
Journal of Computers Vol. 31 No. 1, 2020, pp. 46-56

doi:10.3966/199115992020023101004

46

Deeply Integrated Convolutional Neural Networks

Daojun Liang1, Xiuping Wang1, Xiaohui Ju1, Feng Yang1,2*

1 School of Information Science and Engineering, Shandong Normal University, Jinan 250014,

Shandong Province, China

{liangdaojun, wangxiuping, juxiaohui}@stu.sdnu.edu.cn

2 Institute of Data Science and Technology, Shandong Normal University, Jinan 250014,

Shandong Province, China

yangfeng@sdnu.edu.cn

Received 20 April 2018; Revised 29 August 2018; Accepted 5 October 2018

Abstract. The ensemble learning system based on neural network requires a large number of

networks as the basic classifier, which makes the parameters and calculations of the system

increase sharply. Integrating the neural network in depth can not only reduce the parameters and

calculations of the network, but also improve the overall network performance. In this paper, a

deeply integrated convolutional neural network (DICNN) was proposed, and several different

integration methods were proposed for integrated learning of DICNN. The Mixup is used to

train the DICNN because it uses multiple samples for training and it can be better combined

with DICNN. A series of ablation experiments were done to prove that the training method of

Mixup is equivalent to a regularization and data augmentation. Therefore, a different multi-

sample training method as variations of the Mixup (Mixup-XL) can be used to train the DICNN.

Keywords: computer vision, deep learning

1 Introduction

Neural network ensemble is regarded as an engineering neural computing technology with broad

application prospects, and has become a research hotspot in the field of machine learning and neural

computing [1-2]. It can significantly improve the generalization ability of the learning system by training

multiple neural networks and combining their conclusions [3-4]. The use of deep neural networks for

ensemble learning will make the learning system have a huge amount of parameters and computation,

which is also a challenge for existing ensemble algorithms. In this paper, a depth-based integrated

convolutional neural network framework is proposed (DICNN). The architecture uses different depths of

network blocks for ensemble learning, and each block structure is considered a basic classifier. The basic

block structure can be integrated using different algorithms. For example, these base classifiers can be

concatenated, added, maximized, and voted. DICNN is a method of neural network pseudo-ensemble

learning, because its basic classifiers are not completely independent, but its various classifiers are not

inseparable. DICNN can make multiple basic classifiers have the opportunity to participate in the final

classification decision, which is beneficial to improve the generalization performance of the entire neural

network. Fig. 1 shows the architecture of DICNN schematically.

* Corresponding Author

Journal of Computers Vol. 31 No. 1, 2020

47

Fig. 1. The architecture of DICNN. The cube represents the convolutional layer, and the cuboid

represents the fully connected layer. The symbol “c” represents the concatenation operation, and the

symbols “+”, “m”, and “v” represent the addition operation, the maximize operation, and the voting

operation, respectively.

Although the existing channel-fused neural network achieves implicit supervision, such as ResNets [5]

and DenseNets [6], the network performance is lower than explicit supervising or integrating layers of

different depths. Some experiments in this paper prove that DICNN can effectively improve the network

with residual structure. The Mixup [7] method is used to train DICNN because it can take multiple

samples as input at the same time, so that different loss functions can be used on the basic classifier at

different depths. We also did some experiments to verify and explain why the Mixup is better than the

Empirical Risk Minimization (ERM) [8] training method. These experiments prove that Mixup not only

plays a role in data augmentation, but also plays a role in regularizing network parameters. A variant of

the Mixup method (Mixup-XL) can be obtained by mixing the sample and the label separately using

random values of different distributions. DICNN trained using the Mixup-XL method will have better

generalization capabilities.

2 Related Work

Convolutional neural networks have made great progress in many fields, and the research of the network

architecture has never stopped. There are a lot of networks that have achieved very good performance by

applying new architectures. AlexNet [9] is the first to demonstrate the generalization ability of

convolutional neural networks on large data. VGGNets [10] show that better performance can be

achieved with smaller convolutional kernels and deeper layers. GoogLeNets [11] use different

convolution kernels to establish more connections and more diverse representations between adjacent

layers. ResNets [5] and Highway Networks [12] add the front layer information to the back layer through

the bypass structure, which is more conducive to the backpropagation of the gradient, thus further

deepening the depth of the network. ResNeXts [13] combine group convolution into ResNets [5], which

perform split-transform-merge operations on features to improve network performance while reducing

parameters. DenseNets [6] pass the features of each preceding layer to all of its subsequent layers to

alleviate the vanishing/exploding gradient problem and to facilitate information fusion between layers.

Hansen and Salamon [1] pioneered the neural network ensemble method. They proved that the

generalization ability of the neural network system can be significantly improved by simply training

multiple neural networks and synthesizing the results. Maclin and Opitz [3] believe that neural network

ensemble refers to multiple independently trained neural networks to learn and jointly determine the final

output, and does not require the integrated network to learn the same subproblem. When neural network

ensemble is used for regression estimation, the integrated output is typically generated by the output of

each network by simple averaging or weighted averaging. Perrone and Cooper [14] believe that using a

weighted average gives better generalization than a simple average. However, Opitz and Shavlik [15]

believe that optimizing the weights will lead to overfitting, which will reduce the generalization ability of

the ensemble. Therefore, they recommend using a simple average. Zhang et al. [16] use multiple neural

networks to combine multiple predictions. Jabcobs [17] optimize each group of subnets to better handle

an input subspace. However, Jimenez [18] does not use the linear combination method, but use some

dynamic weights that vary with the degree of certainty of the individual network output to produce the

final classification. Ueda [19] has chosen the best network for each output classification based on the

Deeply Integrated Convolutional Neural Networks

48

minimum classification error and then estimated the optimal linear weight to integrate the individual

networks.

