
Journal of Computers Vol. 30 No. 6, 2019, pp. 242-251

doi:10.3966/199115992019123006020

242

A Heterogeneous Multiprocessor Independent Task Scheduling

Algorithm Based on Improved PSO

Xiaohui Cheng1*, Fei Dai1

1 Guangxi Key Laboratory of Embedded Technology and Intelligent System & College of Information

Science and Engineering, Guilin University of Technology, Jiangan Road No. 12, Guilin 541000, China

{cxiaohui, 102016453}@glut.edu.cn

Received 10 May 2019; Revised 10 June 2019; Accepted 2 July 2019

Abstract. The independent task scheduling problem of heterogeneous multi-processors belongs

to the NP-hard problem. The emergence of evolutionary algorithms provides a new idea for

solving this problem. Particle swarm optimization (PSO) is a kind of intelligent evolutionary

algorithm and it could be used to solve scheduling problem. We firstly discretized the

representation of particle swarm optimization algorithm and made it suitable for the scheduling

problem of heterogeneous multiprocessors. Then, the PSO algorithm was introduced into

heterogeneous multiprocessors independent task scheduling problem by modeling method. In

order to overcome particle swarm optimization algorithm’s problem that is easy to fall into local

optimum and premature convergence. We proposed a heterogeneous multiprocessor independent

task scheduling algorithm based on improved PSO by improving the update operation of particle

swarm optimization algorithm and transformed it into crossover and mutation operation of

genetic algorithm. The experimental results show that the improved PSO scheduling algorithm

can overcome the premature defects of PSO algorithm and the makespan of proposed IPSO is

smaller than PSO.

Keywords: heterogeneous multiprocessors, independent tasks, particle swarm optimization, task

scheduling

1 Introduction

Today, multiprocessor task scheduling challenges scholars due to the problem of efficiently assigning a

great deal of tasks in very short execution time, usually limited to the order of few minutes, or even

seconds [1]. Indeed, a good task scheduling algorithm will benefit a lot for improving the performance of

multiprocessors system. Therefore, efficiently assigning and mapping tasks to various processors become

a critical issue. Traditional homogeneous task scheduling problem is one of the NP-hard problems [2],

the heterogeneity makes it even harder. As a result, it is necessary for researchers to solve this problem.

The problem of task scheduling could be transformed into the problem of mapping tasks to different

processors. The problem of mapping the tasks to multiple processors can be differentiated in terms of

static mapping, dynamic mapping, independent task set, dependent task set, flow-shop task set,

homogeneous processors, heterogeneous processors, or various qualitative parameters used for

performance measures [3]. Static mapping, independent task set, and heterogeneous processor are the

main research aspects of this paper. On the basis of it, we built a heterogeneous multiprocessor

independent task scheduling model and implemented our algorithm on this scheduling model.

In this paper, we focus on the independent task scheduling of the heterogeneous multiprocessors and

improved a particle swarm optimization (PSO) algorithm by using genetic algorithm (GA) ideas. The

experiment results show our improved algorithm outperform PSO scheduling algorithm.

The rest of the manuscript is organized as follows. The next section presents the definitions of

independent task scheduling model, the assumptions and objectives. The main related work of

* Corresponding Author

Journal of Computers Vol. 30 No. 6, 2019

243

independent task scheduling for heterogeneous multiprocessors are reviewed in Section 3. The details

about our improved PSO algorithm are described in Section 4. The experiments and analysis are

presented in Section 5. Finally, section 6 introduces the main conclusions of our research and discusses

the future work.

2 Heterogeneous Multiprocessor Independent Task Scheduling Model

This section introduces system model for heterogeneous multiprocessor independent task scheduling and

its objectives.

