
Journal of Computers Vol. 30 No. 6, 2019, pp. 100-109

doi:10.3966/199115992019123006008

100

Research on VCPU Collaborative Scheduling Mechanism

Based on Virtual Domain

Xiaodong Liu*, Songyang Li, Miao Wang

School of Computer Science, Henan Institue of Engineering, No. 1, Xianghe Road, Longhu, Zhengzhou,

Henan, China

liuxiaodongxht@qq.com

Received 23 January 2018; Revised 25 May 2018; Accepted 4 July 2018

Abstract. Aiming at the problem that the performance and predictability of application are

degraded caused by the uncertainty of VCPUs’ (Virtual CPU) scheduling order in virtual

computing environment, this paper presents a VCPU collaborative scheduling method based on

virtual domain (VDS). It combines co-scheduling and virtual domain, which can avoid the

uncertainty of VCPUs’ scheduling order and improve the performance and predictability of

application. The performance of the proposed method is analyzed and validated through various

workloads. The results show that the proposed method can effectively improve the performance

and predictability of application.

Keywords: priority inversion, virtual domain, virtual machine

1 Introduction

With the advantages of functional isolation, manageability and live migration, virtualization technology

has been widely used [1]. The virtualization technology, such as Xen [2], allows multiple virtual

machines (VMs) to run simultaneously on the same hardware platform. Like a real physical machine, a

VM can run any application, operation system or kernel without modifications. A VM can be configured

with different hardware settings, such as the number of VCPUs. A VM with multiple VCPUs, which

behave identically, is called a symmetric multiprocessing (SMP) VM [3]. virtualization provides

convenience and safety for applications. meanwhile, it can cause problems which do not exist in a non-

virtualized environment. Virtualization disrupts the basis of spinlock synchronization in the guest

operating system.

In non-virtualized environment, lock-waiter thread never gets scheduled before lock-holder. However,

in virtualized environment, scheduler is completely unaware of the association between VCPUs.

Scheduler may schedule VCPU executing lock-waiter thread before lock-holder VCPU or it may pre-

empt lock-holder VCPU [4]. This is known as lock holder preemption (LHP) problem. It violates the

most basic primitive of operating system and causes problems like VCPU stacking due to which VCPUs

of the same domain are stacked on the run queues of the same physical processor, which can lead to the

performance of applications running on VMs degradation.

To address LHP problem, Usman Rafi et al. propose a co-scheduling method. In this method, either all

VCPUs of a VM are scheduled at the same time or none of the VCPU is scheduled. This method removes

VCPU stacking problem, but this approach suffers from the serious drawbacks like CPU fragmentation

and priority inversion [4]. There are some work uses spinlock detection mechanism [5-6]. Once VCPUs

have spinlock, the execution of lock-waiter VCPUs will be terminated or priority scheduling lock-holder

VCPUs. However, existing spin lock detection mechanism is not accurate enough [7]. Wang et al. [8]

propose a consolidation- �aware VCPU scheduling scheme which takes advantages of the low over head

hardware assisted PLE mechanism to detect lock waiter VCPUs. Based on VCPU over-commitment rate,

the CVS scheduling selects appropriate scheduling algorithm. However, existing spin lock detection

* Corresponding Author

Journal of Computers Vol. 30 No. 6, 2019

101

mechanism is not accurate enough [9].

This paper presents a VCPU collaborative scheduling method based on virtual domain (VDS). The

method combines co-scheduling and virtual domain. A virtual domain is a virtual set of all VCPUs of a

physical machine. In each scheduling period, when there is idle CPUs, VCPUs of virtual domain will be

selected to schedule. The problem of CPU fragmentation and priority inversion can be avoided. The

proposed techniques have been implemented on the Xen VMM. The distinguished features of VCPU

collaborative scheduling method compared to previous work are as follows: Firstly, the proposed

schedule combines co-scheduling and virtual domain. It can avoid CPU fragmentation and priority

inversion. Secondly, our implementation is confined to the VMM layer, without VM dependency. The

proposed techniques are evaluated for various workloads. We demonstrate that our scheduling method

can improve the performance and predictability of applications.

The remainder of this paper is organized as follows: section 2 presents the background and related

work. Section 3 gives theoretical basis. Section 4 describes the VCPU collaborative scheduling method.

