM was 0.23% higher than that of KNN. Using SVM Classifier, most of the performance 

indicators achieved better results. Due to this reason, we considered SVM classifier for performing 

further experiments in this paper. 
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Table 1. Comparison of different classification algorithms 

Classifier Feature Size  TPR (%) FPR (%) F-measure (%) Accuracy (%) 

KNN=5 512 93.85 0.18 93.79 93.85 

SVM 512 94.08 0.17 93.92 94.08 

 

To evaluate performance of LGMP, the obtained results compared with those proposed in [19] and [8, 

13-15] using three different datasets. Obtained results indicate accuracy and F-measure of the LGMP 

(Table 2, Table 3, Table 4; Fig. 4, Fig. 5, Fig. 6). 

Table 2. Comparing accuracy of the LGMP using dataset-1 

Mean Accuracy (%) 

LGMP 
Sr. No. 

No. of Training 

Samples (%) Encode based Feature 

Selection 

Cluster based Feature 

Selection 

GIST 

[8, 13-15]
LBP [19]

1 10 83.32 75.10 74.49 68.69 

2 20 83.12 81.42 80.53 70.39 

3 30 85.32 82.71 80.31 71.35 

4 40 86.17 83.85 80.37 72.35 

5 50 89.32 82.99 81.81 73.93 

6 60 88.29 83.28 82.12 74.66 

7 70 90.30 85.57 81.77 75.02 

8 80 90.84 82.97 81.06 71.11 

9 90 93.46 85.64 80.20 68.76 

Table 3. Comparing accuracy of the LGMP using dataset-2 

 

Mean Accuracy (%) 

LGMP 
Sr. No. 

No. of Training 

Samples (%) Encode based Feature 

Selection 

Cluster based Feature 

Selection 

GIST 

[8, 13-15]
LBP [19] 

1 10 85.18 84.95 85.35 74.55 

2 20 90.69 86.71 88.39 74.02 

3 30 85.99 87.37 84.13 75.60 

4 40 90.12 87.19 85.06 74.86 

5 50 90.16 89.06 86.78 76.57 

6 60 90.23 89.58 86.69 75.26 

7 70 89.92 88.29 86.43 75.42 

8 80 92.92 88.46 86.10 78.05 

9 90 87.47 87.09 85.59 76.63 

Table 4. Comparing accuracy of the LGMP using dataset-3 

Mean Accuracy (%) 

LGMP 
Sr. No. 

No. of Training 

Samples (%) Encode based Feature 

Selection 

Cluster based Feature 

Selection 

GIST 

[8, 13-15]
LBP [19] 

1 10 86.68 86.33 87.61 87.04 

2 20 90.17 88.87 85.35 86.48 

3 30 90.98 89.12 88.42 86.64 

4 40 87.64 90.97 90.33 87.06 

5 50 84.15 90.45 89.02 87.07 

6 60 91.65 90.87 89.55 87.31 

7 70 92.29 91.20 90.34 88.29 

8 80 92.43 92.31 89.08 89.31 

9 90 92.50 92.39 91.00 90.12 
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Fig. 4. Comparing F-measure of the LGMP using dataset-1 

 

Fig. 5. Comparing F-measure of the LGMP using dataset-2 

 

Fig. 6. Comparing F-measure of the LGMP using dataset-3 
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4.4 Comparison of LGMP with Other Malware Feature Extraction Algorithms 

In this paper, two other algorithms choose for comparison with LGMP. One was LBP features of 

malware images [19], the second was the method proposed in [8, 13-15] which applied GIST features of 

malware images.  

For experimentation with dataset number 1 and 3, we extracted the LBP feature of 59 dimensions and 

SVM used to classify these features. We also classified GIST feature of 512 dimensions with SVM. 

Besides, we extracted LGMP feature of 356 dimensions using encode or clustering based feature 

selection methods and then classified with SVM. For experimentation with dataset number 2, we 

extracted the LBP feature of 59 dimensions, GIST feature of 512 dimensions and LGMP feature of 512 

dimensions using encode or clustering based feature selection methods and then classified with SVM. 

