
Journal of Computers Vol. 30 No. 6, 2019, pp. 73-83

doi:10.3966/199115992019123006006

73

Visual Malware Classification Using Local and

Global Malicious Pattern

Hamad Naeem1, Bing Guo1*, Muhammad Rashid Naeem1, Danish Vasan2

1 College of Computer Science, Sichuan University, Chengdu 610065, China

hamadnaeemh@yahoo.com, guobing@scu.edu.cn, rashidnaeem717@yahoo.com

2 School of Software Engineering, Tsinghua University, Beijing, China

danish.wasan@gmail.com

Received 10 January 2018; Revised 7 August 2018; Accepted 5 September 2018

Abstract. Recently a huge trend in internet of things and an exponential increase in number of

malware are helping malware producers to change malware variants through several automated

techniques. Automated techniques may reuse some malware segments to produce variants, and

these reuse segments can be helpful to distinguish malware families. Malware variants

belonging to same class seem to be much analogous in structure and texture. For this reason, the

similarity among malware variants can be used for malware variant family classification. This

paper introduces a new malware feature extraction method for capturing local and global

properties of images as preliminary features of malware families. The proposed method also

reduces the feature dimensions through encoding based feature selection. The experiment is

analyzed on three publically available datasets of windows system software. Preliminary

experimental results indicate that proposed technique is effective to identify malware family.

Keywords: fisher encoding, GIST, hybrid feature extraction, image visualization, malware

classification

1 Introduction

The Internet has become an important part of our daily life. Nearly 57% of the world's population is

connected to the Internet [1]. We use it for banking, communicating, entertainment, shopping, and

various other commercial and non-commercial activities. While another end, the proliferation of malware

at an ever-increasing rate poses a serious threat in the post-internet world. Panda labs identified 227,000

Malware samples every day in 2016. Malware detection and classification has become one of the most

critical problems in the field of cyber security [2]. Malware is an abbreviation for Malicious Software.

Malware is defined as “Any software that does something that causes harm to a user, a computer, or a

network”. Malware is in the form of a script, an executable or any other software program. Generally,

malware is classified as Worms, Viruses, Trojans, Ransom wares, Adware, Spywares, Bots, PUPs1,

Rootkits, Shareware, and other malicious programs.

Malware analysis is a process of both malware detection and classification. Detection is a way of

labeling malware as benign or malign. Whereas the classification is a process of figuring out the exact

family of given malware. Malware analysis can be carried out in two ways static and dynamic. Static

analysis detects binary file without real-time execution of code. It works by capturing format signatures

of malware binary. There are various malware signature identification techniques such as string

signatures, byte sequence n-grams, API calls and structure of the disassembled program to perform static

analysis. According to latest survey of Shabtai et al. [3], static analysis achieved high rate of

identification with machine learning classifiers. Also, it is complex due to unpacking of binary and

mostly suffers from code obfuscation. Whereas dynamic analysis evaluates binary through real-time

execution of code. It executes malware binary in a sandbox environment or Virtual machine. It identifies

* Corresponding Author

Visual Malware Classification Using Local and Global Malicious Pattern

74

malware through system call monitoring, instruction trace and registry tracking activities. Compared to

static analysis, dynamic analysis less suffers from code obfuscation. However, dynamic analysis is time

intensive, and resource consuming as each malware binary execute for particular time duration [4].

Except for Static and dynamic analysis, there are several different ways to analyze malware binary such

as Machine learning based methods, which operate on datasets of malware and benign files. They extract

features from files in dataset to train different machine learning classifiers for malware detection.

Since malware authors are producing new malware quickly, and capability to detect unknown malware

is still challenging for conventional techniques. Such as these methods are able to detect malware of

specific operating system. They cannot work without having to know the nuances of each system. They

do not operate without disassembling, unpack and execution. Also, they are less accurate, time and

resource consuming. Currently different types of research have been made to detect malware using image

processing methods such as graph entropy, image matrices, and texture analysis. However, binary texture

features are more powerful to detect code obfuscation as they compute similarity using machine learning

classifiers. Some authors tried to mention limitations of binary texture analysis in their studies. For

example, Shaid and Maarof [5] highlighted that malware images normally contain information of code,

data, text and program resources, while traditional malware image analysis fails to present entire

information of malware image. Also, they have failed to detect code obfuscation. Similarly, Qixin et al.