Section 5 shows the experimental results. Finally, section 6 summarizes our conclusions.

2 Background and Related Work

Our work is motivated by previous work on solving spinlock of VCPU. This section presents the

background and related work.

2.1 Background

Xen is an open-source VMM that allows multiple operating systems to share the same physical server in

a safe and resource managed fashion. Fig. 1 describes the xen architecture. Xen hypervisor provides an

abstraction layer between virtual machines and hardware resources. This layer performs functions such as

scheduling CPU and allocating memory among virtual machines. There is a privileged domain (Dom0) in

the xen VMM which is used to manage guest domains (DomUs). The Dom0 can access to hardware

resources directly and DomUs are not allowed to access to hardware resources directly. DomUs can

access hardware resources through Dom0.

Fig. 1. Xen I/O architecture

In the xen virtualization environment, Guest OS cannot directly schedule physical CPU. Xen

establishes the virtual CPU (VCPU) structure and provides one or more VCPUs for every Guest OS. All

VCPUs are time-division multiplexing physical CPU. So, xen need reasonable allocation of time slices

for VCPUs and schedule them.

Xen provides multiple schedulers, such as borrowed virtual time (BVT)、simple earliest deadline first

(SEDF) and credit scheduler. The credit scheduler is xen’s default scheduler at present. Its overall

objective is to allocate the processor resources fairly. The Guest OS is assigned a weight value when it is

created. Each Guest OS is allocated a certain number of credits according to its weight every 30

milliseconds. The credits will be allocated to VCPUs of the Guest OS fairly. As a VCPU runs, it

consumes credits. According to the credits of VCPU, a VCPU’s priority can be one of the three values:

OVER, UNDER and BOOST. If VCPUs are in the OVER state, then they have used up its fair share of

Research on VCPU Collaborative Scheduling Mechanism Based on Virtual Domain

102

CPU resources. If VCPUs are in the UNDER state, then they have CPU resources that can be consumed.

The BOOST state provides a mechanism for domains to achieve low I/O response latency. All VCPUs in

BOOST state are placed in front of those in UNDER state in the run queue, while those in OVER state

are kept in the tail of the queue. Every physical CPU has a run queue of VCPUs. The queue is sorted by

the priority of VCPUs and the head of the queue is always selected to run.

2.2 Related Work

Virtualization disrupts the basis of spinlock synchronization. In virtualization environment, scheduler is

completely unaware of the association between VCPUs. Scheduler may schedule VCPU executing lock-

waiter thread before lock-holder VCPU or it may pre-empt lock-holder VCPU. This violates the most

basic primitive of Operating System and causes problems like VCPU stacking. Co-scheduling [3] is a

representative scheme of coordinated scheduling that allows cooperative threads to be synchronously

scheduled and de-scheduled. It can remove VCPU stacking problem, but suffer from the serious

drawbacks like CPU fragmentation and priority inversion. Usman Rafi et al. [4] propose a dynamic

scheduler which VCPUs of a VM are co-scheduled only if concurrency degree of VM is greater than

threshold. Hybrid co-scheduling in papers [10-12] are all VCPUs of a VM are scheduled at the same time

when they satisfy certain conditions. Kim et al. [5] present a demand-based coordinated scheduling

scheme for consolidated SMP VMs that host multithreaded workloads, which diagnose VCPU

synchronization through inter processor interrupts (IPIs) between VCPUs. It can effectively reduce

synchronization latency and unnecessary CPU consumption. papers in [5-6, 13] are all based on spinlock

detection mechanism. However, existing spin lock detection mechanism is not accurate enough. This

paper solve the problem of CPU fragmentation and priority inversion. Meanwhile, it need not depend on

the spin lock detection mechanism.

3 Theoretical Basis

This section describes the theoretical basis of system model of our VCPU collaborative scheduling

method based on virtual domain.

3.1 VCPU

We suppose there are N VMs running on the same physical machine.
i

VM is the i th− (i=1, 2, ... N) VM

and
i

N is the number of VCPUs of the
i

VM .
ij

VM is the j th− VCPU of the
i

VM .
1 2
, ,...

m
C C C are

CPUs of the physical machine (m is the number of CPUs of the physical machine).