2.1 System Model

Heterogeneous multiprocessor system consists of a set of m heterogeneous processors having different

processing elements. A task will get the resources only from the processor allocated to it. There is a set

T(T1, T2, ..., Tn) of n independent and simultaneously available tasks and a set P(P1, P2, ..., Pm) of m

various processors. C(C1, C2, …, Cm) represents processing time of task Ti(i = 1, 2, …, n) (Fig. 1).

Fig. 1. Particle swarm optimization scheduling model under heterogeneous multiprocessor

2.2 Assumptions

Following assumptions are made while modeling the problem:

Processors are heterogeneous (each with different computing speed) and endlessly available from

start-to-end time.

(1) Each processor can only process one task at a time.

(2) All tasks are mutually independent and they do not have executed sequence and cannot be

preempted.

(3) All set-up times are included in the execution time and are independent from the logical order of

tasks.

2.3 Objectives

There are various qualitative parameters available in order to judge the performance of scheduling

algorithms. Here, maximum span among all processors is taken to evaluate the performance of

scheduling algorithm. Span for processor i named as Spani could be defined as:

 {1, 2, 3, ..., }

1

n

i m i ij

j

Span C M
∈

=

=∑ (1)

where Mij = 1 if task Tj is assigned to processor Pi, otherwise Mij = 0.
The makespan is stated as the maximum completion time for all processors. Maximu spanm span can be

defined as:

 {1, 2, 3, ..., }[]
i n

MakeSpan Maximum Span
∈

= (2)

A Heterogeneous Multiprocessor Independent Task Scheduling Algorithm Based on Improved PSO

244

The objective of our problem is that it maps the task set T to the set of processors P while minimizing

the makespan having considered the constraints.

3 Related Works

In heterogeneous multi-core scheduling problems, it can be divided into two types: independent tasks and

dependent task scheduling. At present, there are many research results for task-dependent scheduling [4-

13], but the number of research results in independent task scheduling is relatively small. As a result, this

domain requires further research and relevant research results should be combined with practice. In the

field of independent task scheduling, some of the research results in recent years are as follows: Gogos et

al. [14] proposed a heterogeneous multiprocessor independent task algorithm that uses heuristic and

column pricing to achieve shorter scheduling lengths than other scheduling algorithms. Braun et al. [15]

compared the effects of seven static heuristics in heterogeneous environment independent task scheduling.

The experimental results showed that the genetic algorithm performs optimally. Santiago Iturriaga et al.

[1] implemented a parallel random search scheduling method for independent task scheduling in

CPU/GPU heterogeneous computing systems. Experimental results showed that the method has short

execution time and high solution quality. Dorronsoro and Pineled [16] innovatively combined genetic

algorithms with machine learning algorithms and introduced them into independent task scheduling

problems to solve this problem. Compared with the other two heuristic algorithms, introducing machine

learning into genetic algorithm could improve accuracy of scheduling greatly. Zhou et al. [17] proposed a

minimum and earliest completion time algorithm for the independent task of heterogeneous environment.

The algorithm introduced Min-min algorithm to solve k tasks with earliest completion time, and first

dealt with the high cost scheduling. Compared with the Min-min algorithm, the proposed algorithm is

better. At present, some scholars have applied the PSO algorithm to the independent task scheduling

problem in multi-core processors and proposed corresponding methods from various aspects [3, 18-22].

In summary, the research on independent task scheduling has yet to be deepened, especially the

independent task scheduling problem of heterogeneous multi-cores processor. According to the

independent task scheduling problem of heterogeneous multiprocessors, firstly, the heterogeneous

multiprocessor independent task scheduling model is constructed. Secondly, referring to the

characteristics of the particle swarm optimization algorithm, we introduce the crossover and variation of

genetic algorithms in the update operation of PSO algorithm. Then, an improved particle swarm

heterogeneous multiprocessor independent task scheduling algorithm based on this model is proposed.

We hope that it will bring new inspiration and help to industry and scientific research by solving such

problems.