[6] mentioned that the binary texture analysis through GIST features is very time-consuming. Thus,

methods which can identify modern malware upon being created are needed.

The paper presents a novel Local Global Malicious Pattern (LGMP) which uses hybrid visual features

from binary files to detect malware. Firstly, it transforms binary files into 2D signals; Secondly, It

extracts hybrid visual features of the image corresponding to each binary file using D-SIFT [7] and GIST

[8]; Thirdly, it reduces feature dimensions using encode based feature selection; finally, these features

use to train machine learning classifiers. Experimental results presented in Section 4 show that LGMP is

simple and efficient; it separates malware families with high classification accuracy. Considering the

obtained results LGMP operates without disassembling, and without having to know internal format of

executable of any operating system. Also, LGMP is quite promising to extract proper features from

binary level data.

Our contributions are:

‧ LGMP detects malware of any operating system without having to know internal structure of a file.

‧ LGMP enhances internal similarity between malware families through hybrid local and global features

extraction.

‧ LGMP reduces time consumption and enhances overall detection accuracy through encode based

features selection.

The rest of the paper is organized as follows. In Section 2, literature review is presented. In Section 3,

the proposed malware analysis technique is described. The experimental results and discussion is

explained in Section 4. Finally, the paper is concluded in Section 5.

2 Literature Review

More researches have been conducted on malware visualization to achieve high classification

performance and reduce time. These studies classify as either static or dynamic visual analysis.

Trinius et al. [9] proposed dynamic malware detection model to analyze executable by using malware

tree map and thread graph visualization. They collected information about API calls and operations of the

performed actions in the sandbox. Syed Zainudeen et al. [5] proposed a malware behavior visualization

technique. They captured the behavior of malware sample by executing it in a virtual environment. After

that, they transformed the behavior to a color image using color map. Their model achieved detection

rates ranging from 95.92%-98% while taking the 1102 samples.

Jae et al. [10] introduced static visualization using Image similarity matrix. Firstly, their method

selected opcode sequences to generate image matrices and then computed the similarity using selective

area matching. Their technique achieved 98% similarity rate. Eul et al. [11] proposed graph-based static

visualization. Their method first converted executable files into grayscale images, and then generated

entropy graphs from grayscale images. Their model achieved 97.9% similarity rate.

Ban et al. [12] developed a malware detection model that first extracts local features from each

Journal of Computers Vol. 30 No. 6, 2019

75

malware image using SURF descriptor and then computes similarity through LSH (Local sensitive

hashing) scheme. Their method achieved 85% classification accuracy. Lakshman et al. [8] proposed

another static visual analysis method. It first extracts global features from each malware image using

GIST descriptor and then computes similarity through the nearest neighbor classifier. Their experimental

results showed 97.4% classification accuracy. Aziz and Anita [13] first extracts global features using

GIST descriptor and then applies them to feed forward artificial neural network for classification. Their

model achieved 96.3% classification rate. Barath et al. [14] introduced a new static visualization

technique that first extracts global features using principal component analysis (PCA), and then uses

nearest neighbor classification. Their method attained 96% classification accuracy. Kosmidis and

Kalloniatis [15] detected malware in 25 families using GIST feature extraction technique. Their model

achieved 91.6% detection accuracy using random forest classification.

Recently Agarap and Pepito [16] proposed a deep learning malware detection model. It first converts

each malware binary to grayscale image and then trained the following DL models1 to classify each

malware family: CNN-SVM, GRU-SVM, and MLP-SVM. The maximum classification accuracy 84.92%

achieved with GRU-SVM deep learning model. Similar to above method, Singh et al. [17] presented a

CNN based malware image classification approach. Their technique showed 96.08% classification rate

for detecting 25 malware families.

Different from other binary texture analysis methods [8, 12-15], LGMP computes cohesion between

samples of a family using hybrid local and global features. The main attention of these methods is either

on local features’ extraction or global features’ extraction. Consequently, LGMP reduces

misclassification risk and enhances classification rate. Also, our method pays more focus to feature

selection and machine learning classification to reduce computational overheads. The methods [16] are

faster to compute large datasets than LGMP, while LGMP is more accurate in large scale malware

detection.