Definition 3.1. A VCPU is a three-tuple VCPU=< vid , vcid , pri >, where:

‧ vid is the number of the VM.

‧ vcid is the number of the VCPU.

‧ pri is priority of the VCPU.

Definition 3.2. A priority of VCPU can be one of the following:

‧ BOOST: if the VCPU wakes up from a blocked event, its status will be BOOST.

‧ UnBOOST: if the status of a VCPU is schedulable, its status will be UnBOOST.

The priority of VCPUs which status are BOOST are higher than those status are UnBOOST. When a

VM is created, VCPUs of the VM are allocated to the CPUs of physical machine (PCPU). VDS allocates

PCPU for VCPUs of the VM according to the following definition 3.3.

Definition 3.3. Suppose the vcid of a VCPU is
i

vcid ,
j

cid is the number of CPU which is assigned, we

have
i

vcid =
j

cid .

For the simplicity of discussion, we introduce a NULL VCPU which is denoted by NULL. At

initialization phase of VCPUs, when the number of VCPUs of the VM is less than the number of CPUs,

VCPUs which cannot be allocated a CPU will be allocated a NULL VCPU.

Journal of Computers Vol. 30 No. 6, 2019

103

3.2 Virtual Domain

A virtual domain is the virtual set of all VCPUs of a physical machine. The VDS scheduling method

combines co-scheduling and virtual domain. In each scheduling period, VCPUs of a VM is scheduled.

When there exist idle CPUs, VDS will schedule VCPU from virtual domain.

Example 3.1. Suppose
1

VM ,
2

VM and
3

VM are running on the same physical machine M which has 4

CPUs. The number of VCPU of
1

VM ,
2

VM and
3

VM are 4, 3 and 2 respectively. Virtual domain (VD)

can be expressed as VD ={VC00, VC01, VC02, VC03, VC10, VC11, VC12, VC20, VC21}. Table 1

gives VCPU scheduling results of some scheduling period.

Table 1. VCPU scheduling results of some scheduling period

 C1 C2 C3 C4

K0 VC00 VC01 VC02 VC03

K1 VC10 VC11 VC12 VC00

K2 VC20 VC21 VC01 VC02

In scheduling period k0, all VCPUs of 1
VM are scheduled and there is no idle CPU. In scheduling

period k1, VCPUs of 2
VM are scheduled to C1, C2, C3, and C4 is idle. In order to avoid waste CPU

resources, VC00 is scheduled to C4. Similarly, in scheduling period k3, VC01 and VC02 are scheduled to

idle CPUs. Please here note that VCPUs of virtual domain are actually VCPUs of VMs.

Example 3.2. Suppose
1

VM and
2

VM are running on the same physical machine M which has 4 CPUs.

VC00, VC01, VC02 and VC03 are VCPUs of
1

VM . VC10, VC11 and VC12 are VCPUs of 2
VM . The number

of VCPUs of
2

VM is same with the number of CPUs of M. There is no idle CPUs when VCPUs of
1

VM

are scheduled. When VCPUs of
2

VM are scheduled, idle CPUs can only be filled by VCPUs of
1

VM .

There is no idle CPUs can be filled by
2

VM .

Definition 3.4. A VM cannot be filled when there is no idle CPUs. A VM can be filled when there is idle

CPUs can be filled.
Now, we give the definition of VD.

Definition 3.5. Suppose the number of VCPUs of
i

VM is
i

N . VCPU set of
i

VM can be defined as

0 1 (1){ , ,... }
i

i i i i N
VS VC VC VC

−

= .

Definition 3.6. A VD is a four-tuple VD=< s, qb, qv, op >, where:

s is the status of VD. VD cannot be filled if there is a VM cannot be filled. VD can be filled if all VMs

can be filled.

‧ qb is the queue which is consist of VCPUs whose status is BOOST.

‧ qv is the queue which is consist of VCPUs whose status is UnBOOST.

‧ op is the operation set of VD. VD::= search| EnQueue| DeQueue| AddAll where search< vid , vcid >

represents that search VCPU whose number is < vid , vcid > in queue qb or qv. EnQueue (VCk, Q)

represents that put VCk into Q. DeQueue (k, Q) represents that remove k-th elements from Q. AddAll

(qv) represents that put all VCPUs of the physical machine into Q.