4 PSO Algorithm

Particle swarm optimization is inspired by interactions involved in the collective social behavior of

animals. For example, a group of migratory birds maintain a certain formation flying between each other.

The PSO algorithm focuses on the motion of a group of examples to cover the solution space to find

different possible solutions for approximate optimal solutions.

Assuming that search space of the problem is an n-dimensional space, the position and velocity vectors

of the first particle can be expressed as follows:

1 2

[, , ...,]
i i i in

X x x x=

1 2

[, , ...,]
i i i in

V v v v=

During each iteration, the particle continuously adjusts its position and updates it by tracking the

position and velocity extremum. The optimal solution found by the first particle itself is marked as the

individual optimal solution pbesti = [pbesti1, pbesti2,…, pbestin], and the other is the optimal solution

found by the whole population at present, which is called the global optimal solution, denoted as gbesti=

[gbesti1, gbesti2, …, gbestin]. In addition, the optimal solution of all the neighbors of the particle is the

local optimal solution.

Journal of Computers Vol. 30 No. 6, 2019

245

In the original particle swarm optimization algorithm, the particle position and velocity variation

formula [5] are as follows:

1 1 2 2

(1) () ()[() () ()[() ()]
is is is is gs is

V t V t c r t p t X t c r t p t x t+ = + − + − (3)

 (1) () (1)
is is is

X t X t V t+ = + + (4)

In above equations, i = [1, m], s = [1, S]. c1, c2 are a non-negative integer and are called learning

factors. r1, r2 are independent random number between [0, 1]. The Vmax is the maximum speed of particle,

and it is constant and set by users. The m represents the population size and the t represents iteration

number.

5 Based on Improved PSO Scheduling Algorithm

The improved particle swarm optimization algorithm proposed in this paper defines each particle as the

potential solution of the problem, that is, after initializing the generated particle, each particle obtains a

scheduling length and a scheduling sequence.

The innovation of the improved particle swarm optimization scheduling algorithm proposed in this

paper is that it mainly transforms the update operation of the particle swarm optimization algorithm and

introduces the crossover and mutation operations of the genetic algorithm into the particle swarm

optimization algorithm. In the update operation of the algorithm, the main function of the crossover

operation is that it exchanges the same type but different sizes tasks of the two processors, and then

calculates their scheduling sequence and the scheduling length. The function of the mutation operation is

that it chooses two processors in the processor list randomly, one processor reduces a task and the other

processor adds the task that former processor’s lost, and then calculates the scheduling length and

running time of the two processors.

Pseudo code of update algorithm (the core of this algorithm) can be seen as follows:

Table 1. Update algorithm

Input: parameters for scheduling algorithm

Output: Makespan, LocalBestParticle

1. for i=1 to a1

2. Crossoveroperator (Schedule,LocalBestSchedule);

3. end for

4. for j=1 to a2

5. CrossOverOperator (Schedule,GlobalBestSchedule);

6. end for

7. for k=1 to b

8. MutationOperator();

9. end for

10. CalculateMakespan

11. SetLocalBestParticle

Table 2. CrossOverOperator algorithm

Input: Schedule, LocalBestSchedule/GlobeBestSchedule

Output. New Schedule

1. Choose a randomly a processor ID random_processor_id;

2. Get the processor to move from the chosen processor of best particle;

3. Get a random task from the shortlisted tasks

4. Look for this task in processor_schedule. That is, check which processor currently has the task in

processor_schedule

5. Get the task to lose from processor_map

6. Get a random task from the shortlisted tasks

7. Swap the tasks between the processors in processor_schedule

A Heterogeneous Multiprocessor Independent Task Scheduling Algorithm Based on Improved PSO

246

Table 3. MutationOperater algorithm

Input:

Output:

1. Get two random processors, random_p1_id, random_p2_id

2. Compare run time to select which processor will gain/lose a task

3. Select which process will be moved from losing p to gaining p

4. One processor loses a task from its task_list and the other get this task and add it in its task_list

The flow chart of the improved algorithm is as follows:

Fig. 1. Algorithm flowchart

Algorithm detailed calculation process is as follows:

Step 1. m specified different processing frequencies heterogeneous processor and n tasks to be processed

are Initialized (n>m). Also, p particles are randomly generated.