3 The Proposed Method

LGMP consists of three main stages, namely, malware binary preprocessing, features extraction and

classification. In the first stage, it converted binary files into grayscale images for visualization. In the

second stage, it used hybrid visual features of the image corresponding to each binary file using D-SIFT

and GIST descriptors. Apart this, it reduced the dimensionality of features using encode based features

selection. In the final stage, these features applied to train machine learning classifiers. The entire

architecture of LGMP shown in Fig. 1. The detailed steps presented below.

Fig. 1. Methodology of LGMP model

Visual Malware Classification Using Local and Global Malicious Pattern

76

3.1 Malware Binary Preprocessing

The executable file normally contains DOS- header, NT-header, text, data and resource information of a

program as shown in Fig. 2. In [8], the authors introduced a method to visualize the structure of an

executable file as a grayscale image. LGMP selected their method for image visualization, as many of

previous works referred to this standard.

Fig. 2. Various Sections of PE file

In the first step, LGMP separated text, data and resource sections of the executable file and then read

the bytes of each section. The process based on bytes to decimal conversion. The decimal displayed a

grayscale image in the range [0-255]. The final image consisted of API calls, DLLs, and resources of the

program. While rest of the parts such as DOS- header, and NT-header merged at the end of the image file.

The width of each gray scale malware was 256 pixels, while height depended on file size. The results

indicated that malware image in each family appeared in different texture styles and it was much difficult

to find internal similarity between them as shown in Fig. 3. According to results, the images appear in the

family always displayed different styles. The only texture features’ extraction was not enough to classify

malware as malware producers, usually modify program icons and other resources to fraud users.

Malware.Zbot Malware.Rbot Malware.Ircbot

Fig. 3. A chunk of converted malware gray scale images of three malware families

3.2 Feature Extraction

Local features description. In the first phase, LGMP extracted local features of malware image using D-

SIFT feature description. D-SIFT firstly selected a dense grid of patches to detect interest points on

malware image and then extracted 128-dimensional features from each patch. The total dimensionality of

D-SIFT features computed by Eq. (1).

Journal of Computers Vol. 30 No. 6, 2019

77

(4 1)*(4 1)*

() * () *128
yx

x y

WW
D ceil ceil

ηη

δ δ

− −− −

=
 (1)

Where W represented the width of the image
x

δ and
y

δ denoted horizontal and vertical steps

respectively.
x

η and
y

η represented height and width of cell respectively. In the second phase, the Bag

of Features (BOF) model used for key features’ selection, and reduced total dimensionality of D-SIFT

features set. BOF consisted of four important steps. (1) Firstly, the local salient points of malware image

detected and then extracted using D-SIFT features descriptor as discussed in the previous phase. (2)

Secondly, the dictionary of local features created using feature encoding schemes. To decrease dictionary

creation time, fisher vector encoding scheme adopted. Fisher vector encoding executed by learning

Gaussian mixture model (GMM). The parameters of GMM estimated by performing expectation-

maximization on D-SIFT features’ description as shown in Eq (2).

100

1

(;) (; ,)
k

t i t i

i

p Y Y iθ π μ
=

=

= ∑∑ (2)

Where ,
i i

π μ and i∑ denoted mean, prior and covariance of GMM respectively

(3) Thirdly, the Fisher vector of dimension 2DK for D-SIFT features descriptor computed by

concatenation of mean and variance vectors as shown in Eq (3). (4) After apply Fisher vector directly on

D-SIFT, it gave suboptimal results. Due to that reason, PCA [17] applied to reduce the dimension of

features vector upto 100.

1/2

1

1

() ()

i

Z

i t i
i

t iZ

u q t Y

π

µ

−

=

=

−∑ ∑

1

1

12

()[() () 1]

i

Z

i t i t i
i

t iZ

v q t Y Y

π

µ µ

−

=

=

− − −∑ ∑ (3)

 Fisher FV=
1 1 ,

[, ,............., ,]
i i

u v u v

����� �� ���

Global features description. In the first phase, global features of malware image extracted by using

GIST features description [8]. GIST firstly used multistate and multidirectional Gabor filtration and then

extracted global features of the image. Global features for malware images extracted by using the

formula in Eq. (4).