In order to let all VCPUs of the physical machine fairly share idle CPUs, VDS put all VCPUs into qv.

Once there are idle CPUs, VCPUs of qv will be selected in sequence to fill idle CPUs. When there is no

VCPU can be filled, the operation AddAll (qv) will be executed.

4 VCPU Collaborative Scheduling Method Based on Virtual Domain

In the last section, we introduce how to avoid CPU fragmentation through some examples. In this section,

we will give how to avoid priority inversion and give the algorithm of our VCPU collaborative

scheduling method based on virtual domain (VDS).

The problem of priority inversion is avoided by improving the priority of VCPUs of VD. When a

VCPU wakes up from a blocked event, the state of VCPU of the VM is not set to BOOST. The state of

VCPU of VD which has the same number is set to BOOST. At the same time, the VCPU will be removed

Research on VCPU Collaborative Scheduling Mechanism Based on Virtual Domain

104

from the queue qv and put into the queue qb.

Suppose the length of qb is Nb and the number of idle CPU cycles is Nidle. VDS scheduling can be

divided into three conditions:

(1) If Nb=0, there is no VCPU whose state is BOOST. If there exist idle CPUs, VCPUs of qv will be

used to fill the idle CPUs.

(2) If 0 < Nb < Nidle, idle CPU cycles can meet the needs of VPUs whose state is BOOST. Idle CPU

cycles are first filled by VCPUs in queue qb. If the number of VCPU is same with the number of VCPUs

of VM which is scheduled, the idle CPU cycle will be set to NULL again. If there exist idle CPU cycles

When they are filled by qb, idle CPU cycles can be filled by qv.

(3) If Nb>Nidle, idle CPU cycles cannot meet the needs of VPUs whose state is BOOST. In the next

scheduling period, VCPUs will be first selected from the queue qb. If the length of qb more than the

number of CPUs which is denoted by m, all VCPUs will be selected from the queue qb in the next

scheduling period. If the length of qb less than the number of CPUs, in the next scheduling period, VDS

first select all VCPUs of qb and idle CPU cycles will be selected from qv.

The algorithm of our VCPU collaborative scheduling method based on virtual domain is formalized in

Algorithm 1.

Algorithm 1. The algorithm of VCPU collaborative scheduling method based on virtual domain
1. IF Nb!=0 and Nb<m THEN

2. select all VCPUs of one VM

3. FOR k=0, k<qb.length; k++

4. VC=DeQueue (k, Q)

5. IF VC already exists in VCPUs which will be scheduled THEN

6. VC=NULL

7. END IF

8. END FOR

9. ELSE IF Nb>m THEN

10. IF qb.length<=m THEN

11. select all VCPUs of qb

12. ELSE

13. select the first m VCPUs into the scheduling queue

14. END IF

15. END IF

16. IF there is idle CPU THEN

17. select VCPU from qv

18. END IF

5 Performance Evaluation

We have implemented the algorithm of our VCPU collaborative scheduling method based on virtual

domain in the xen 4.1.2 hypervisor. In this section, we compare the performance of the VCPU

collaborative scheduling algorithm based on virtual domain (VDS_xen), Credit scheduling algorithm and

Co_scheduling.

5.1 Experiments Setup

Our system is installed on the physical machine equipped with two Inter(R) Xeon(R) 4-core CPU

running at 2.40GHz, 32G of RAM. The operation system is running the 64-bit version of Ubuntu 12.04.

The system is configured with multiple VMs, and each VM is configured with 2G memory. The

operation system of VMs is also running the 64-bit version of Ubuntu 12.04. The application of VMs is

matrix multiplication C=AB which is implemented by BSPCloud [14].

5.2 Performance Indices

In order to improve the accuracy of experiments results, each experiment will be performed several times.

Let N denotes the number of experiments (N is set to 50 in this paper). Test values are denoted by X1,

Journal of Computers Vol. 30 No. 6, 2019

105

X2,...XN. The results are measured by two performance indices. One is the mean value of test values

which can be expressed by the following equation.

 1 2
...

() N
X X X

E x
N

+ + +

= . (1)

The other is the standard deviation of test values which can be expressed by the following equation.