Step 2. After generating p particles, each particle will generate a random scheduling. Firstly, the task is

assigned to the processor randomly and equally, the random scheduling sequence is obtained, the

scheduling length of the particle is calculated, and the local optimal scheduling is set. When each particle

calculates its scheduling length and obtains their scheduling sequence, the global optimal scheduling

length and its scheduling sequence are obtained.

Step 3. Particle update operation is performed. Here is the core of the algorithm. Firstly, the scheduling

sequence and the local scheduling sequence are run a1 times crossover operation. After the crossover

operation, the optimal local scheduling sequence can be obtained between the particles. Then a2 times

cross operation is performed on the scheduling sequence and the globally optimal scheduling sequence.

After the cross operation is completed, the scheduling sequence obtains the global optimal scheduling

Journal of Computers Vol. 30 No. 6, 2019

247

sequence. Finally, b times mutation operation is carried out.

Step 4. After the update operation, the scheduling length is calculated, the global optimal particle is set,

and the scheduling length is outputted.

Step 5. Judge whether the stop condition is satisfied or not, otherwise repeat the first step.

6 Experiments and Analysis

In this section, we will demonstrate the experiment in detail. The experiment environment and algorithm

parameters will be shown on Section 6.1, the experiment result and analysis of the experiment result will

be depicted on Section 6.2.

6.1 Environment of the Experiments

The experimental environment in this paper is shown in Table 4.

Table 4. Experimental environment setup

CPU AMD Athlon (tm) II X4 645 Processor 2.3GHz

Memory 4G

Operating system Windows 7

Development platform Visual Studio 2013

Program language C++

In this experimental environment, the algorithm parameters are set as follows: cognitive factor a1 = 5,

social factor a2 = 5, inertial factor b = 10, particle number =20, iteration number = 1000. The processing

speed of processor is randomly generated from 1000 to 300000 instructions per millisecond.

Communication rate between processors is randomly set from 10 to 1000 bytes per millisecond. Average

instruction of task is set from 100 to 100000000 instructions randomly. Data amount of task is generated

from 0 to 100000 bytes randomly.

6.2 Experimental Result

In order to verify the effectiveness of the algorithm, this paper uses two groups of experiments to test the

performance of the algorithm: The first group is set to execute a fixed number of tasks but under the

system environment of different number of cores. The second group, as control group, is set to execute

different number of tasks and under the system environment of a fixed number of cores. The first group

of experiments includes experiments 1 to 3, and the experiment setup is as follows: the number of fixed

tasks is 1000, and the experiments are carried out under the environment of 10, 15 and 20 heterogeneous

processor cores respectively. In contrast, the second group of experiments includes experiments 4 to 6,

the experimental setup is as follows: the fixed number of heterogeneous processor cores is 10, and the

performance of the algorithm is tested under the task number of 350, 600, 850. The following

experimental results are the average of the results obtained after the algorithm is run 20 times.

In above table, the experiment 1 shows every 50 iterations’ makespan of PSO and the improved PSO

scheduling algorithm in the system environment of processor core number of 10, task number of 1000.

The experiment 2 displays every 50 iterations’ makespan of PSO and the improved PSO scheduling

algorithm in the system environment of processor core number of 15, task number of 1000. The

experiment 3 demonstrates every 50 iterations’ makespan of PSO and the improved PSO scheduling

algorithm in the system environment of processor core number of 20, task number of 1000.

The makespan of the first group of experiments after 1000 iterations is shown in Table 5.