' '

'

'

(,) (,), 1

(cos cos)

(cos cos)

1

m

mn

m

m

g x y a g x y a

x a x y

y a x y

n

n

θ θ

θ θ

π
θ

−

−

−

= >

= +

= − +

=

+

(4)

Where g(x, y) denoted Gabor filter, m

a
− the represented scale factor of wavelet expansion, m denoted

number of scales and n represented number of directions, θ represented filter direction respectively.

Finally, the dimension of global features reduced up to 256. In our case, we selected n=5 and θ=5 for

feature selection.

Features integration. The method of merging local and global features is known as features integration.

LGMP combined local and global features using gradient weighting scheme as shown in Eq. (5).

 _ (1)hybrid features wLocal w Global= + − (5)

The value of w selected according to the contribution of both features. The gradient weight for each

pixel of malware image computed using Eq. (6).

2 2(() ())

2
2(,) 1

x x y yfeature feature

w x y e σ

− − − −

= − (6)

The dimensionality of proposed hybrid features set was 356.

Visual Malware Classification Using Local and Global Malicious Pattern

78

4 Datasets and Experiments

4.1 Datasets

Three different datasets are used to evaluate the LGMP. Each dataset has samples having different

patterns. Dataset number 1 has 1245 files including nine windows network based Trojan malware

families. The samples are obtained from vision research lab of University California (https://vision.ece.

ucsb.edu/research/signal-processing-malware-analysis). Dataset number 2 has 5195 samples consisting of

25 windows malware families. The samples are obtained from vision research lab of University

California (https://vision.ece.ucsb.edu/research/signal-processing-malware-analysis). The samples belong

to Trojan, Virus, Worm, PWS, TDownloader, Backdoor and Rogue malware types. Finally, the dataset

used in [18] is considered as dataset number 3. (https://drive.google.com/drive/folders/0B8tDVm9mNuus

VDJodWkzU3BfUGs). It includes 4000 android malware samples and 2000 benign samples respectively.

4.2 Experimental Setup and Evaluation Metrics

The experiments performed on CPU version Intel i5-4258U @ 240 GHz, the RAM was 4.0 GB, the

operating system was Windows 10, and Matlab version R2017a developed the proposed method. Matlab

Vlfeat library used to apply machine learning classification on the collected dataset. The LGMP tested on

two machine learning classifiers named Nearest Neighbor (KNN) and Support Vector Machine (SVM).

However, the main classifier used in this paper is SVM. The reason for this choice is that LGMP

achieved better results on that classifier. To evaluate the proposed method, two measures are used which

are very popular in the machine learning context. These measures are as follows:

Three kinds of matrices True positive rate (TPR), True negative rate (TNR), False positive rate (FPR),

F-measure and accuracy are used to evaluate performance. TP represents the number of malware samples

of family A which classifies as A; FN represents the number of malware samples of family A which

classifies as malware samples of another family as shown in Eq. (7).

 =

+

TP
TPR

TP FN
 (7)

FP represents the number of malware samples of another family which classifies as malware samples

of family A, and TN represents the number of malware samples of another family which classifies as not

A as expressed in Eq (8).

 =

+

FP
FPR

FP TN
 (8)

The overall classification performance assumed by accuracy, which is equal to the sum of all the

families correctly classify divide by the whole number of dataset instances. The formulas of overall

accuracy and F-measure shown in Eq (9) and Eq (10) respectively.

 =

TP+TN
Accuracy

TP+TN +FP+FN
 (9)

2

2

TP
F measure=

TP+FP+FN
− (10)

4.3 Experimental Results

To evaluate the proposed LGMP, the two most common classification methods compared by randomly

selecting the training set of 0.8 and a test set of 0.2 from malware dataset number3. The experiment

performed on two traditional classifiers named KNN and SVM. The classification outcomes for both

methods shown in Table. 1. The results showed that SVM was superior to KNN and SVM for LGMP.