 2() (())x E x E xσ = − . (2)

Standard deviation can reflect the discrete degree of test values. The less the value, the better the

stability of applications.

5.3 Experiment I

In this set of experiments, we evaluate the effect of VDS scheduling on the performance of application.

We create 4 VMs on the physical machine which is introduced in the above subsection 5.1. The number

of VCPUs is 4, 6, 6 and 6 respectively. Matrix multiplication C=AB which is implemented by BSPCloud

run on the VM which has 4 VCPUs. The size of A and B are 2000×2000, 3000×3000 and 4000×4000

respectively. Six threads are worked on the rest 3 VMs, and each thread run a compute-intensive

application. For simplicity, the application of each thread run a multiplication of variable a and b in a

loop function block.

Fig. 2 shows the average completion time of application under different data size. Compared with xen

credit scheduling, Co_scheduling and VDS scheduling can both improve the performance of application.

The average completion time of application of Co_scheduling declines 17.3%, 17.41% and 17.38% under

data size 2000×2000, 3000×3000 and 4000×4000. The average completion time of application of VDS

declines 12.69%, 12.78% and 12.72% under data size 2000×2000, 3000×3000 and 4000×4000. The

results show that both VDS scheduling and Co_scheduling can improve the performance of application.

We can also see that the performance of application under VDS scheduling is better than the application

under Co_scheduling. This is because that VDS can avoid CPU fragment.

2000×2000 3000×3000 4000×4000
0

100

200

300

400

Data size

T
h
e
 a
v
e
ra
g
e
 c
o
m
p
le
ti
o
n
 t
im

e
(s
)

Credit

Co_Scheduling

VDS

Fig. 2. The average completion time of application under different data size

Fig. 3 shows standard deviation of application under credit scheduling, Co_scheduling and VDS

scheduling. The standard deviation under credit scheduling is relatively large because of the uncertainty

of VCPUs’ scheduling order of VCPUs. Compared with xen credit scheduling, Co_scheduling and VDS

scheduling can both decline the standard deviation of application. The standard deviation of

Co_scheduling declines 84.49%, 74.84% and 74.89% under data size 2000×2000, 3000×3000 and

4000×4000. The standard deviation of VDS declines 90.28%, 86.91% and 90.05% under data size

2000×2000, 3000×3000 and 4000×4000.

Research on VCPU Collaborative Scheduling Mechanism Based on Virtual Domain

106

2000×2000 3000×3000 4000×4000
0

5000

10000

15000

Data size

S
ta
n
d
a
rd
 d
e
v
ia
ti
o
n

Credit

Co_Scheduling

VDS

Fig. 3. The standard deviation of application under different data size

Because Co_scheduling can only guarantee either all VCPUs of the VM are scheduled at the same

time or none of the VCPU is scheduled. The allocation of VCPUS on the physical CPU is not considered.

The migration of VCPUs may influence the stability of the application. VDS scheduling establishes the

stable mapping relationship between VCPUs and physical CPUs. The influence of VCPUs migration is

eliminated. The standard deviation of application is further reduced.

5.4 Experiment II

In this set of experiments, we consider the effect of VCPUs number on the performance of application.

We create 4 VMs on the physical machine which is introduced in the subsection 5.1. The number of

VCPUs of three VMs is 4, and each VM run a 4 threads application. Each thread run a compute-intensive

application. For simplicity, the application of each thread run a multiplication of variable a and b in a

loop function block. The number of VCPUs of one VM changes from 3 to 8. Matrix multiplication

C=AB which is implemented by BSPCloud run on the VM. The size of A and B are both 3000×3000.

Fig. 4 shows the average completion time of application under different number of VCPUs. Compared

with xen credit scheduling, Co_scheduling and VDS scheduling can both improve the performance of

application when the number of VCPUs changes from 3 to 8. The average completion time of application

of Co_scheduling declines 13.43%, 15.55%, 14.76%, 16.24%, 16.35% and 16.14% respectively. The

average completion time of application of VDS declines 11.72%, 14.84%, 10.73%, 12.89%, 13.06%, and

13.11% respectively. The performance of application under VDS scheduling is better than the application

of application under Co_scheduling. This is because that VDS can avoid CPU fragment. We can see that

the performance of application is related to the number of VCPUs. For example, when the total number

of VCPUs is 16 which is twice as many as the total number of CPUs. The CPU fragment is not generated.