A Heterogeneous Multiprocessor Independent Task Scheduling Algorithm Based on Improved PSO

248

Table 5. First group of experiments

Experiment 1 Experiment 2 Experiment 3
Iteration

PSO Makespan IPSO Makespan PSO Makespan IPSO Makespan PSO Makespan IPSO Makespan

0 1599.269 1601.006 1768.758 1767.658 1367.156 1368.866

1 1518.013 1593.036 1645.268 1611.598 1246.121 1272.121

50 308.924 284.924 225.033 210.033 190.003 167.003

100 299.409 282.409 223.476 208.446 188.852 165.852

150 293.463 280.463 217.459 207.459 188.344 165.344

200 292.646 279.083 216.198 206.691 172.760 164.660

250 292.036 278.636 216.836 205.836 172.722 164.022

300 292.036 278.094 216.386 205.386 171.693 163.693

350 291.831 277.831 216.002 205.002 171.612 163.512

400 291.790 277.790 215.774 204.774 171.612 163.404

450 291.790 277.790 215.588 204.588 171.612 163.155

500 291.790 277.790 215.411 204.411 170.227 163.138

550 291.747 277.747 215.353 204.353 170.227 163.102

600 291.663 277.663 215.310 204.310 170.227 163.027

650 291.663 277.661 214.308 204.308 170.217 163.027

700 290.663 277.634 214.292 204.292 170.185 163.008

750 290.663 277.633 214.260 204.258 170.166 163.007

800 290.663 277.609 214.260 204.258 170.125 163.006

850 290.646 277.567 214.260 204.197 170.106 163.001

900 290.646 277.466 214.260 204.190 170.106 162.864

950 290.646 277.466 214.260 204.160 170.106 162.853

1000 290.646 277.466 214.198 204.099 170.106 162.423

In contrast, we set up a second group to test the performance of our proposed algorithm. Table 6

depicts the experiment results of second group.

Table 6. Second group of experiments

Experiment 4 Experiment 5 Experiment 6
Iteration

PSO Makespan
IPSO

Makespan
PSO Makespan IPSO Makespan PSO Makespan

IPSO

Makespan

0 529.489 528.723 985.158 987.559 1426.258 1423.381

1 418.692 414.790 863.159 869.120 1335.365 1310.822

50 138.576 101.024 200.568 173.732 302.924 242.301

100 112.684 99.959 183.526 171.944 259.409 239.831

150 112.684 99.794 183.326 171.331 250.463 238.073

200 110.583 99.721 185.326 170.902 257.083 237.369

250 111.583 99.681 183.232 170.774 257.036 236.953

300 111.583 99.608 183.232 170.701 257.036 236.705

350 111.583 99.467 183.232 170.628 256.831 236.691

400 110.883 99.374 182.126 170.588 256.790 236.675

450 110.883 99.374 182.126 170.520 256.790 236.597

500 110.883 99.311 181.626 170.446 256.790 236.532

550 110.883 99.299 181.626 170.421 255.747 236.408

600 110.883 99.274 181.428 170.406 255.663 236.339

650 110.883 99.263 181.426 170.366 255.663 236.334

700 110.883 99.263 181.126 170.223 255.663 236.294

750 110.879 99.258 180.126 170.212 255.649 236.279

800 110.879 99.258 180.126 170.210 255.649 236.237

850 110.579 99.258 180.126 170.179 255.646 236.237

900 110.579 99.248 180.126 170.122 255.646 236.237

950 110.179 99.248 180.326 170.110 255.646 236.191

1000 110.179 99.238 182.326 170.104 255.646 236.107

Journal of Computers Vol. 30 No. 6, 2019

249

From Table 6, Experiment 4 reveals comparison of experimental results between PSO and improved

PSO scheduling algorithm in the system environment of heterogeneous processor core number of 10 and

a task number of 350. Experiment 5 exhibits comparison of experimental results between PSO and

improved PSO scheduling algorithm in the system environment of heterogeneous processor core number

of 10 and a task number of 600. Experiment 6 displays comparison of experimental results between PSO

and improved PSO scheduling algorithm in the system environment of heterogeneous processor core

number of 10 and a task number of 850.