Due to the risk of the imbalanced dataset, the F-measure chose for comparison of all classifiers. The F-

measure of SVM was 0.23% higher than that of KNN. Using SVM Classifier, most of the performance

indicators achieved better results. Due to this reason, we considered SVM classifier for performing

further experiments in this paper.

Journal of Computers Vol. 30 No. 6, 2019

79

Table 1. Comparison of different classification algorithms

Classifier Feature Size TPR (%) FPR (%) F-measure (%) Accuracy (%)

KNN=5 512 93.85 0.18 93.79 93.85

SVM 512 94.08 0.17 93.92 94.08

To evaluate performance of LGMP, the obtained results compared with those proposed in [19] and [8,

13-15] using three different datasets. Obtained results indicate accuracy and F-measure of the LGMP

(Table 2, Table 3, Table 4; Fig. 4, Fig. 5, Fig. 6).

Table 2. Comparing accuracy of the LGMP using dataset-1

Mean Accuracy (%)

LGMP
Sr. No.

No. of Training

Samples (%) Encode based Feature

Selection

Cluster based Feature

Selection

GIST

[8, 13-15]
LBP [19]

1 10 83.32 75.10 74.49 68.69

2 20 83.12 81.42 80.53 70.39

3 30 85.32 82.71 80.31 71.35

4 40 86.17 83.85 80.37 72.35

5 50 89.32 82.99 81.81 73.93

6 60 88.29 83.28 82.12 74.66

7 70 90.30 85.57 81.77 75.02

8 80 90.84 82.97 81.06 71.11

9 90 93.46 85.64 80.20 68.76

Table 3. Comparing accuracy of the LGMP using dataset-2

Mean Accuracy (%)

LGMP
Sr. No.

No. of Training

Samples (%) Encode based Feature

Selection

Cluster based Feature

Selection

GIST

[8, 13-15]
LBP [19]

1 10 85.18 84.95 85.35 74.55

2 20 90.69 86.71 88.39 74.02

3 30 85.99 87.37 84.13 75.60

4 40 90.12 87.19 85.06 74.86

5 50 90.16 89.06 86.78 76.57

6 60 90.23 89.58 86.69 75.26

7 70 89.92 88.29 86.43 75.42

8 80 92.92 88.46 86.10 78.05

9 90 87.47 87.09 85.59 76.63

Table 4. Comparing accuracy of the LGMP using dataset-3

Mean Accuracy (%)

LGMP
Sr. No.

No. of Training

Samples (%) Encode based Feature

Selection

Cluster based Feature

Selection

GIST

[8, 13-15]
LBP [19]

1 10 86.68 86.33 87.61 87.04

2 20 90.17 88.87 85.35 86.48

3 30 90.98 89.12 88.42 86.64

4 40 87.64 90.97 90.33 87.06

5 50 84.15 90.45 89.02 87.07

6 60 91.65 90.87 89.55 87.31

7 70 92.29 91.20 90.34 88.29

8 80 92.43 92.31 89.08 89.31

9 90 92.50 92.39 91.00 90.12

Visual Malware Classification Using Local and Global Malicious Pattern

80

Fig. 4. Comparing F-measure of the LGMP using dataset-1

Fig. 5. Comparing F-measure of the LGMP using dataset-2

Fig. 6. Comparing F-measure of the LGMP using dataset-3

Journal of Computers Vol. 30 No. 6, 2019

81

4.4 Comparison of LGMP with Other Malware Feature Extraction Algorithms

In this paper, two other algorithms choose for comparison with LGMP. One was LBP features of

malware images [19], the second was the method proposed in [8, 13-15] which applied GIST features of

malware images.

For experimentation with dataset number 1 and 3, we extracted the LBP feature of 59 dimensions and

SVM used to classify these features. We also classified GIST feature of 512 dimensions with SVM.

Besides, we extracted LGMP feature of 356 dimensions using encode or clustering based feature

selection methods and then classified with SVM. For experimentation with dataset number 2, we

extracted the LBP feature of 59 dimensions, GIST feature of 512 dimensions and LGMP feature of 512

dimensions using encode or clustering based feature selection methods and then classified with SVM.