Thus, the performance improves better than others. We can also see that the performance of application is

not always increase with the increase of the number of VCPUs. The performance of application begins to

declines when the total number of VCPUs increases to some extent. This is because the overhead of

scheduling is increases and the allocated CPU resources of each VCPU is decreases.

3 4 5 6 7 8
0

50

100

150

200

The number of VCPUs

T
h
e
 a
v
e
ra
g
e
 c
o
m
p
le
ti
o
n
 t
im

e
(s
)

Credit

Co_Scheduling

VDS

Fig. 4. The average completion of application under different number of VCPUs

Journal of Computers Vol. 30 No. 6, 2019

107

Fig. 3 shows standard deviation of application under different number of VCPUs. Compared with xen

credit scheduling, Co_scheduling and VDS scheduling can both reduce the standard deviation of

application when the number of VCPUs changes from 3 to 8. The standard deviation of application of

Co_scheduling declines 91.92%, 90.19%, 90%, 90.36%, 91.9% and 92.53% respectively. The standard

deviation of application of VDS scheduling declines 80.75%, 76.28%, 81.99%, 74.53%, 78.62% and

80.88% respectively. The reason is same as which has been explained in the subsection 5.3.

3 4 5 6 7 8
0

2000

4000

6000

8000

10000

The number of VCPUs

s
ta
n
d
a
rd
 d
e
v
ia
ti
o
n

Credit

Co_Scheduling

VDS

Fig. 5. The standard deviation of application under different number of VCPUs

5.5 Experiment III

In this set of experiments, the number of VCPUs of the VM which run BSPCloud application is fixed.

We evaluate the performance of application when the number of VCPUs of the physical machine is

changes. We create 3 VMs on the physical machine which is introduced in the subsection 5.1. The

number of VCPUs of one VM is 4, and it run the application of matrix multiplication C=AB which is

implemented by BSPCloud. The size of A and B are both 3000×3000. The number of VCPUs of the

other VMs (auxiliary VCPUs) changes from 3 to 8, and the number of threads of the VM is also

corresponding changes from 3 to 8. Each thread run a multiplication of variable a and b in a loop function

block.

As we can see from Fig. 6, compared with xen credit scheduling, Co_scheduling and VDS scheduling

can both improve the performance of application when the number of auxiliary VCPUs changes from 3

to 8. The average completion time of application of Co_scheduling declines 16.17%, 15.77%, 16.06%,

14.83%, 14.16% and 13.59%. The average completion time of application of VDS scheduling declines

12.56%, 12.49%, 13%, 12.75%, 12.78% and 12.8%. The results show that both VDS scheduling and

Co_scheduling can improve the performance of application. Because the VDS scheduling can effectively

avoid CPU fragment, the performance of application under VDS scheduling is better than the application

under Co_scheduling. Similarly as the situation in subsection 5.3. The performance of application is also

related to the number of VCPUs of the physical machine. The reason is same as which has been

explained in the subsection 5.3.

3 4 5 6 7 8
0

20

40

60

80

100

The number of VCPUs of the auxiliary VM

T
h
e
 a
v
e
ra
g
e
 c
o
m
p
le
ti
o
n
 t
im

e
(s
)

Credit Co_Scheduling VDS

Fig. 6. The average completion of application under different number of auxiliary VCPUs

Research on VCPU Collaborative Scheduling Mechanism Based on Virtual Domain

108

Fig. 7 shows standard deviation of application under different number of auxiliary VCPUs. Compared

with xen credit scheduling, Co_scheduling and VDS scheduling can both reeuce the standard deviation of

application when the number of auxiliary VCPUs changes from 3 to 8. The standard deviation of

application of Co_scheduling declines 86.92%, 88.61%, 89.07%, 91.34%, 90.19% and 86.13%

respectively. The standard deviation of application of VDS scheduling declines 78.04%, 77.68%, 75.74%,

78.76%, 78.85% and 76.32% respectively. The reason is same as which has been explained in the

subsection 5.3.