The makespan of the second group of experiments after 1000 iterations is shown in the following

figure. From the experimental results of Fig. 3 and Fig. 4, it can be seen that the proposed IPSO

heterogeneous multiprocessor independent task scheduling algorithm can obtain shorter scheduling

length than the PSO scheduling algorithm after 1000 iterations, regardless of whether in the system

condition of various number of processors and fixed number of tasks or different number of tasks and

fixed number of processors.

Fig. 2. Two algorithms’ makespan Diagram in 10, 15, 20 processors after 1000 iterations

Fig. 3. Two algorithms’ makespan diagram in 350, 600, 850 tasks after 1000 iterations

It can be seen from Table 5 that both IPSO and PSO algorithms’ makespan are getting smaller and

smaller after each iteration under the conditions of different numbers of processors and 1000 tasks, but

IPSO on average obtains lower scheduling length. From Table 6, we can see that both IPSO and PSO

algorithm’s makespan decrease as the iteration goes, but overall IPSO can obtain lower makespan than

PSO algorithm under the condition of various tasks’ number and 10 processors. Considering the

experimental results of above experimental tables and images, we can draw the conclusion that IPSO

algorithm has lower scheduling length and faster convergence speed.

A Heterogeneous Multiprocessor Independent Task Scheduling Algorithm Based on Improved PSO

250

7 Conclusions

In this paper, a heterogeneous multi-processors independent scheduling model is established, and the

assumptions and algorithm objectives are given. On above basis, a heterogeneous multi-processors

independent task scheduling algorithm based on improved PSO is proposed. The experimental results

show that the proposed improved PSO heterogeneous multi-processors independent task scheduling

algorithm is better than the PSO algorithm under the scheduling model, which can jump out of the local

optimal solution faster and avoid premature occurrence. In the next work, we plan to introduce methods

such as machine learning to optimize the algorithm further.

Acknowledgments

As the research of the thesis is sponsored by National Natural Science Foundation of China (No:

61662017, No: 61262075), Key R & D projects of Guangxi Science and Technology Program

(AB17195042), Guangxi Science and Technology Development Special Science and Technology Major

Project (No: AA18118009), Guangxi Key Laboratory Fund of Embedded Technology and Intelligent

System, we would like to extend our sincere gratitude to them.

References

[1] S. Iturriaga, S. Nesmachnow, F. Luna, E. Alba, A parallel local search in CPU/GPU for scheduling independent tasks on

large heterogeneous computing systems, The Journal of Supercomputing, 71(2)(2015) 648-672.

[2] S.K. Sahni, Algorithms for scheduling independent tasks, Journal of the ACM 23(1)(1976) 116-127.

[3] S. Shriya, R.S. Sharma, S. Sumit, S. Choudhary, Directed search-based PSO algorithm and its application to scheduling

independent task in multiprocessor environment, in: Proc. the 4th International Conference on Frontiers in Intelligent

Computing: Theory and Applications (FICTA), 2016.

[4] J. Yi, Q. Zhuge, J. Hu, S. Gu, M. Qin, E.H.M. Sha, Reliability-guaranteed task assignment and scheduling for heterogeneous

multiprocessors considering timing constraint, Journal of Signal Processing Systems 81(3)(2015) 359-375.

[5] N. Kumar, D.P. Vidyarthi, A novel hybrid PSO–GA meta-heuristic for scheduling of DAG with communication on

multiprocessor systems, Engineering with Computers 32(1)(2016) 35-47.

[6] Y.M. Xu, K.L. Li, J.T. Hu, K.Q. Li, A genetic algorithm for task scheduling on heterogeneous computing systems using

multiple priority queues, Information Sciences 270(6)(2014) 255-287.