Each algorithm repeated 9 times for random sampling. For dataset number 1, the best average accuracy 

of LBP-SVM algorithm on the test set of 9 families was 75.02%, GIST-SVM was 82.12%, LGMP with 

cluster based feature selection-SVM was 85.64% and LGMP with encode based feature selection-SVM 

was 93.46%. For dataset number 2, the best average accuracy of LBP-SVM algorithm on the test set of 2 

families was 75.02%, GIST-SVM was 88.39%, LGMP with cluster based feature selection-SVM was 

89.58% and LGMP with encode based feature selection-SVM was 92.92%. For dataset number 3, the 

best average accuracy of LBP-SVM algorithm on the test set of 25 families was 90.12%, GIST-SVM was 

91%, LGMP with cluster based feature selection-SVM was 92.39% and LGMP with encode based 

feature selection-SVM was 92.50%. 

The weighted average of the precision and recall is the F1 score. It is the harmonic mean of precision 

and recall, which can be defined as Eq. (10). For experimental results of dataset number 1, LGMP with 

encode based feature selection-SVM obtained a highest F1 score of 93.31% on average, compared to 

LBP-SVM algorithm with 71.68%, GIST-SVM with 81.87%, and 85.59% of LGMP with a cluster based 

feature selection-SVM as shown in Fig. 4. For experimental results of dataset number 2, LGMP with 

encode based feature selection-SVM obtained a highest F1 score of 92.57% on average, compared to 

LBP-SVM algorithm with 89.62%, GIST-SVM with 90.38%, and 92.47% of LGMP with a cluster based 

feature selection-SVM as shown in Fig. 5. For experimental results of dataset number 3, LGMP with 

encode based feature selection-SVM obtained a highest F1 score of 92.76% on average, compared to 

LBP-SVM algorithm with 77.49%, GIST-SVM with 88.18%, and 89.12% of LGMP with a cluster based 

feature selection-SVM as shown in Fig. 6. Hence, it concluded that the classification accuracy of LGMP 

was over-reliant on neither size of training set nor feature dimensions. 

4.5 Impact of LGMP on Run Time Cost  

In LGMP the total model training time was much more than feature extraction. Therefore in this paper, 

the extraction time of different malware feature algorithms compared with LGMP by taking 100 samples. 

The extraction time of global feature was longer than a local feature, as shown in Fig. 7. The traditional 

GIST used in proposed methods [8, 13-15] took 13.93 seconds for processing 100 samples. LGMP with a 

cluster based feature selection was used to extract combine local and global feature, and it took 11.18 

seconds for processing 100 samples. While LGMP with an encodes based feature selection took 11 

seconds to extract combine local and global feature. Thus, it concluded that LGMP with an encode based 

feature selection was more suitable to process large-scale malware data as compared to the methods 

proposed in [8, 13-15]. While it is slightly lighter than LGMP with a cluster based feature selection 

regarding computation. 
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Fig. 7. Comparing F-measure of the LGMP using dataset-1 

5 Conclusions and Future Directions 

This paper proposed a malware family classification technique using visualized images and hybrid 

feature extraction model. The contributions of the paper are following: 

‧ A malware visualization method is proposed which converts binary files into 8 bit vector and generates 

gray-scale images. 

‧ A hybrid feature extraction technique is suggested to calculate similarities of malware using visualized 

images and to classify malware families. 

‧ Experimental results show that proposed method can classify malware families with high F-measure 

rate. 

In summary, the proposed method can be easily used to pre compute a huge number of known or 

unknown malware binaries and it does not require binary file disassembling for malware classification. 

Although, our method provides optimal malicious patterns for classification, but still there is a need to 

extract stronger malware features for classification. Therefore in future, we will use some more effective 

malware visualization methods such as binary to rgb image conversion. Another worthwhile research is 

to try some deep learning models such as CNN for malware image classification. 
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