3 4 5 6 7 8
0

1000

2000

3000

4000

5000

6000

The number of VCPUs of the auxiliary VM

S
ta
n
d
a
rd
 d
e
v
ia
ti
o
n

Credit

Co_Scheduling

VDS

Fig. 7. The standard deviation of application under different number of auxiliary VCPUs

6 Conclusion

In this paper, we have proposed a VCPU collaborative scheduling method based on virtual domain

(VDS). In this method, either all VCPUs of the VM are scheduled at the same time or none of the VCPU

is scheduled. The mapping relationship between VCPUs and physical CPUs is also established. The CPU

fragmentation is filled by VCPUs of virtual domain. The problem of CPU fragmentation and priority

inversion can be avoided. The proposed method is implemented on the VMM. We evaluate the effect of

VDS scheduling on the performance of multi-thread application. Compared with the existing scheduling

algorithm, the performance has increased by 5%. Meanwhile, stability has also increased by 5%. In the

future, we will further optimize our performance model.

Acknowledgements

This work is supported by scientific and technological research project of Henan provincial science and

technology department (182102310919), Foundation of He’nan Educational Committee (16A520041).

References

[1] S. Jin, J. Ahn, S. Cha, J. Huh, Architectural support for secure virtualization under a vulnerable hypervisor, in: Proc. 2011

International Symposium on Microarchitecture, 2011.

[2] B.D.P. Barham, S.H.K. Fraser, A.H.T. Harris, R. Neugebauer, I. Pratt, Xen and the art of virtualization, ACM SIGOPS

Operating Systems Review 37(8)(2003) 164-177.

[3] C. Ahn, C.A.C. Guzman, B. Egger, POSTER: NUMA-aware power management for chip multiprocessors, in: Proc. 2017

International Conference on Parallel Architectures and Compilation Techniques, 2017.

Journal of Computers Vol. 30 No. 6, 2019

109

[4] U. Rafi, M.A. Zia, A. Razzaq, S. Ali, M.A. Saleem, Multi-queue priority based algorithm for CPU process scheduling, in:

Proc. 2017 International Conference on Management Science and Engineering Management, 2017.

[5] H. Kim, S. Kim, J. Jeong, J. Lee, S. Maeng, Demand-based coordinated scheduling for SMP VMs, in: Proc. 2013

International Conference on Architectural Support for Programming Languages and Operating Systems, 2013.

[6] Y. Ye, R. West, J. Zhang, Z. Cheng, MARACAS: a real-time multicore VCPU scheduling framework, in: Proc. 2017 IEEE

Real-Time Systems Symposium, 2017.

[7] L. Zhang, Y. Chen, Y. Dong, C. Liu, Lock-visor: an efficient transitory co-scheduling for MP guest, in: Proc. 2012

International Conference on Parallel Processing, 2012.

[8] B. Wang, Y. Cheng, W. Chen, Q. He, Y. Xiang, Efficient consolidation-aware VCPU scheduling on multicore virtualization

platform, Future Generation Computer Systems 56(3)(2016) 229-237.

[9] S. Kashyap, C. Min, T. Kim, Opportunistic spinlocks: achieving virtual machine scalability in the clouds, Acm Sigops

Operating Systems Review 50(1)(2016) 9-16.

[10] Y. Yua, Y. Wang, H. Guo, X. He, Optimisation schemes to improve hybrid co-scheduling for concurrent virtual machines,

International Journal of Parallel, Emergent and Distributed Systems 28(1)(2013) 46-66.

[11] C. Weng, Z. Wang, M. Li, X. Lu, The hybrid scheduling framework for virtual machine systems, in: Proc. 2009 ACM

SIGPLAN/SIGOPS international conference on Virtual execution environments, 2009.

[12] Y. Yu, Y. Wang, H. Guo, X. He, Hybrid co-scheduling optimizations for concurrent applications in virtualized

environments, in: Proc. 2011 International Conference on Networking, Architecture and Storage, 2011.

[13] H. Kim, S. Kim, J. Jeong, J. Lee, S. Maeng, Demand-based coordinated scheduling for SMP VMs, in: Proc. 2013

International Conference on Architectural Support for Programming Languages and Operating Systems, 2013.

[14] X. Liu, W. Tong, Z. Fu, W. Liao, BSPCloud: a hybrid distributed-memory and shared-memory programming model,

International Journal of Grid and Distributed Computing 6(1)(2013) 87-97.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