[7] R. Ayari, I. Hafnaoui, G. Beltrame, G. Nicolescu, ImGA: an improved genetic algorithm for partitioned scheduling on

heterogeneous multi-core systems, Design Automation for Embedded Systems 22(1-2)(2018) 183-197.

[8] Y. Jiang, Z. Shao, Y. Guo, H. Zhang, K. Niu, DRSCRO: a metaheuristic algorithm for task scheduling on heterogeneous

systems, Mathematical Problems in Engineering 2015(2015) Article ID 396582.

[9] K. Prescilla, A.I. Selvakumar, Modified binary particle swarm optimization algorithm application to real-time task

assignment in heterogeneous multiprocessor. Microprocessors and Microsystems 37(6-7) (2013) 583-589.

[10] G. Xie, G. Zeng, L. Liu, R. Li, K. Li, Mixed real-time scheduling of multiple DAGs-based applications on heterogeneous

multi-core processors, Microprocessors and Microsystems 47(2016) 93-103.

[11] C. Xu, T. Li, Chemical reaction optimization for task mapping in heterogeneous embedded multiprocessor systems,

Advanced Materials Research, Trans Tech Publications 712(2013) 2604-2610.

Journal of Computers Vol. 30 No. 6, 2019

251

[12] Y. Xu, K. Li, L. He, T.K. Truong, A DAG scheduling scheme on heterogeneous computing systems using double

molecular structure-based chemical reaction optimization, Journal of Parallel and Distributed Computing 73(9)(2013) 1306-

1322.

[13] K. Rzadca, F. Seredynski, Heterogeneous multiprocessor scheduling with differential evolution, in: Proc. 2005 IEEE

Congress on Evolutionary Computation, 2005.

[14] C. Gogos, C. Valouxis, P. Alefragis, G. Goulas, N. Voros, E. Housos, Scheduling independent tasks on heterogeneous

processors using heuristics and Column Pricing, Future Generation Computer Systems 60(2016) 48-66.

[15] T.D. Brauna, H.J. Siegel, N. Beck, L.L. Bölönid, M. Maheswarane, A.I. Reuther, J.P. Robertson, M. D. Theys, B. Yao, D.

Hensgen, R.F. Freundk, A comparison of eleven static heuristics for mapping a class of independent tasks onto

heterogeneous distributed computing systems, Journal of Parallel and Distributed computing 61(6)(2001) 810-837.

[16] B. Dorronsoro, F. Pinel, Combining machine learning and genetic algorithms to solve the independent tasks scheduling

problem, in: Proc. 2017 3rd IEEE International Conference on Cybernetics (CYBCONF), 2017.

[17] Y. Zhou, C. Jiang, Y. Fang, Research on independent task scheduling algorithm in heterogeneous environment, Computer

Science 35(8)(2008) 90-92+97.

[18] A. Omidi, A. M. Rahmani, Multiprocessor independent tasks scheduling using a novel heuristic PSO algorithm, in: Proc.

IEEE International Conference on Computer Science and Information Technology, 2009.

[19] W. Zhang, H. Xie, B. Cao, A.M.K. Cheng, Energy-aware real-time task scheduling for heterogeneous multiprocessors with

particle swarm optimization algorithm, Mathematical Problems in Engineering, (2014) 1-9.

[20] S. Sarathambekai, K. Umamaheswari, Intelligent discrete particle swarm optimization for multiprocessor task scheduling

problem, Journal of Algorithms & Computational Technology 11(1)(2016) 58-67.

[21] J. Chen, Q. Pan, Improved particle swarm optimization algorithm for solving independent task scheduling problem,

Microelectronics & Computers 26(1)(2009) 214-215.

[22] Y. L. Wang, N. Wang, C. H. Yang, W. H. GUI, A discrete particle swarm optimization algorithm for task assignment

problem, Journal of Central South University Science and Technology 39(3)(2008) 570-576.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