Each algorithm repeated 9 times for random sampling. For dataset number 1, the best average accuracy

of LBP-SVM algorithm on the test set of 9 families was 75.02%, GIST-SVM was 82.12%, LGMP with

cluster based feature selection-SVM was 85.64% and LGMP with encode based feature selection-SVM

was 93.46%. For dataset number 2, the best average accuracy of LBP-SVM algorithm on the test set of 2

families was 75.02%, GIST-SVM was 88.39%, LGMP with cluster based feature selection-SVM was

89.58% and LGMP with encode based feature selection-SVM was 92.92%. For dataset number 3, the

best average accuracy of LBP-SVM algorithm on the test set of 25 families was 90.12%, GIST-SVM was

91%, LGMP with cluster based feature selection-SVM was 92.39% and LGMP with encode based

feature selection-SVM was 92.50%.

The weighted average of the precision and recall is the F1 score. It is the harmonic mean of precision

and recall, which can be defined as Eq. (10). For experimental results of dataset number 1, LGMP with

encode based feature selection-SVM obtained a highest F1 score of 93.31% on average, compared to

LBP-SVM algorithm with 71.68%, GIST-SVM with 81.87%, and 85.59% of LGMP with a cluster based

feature selection-SVM as shown in Fig. 4. For experimental results of dataset number 2, LGMP with

encode based feature selection-SVM obtained a highest F1 score of 92.57% on average, compared to

LBP-SVM algorithm with 89.62%, GIST-SVM with 90.38%, and 92.47% of LGMP with a cluster based

feature selection-SVM as shown in Fig. 5. For experimental results of dataset number 3, LGMP with

encode based feature selection-SVM obtained a highest F1 score of 92.76% on average, compared to

LBP-SVM algorithm with 77.49%, GIST-SVM with 88.18%, and 89.12% of LGMP with a cluster based

feature selection-SVM as shown in Fig. 6. Hence, it concluded that the classification accuracy of LGMP

was over-reliant on neither size of training set nor feature dimensions.

4.5 Impact of LGMP on Run Time Cost

In LGMP the total model training time was much more than feature extraction. Therefore in this paper,

the extraction time of different malware feature algorithms compared with LGMP by taking 100 samples.

The extraction time of global feature was longer than a local feature, as shown in Fig. 7. The traditional

GIST used in proposed methods [8, 13-15] took 13.93 seconds for processing 100 samples. LGMP with a

cluster based feature selection was used to extract combine local and global feature, and it took 11.18

seconds for processing 100 samples. While LGMP with an encodes based feature selection took 11

seconds to extract combine local and global feature. Thus, it concluded that LGMP with an encode based

feature selection was more suitable to process large-scale malware data as compared to the methods

proposed in [8, 13-15]. While it is slightly lighter than LGMP with a cluster based feature selection

regarding computation.

Visual Malware Classification Using Local and Global Malicious Pattern

82

Fig. 7. Comparing F-measure of the LGMP using dataset-1

5 Conclusions and Future Directions

This paper proposed a malware family classification technique using visualized images and hybrid

feature extraction model. The contributions of the paper are following:

‧ A malware visualization method is proposed which converts binary files into 8 bit vector and generates

gray-scale images.

‧ A hybrid feature extraction technique is suggested to calculate similarities of malware using visualized

images and to classify malware families.

‧ Experimental results show that proposed method can classify malware families with high F-measure

rate.

In summary, the proposed method can be easily used to pre compute a huge number of known or

unknown malware binaries and it does not require binary file disassembling for malware classification.

Although, our method provides optimal malicious patterns for classification, but still there is a need to

extract stronger malware features for classification. Therefore in future, we will use some more effective

malware visualization methods such as binary to rgb image conversion. Another worthwhile research is

to try some deep learning models such as CNN for malware image classification.

Acknowledgements

This work was supported in part by the State Key Program of National Natural Science Foundation of

China under Grant No.61332001；The National Natural Science Foundation of China under Grant No.

61772352, 61472050; the Science and Technology Planning Project of Sichuan Province under Grant No.

2018ZDZX0010, 2017GZDZX0003, 2018JY0182.

References

[1] ICT Data and Statistics Division, Telecommunication Development Bureau, International Telecommunication Union, ICT

Facts and Figures 2016. <https://www.itu.int/en/ITUD/Statistics/Documents/facts/ICTFactsFigures2016.pdf>, 2016.

[2] Pandalabs, Quarterly Report 2016. <http://www.pandasecurity.com/mediacenter/src/uploads/2016/05/Pandalabs-2016-Ti-

EN-LR.pdf>, 2016.

[3] A. Shabtai, R. Moskovitch, Y. Elovici, C. Glezer, Detection of malicious code by applying machine learning classifiers on

static features: A state-of-the-art survey, Information Security Tech. Report 14(1)(2009) 16-29.

Journal of Computers Vol. 30 No. 6, 2019

83

[4] R. Moskovitch, C. Feher, N. Tzachar, E. Berger, M. Gitelman, S. Dolev, Y. Elovici, Unknown Malcode detection using

OPCODE representation, in: D. Ortiz-Arroyo, H.L. Larsen, D.D. Zeng, D. Hicks, G. Wagner (Eds.), Intelligence and

Security Informatics, Springer, 2008, pp. 204-215.

[5] S.Z.M. Shaid, M.A. Maarof, Malware behaviour visualization, Journal Teknologi 70(5)(2014) 25-33.

[6] W. Qixin, Q. Zheng, Z. Jinxin, Y. Hui, Y. Guangyi, H. Kuangsheng, Android Malware detection using local binary pattern

and principal component analysis, in: Proc. 2017 Conference on Pioneering Computer Scientists, Engineers and Educators,

2017.

[7] D. Forsyth, P. Torr, A. Zisserman, Sift Flow: Dense Correspondence across Different Scenes, Springer, 2008.

[8] N.S. Lakshman, G.J. Karthikeyan, B.S. Manjunath, Malware images: visualization and automatic classification, in: Proc.

2011 ACM Conference on Visualization for Cyber Security, 2011.

[9] P. Trinius, T. Holz, J. Gobel, F.C. Freiling, Visual analysis of malware behavior using treemaps and thread graphs, in: Proc.

6th International Workshop on Visualization for Cyber Security, 2009.

[10] H.L. Jae, H. KyoungSoo, G.I. Eul, Malware analysis method using visualization of binary files, in: Proc. 2013 ACM

Conference on Research in Adaptive and Convergent Systems, 2013.

[11] G.I. Eul, H. KyoungSoo, H.L. Jae, K. Boojoong, Malware analysis using visualized images and entropy graphs,

International Journal of Information Security, 14(2014) 1-14.

[12] X. Ban, L. Chen, W. Hu, Q. Wu, Malware variant detection using similarity search over content fingerprint, in: Proc. 2014

IEEE Conference on Control and Decision, 2014.

[13] M. Aziz, P. Anita, Malware class recognition using image processing techniques, in: Proc. 2017 IEEE Conference on Data

Management, Analytics and Innovation, 2017.

[14] N.N. Barath, D.B. Ouboti, M.K. Temesguen, Pattern recognition algorithms for Malware classification, in: Proc. 2016

IEEE Conference of Aerospace and Electronics, 2016.

[15] K. Kosmidis, C. Kalloniatis, Machine Learning and Images for Malware detection and classification, in: Proc. the 21st Pan-

Hellenic Conference on Informatics, 2017. .

[16] A.F.M. Agarap, F.J. H. Pepito, Towards building an intelligent anti-malware system: a deep learning approach using

Support Vector Machine (SVM) for Malware classification. <https://www.researchgate.net/publication/322221656_

Towards_Building_an_Intelligent_Anti-Malware_System_A_Deep_Learning_Approach_using_Support_Vector_Machine_

SVM_for_Malware_Classification>, 2017.

[17] A. Singh, A. Handa, N. Kumar, S.K. Shukla, Malware classification using image representation. <https://www.

semanticscholar.org/paper/Malware-Classification-Using-Image-Representation-Singh-

Handa/32ef4137c175e719d20d1aaec 1231078fe4fed67>, 2019.

[18] I.T. Joliffe, Principal Component Analysis. Springer Series in Statistics, Springer, 2002.

[19] H. TonTon, Y. Chia-Mu, K. Hung-Yu, R2-D2: Color-Inspired Convolutional Neural Network (CNN)-based Android

Malware Detection, in: Proc. OWASP AppSec USA, 2017.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