There are many ways to make the deep neural network achieve good generalization ability. Data

augmentation is one of the most effective methods. Because it does not increase the parameters of the

model and is easy to implement, it is widely used in deep neural network to control the complexity of the

model and improve its generalization performance. For example, commonly used random clipping,

horizontal flipping, adding a small amount of noise, and adjust the brightness, saturation, contrast of

images. SamplePairing [20] and Mixup [7] have proven to be more generalizable than traditional training

methods on many different datasets. In Mixup [7], a data augmentation method using a combination of

two pictures in a training set is proposed. SamplePairing [20] randomly selects a sample in the training

set to perturb the original sample (adding the two samples and then averaging them) and using the label

of the original sample as the label of the new sample. Because different types of training samples are

introduced during training, the neural network trained by the method has high training errors and losses,

and the original samples need to be used to finetune the neural network or use a certain proportion of

original samples in each batch. Mixup [7] uses a random value from the beta distribution as a weight to

interpolate the two samples and their corresponding labels, respectively. The neural network trained in

this way can achieve relatively low training errors and losses without the need for finetuning. This

method trains a neural network on convex combinations of pairs of examples and their labels, which

regularizes the neural network to favor simple linear behavior in-between training examples.

3 DICNN Architecture

In this section, how to divide the neural network into basic classifiers will first be introduced in Section

3.1. Then, the integrated methods for each basic classifier is proposed in Section 3.2. Finally, the loss

function used to train DICNN is introduced in Section 3.3.

3.1 Basic Classifier

In order to integrate the neural network in depth, it is first necessary to divide the network into multiple

basic classifiers. Generally speaking, a basic classifier can be divided every few fixed layers, and then the

basic classifiers can be integrated into different methods to obtain an integrated learning system. For a

neural network with a block structure, it is highly desirable to treat each block structure as a base

classifier because these blocks have a complete feature structure as classification information.

When the block structure of a network is used as the basic classifier, it is first necessary to perform

batch normalization (BN) [21] operation and rectified linear unit (Relu) [22] operation on its features,

and then perform downsampling pooling on the feature map to obtain a one-dimensional fully connected

layer. We record the basic classifier of DICNN as
i

C , where i is the number of the classifier, its value

increases with depth.

3.2 Ensemble method

As shown in Fig. 1, there are many integration methods available: the basic classifiers can be

concatenated, added, maximized, voted, etc.

Concatenation. Combine all the basic classifiers to get a one-dimensional vector, then perform BN and

Relu operations on the vector, and finally use a fully connected layer to match the number of sample

categories. This method is called DICNN-C:

1 2
([, , ,])

()

()

N

N

final ii

N

ii

f C C C

C f C

f C

⎧
⎪
⎪

= ⎨
⎪
⎪⎩

∑

∏

�

 (1)

where the brackets “[]” represent the concatenation operation, and f represents a composite function

containing BN, Relu, and fully connected layers. Eq. (1) shows that the final vector of the input

Journal of Computers Vol. 31 No. 1, 2020

49

composite function f can be obtained by the concatenation operation, the addition operation, or the

multiplication operation. We identify the various methods by adding suffixes. For example, finalC

obtained by the concatenation operation is recorded as DICNN-C. The method of obtaining finalC by the

addition operation is recorded as DICNN-CA. Similarly, the finalC obtained by the multiplication

operation is recorded as DICNN-CM.

Addition. Add all the base classifiers directly as the final classifier. It should be noted that the number of

each base classifier should be equal to the number of sample categories. This method is called DICNN-A:

1

1

. . 1, 0

N

final i i

i

N

i i

i

C C

s t

α

α α

=

=

=

= >

∑

∑

 (2)

where
i

α in represent the weight value of each base classifier.

Maximize. The classifier with the highest prediction probability among all the base classifiers is used as

the final classifier. This method is called DICNN-M:

 max{ } 1final i
i

C C i N= ≤ ≤ (3)

Voting. Relative majority voting rules are used to vote on the basic classifiers: a classification becomes

the final result if and only if the classification has the largest number of base classifiers. This method is

called DICNN-V:

() iff. only one largest element exists

.

max{ }

N

i

i

N

final
i

i

i
i

I C

C
C

otherwise

C

⎧
⎪
⎪
⎪⎧= ⎨
⎪⎪⎨⎪
⎪⎪⎩⎩

∑

∑
 (4)

where ()
i

I C represents the maximum probability category index in
i

C . In Eq. (4), if there are two

largest elements in the final vector, the final classifier will be set to a classifier that adds all the base

classifiers or takes the highest probability among all the base classifiers. The method using only the

voting operation is recorded as DICNN-V, and the method of combining the voting operation and the

maximizing operation is recorded as DICNN-VM.

3.3 Training Method

Mixup. SamplePairing and Mixup are very similar to traditional data augmentation methods, but they are

also different. SamplePairing adds other samples from the training set as noise to regularize the neural

network during training. Mixup does not explicitly use the original sample training network, but the

combination of the original sample. In some sense, Mixup is a smooth way of SamplePairing. Mixup is

also a good regularization method. Our experiments show that Mixups actually train and predict two or

more samples simultaneously. When training multiple samples at the same time, there are cases where

multiple samples are confused with each other. The Mixup approach avoids the confusion between

multiple samples, easily separating two different categories.

Mixup uses the convex combination of the original samples to train the neural network. Does the

neural network make convex interpolation to the sample? Our experiments show that there is no

connection between the way of samples combination and the way of labels combination. These

combinations can come from different distributions, and neural networks can accurately capture these

combinations. In other words, the neural network has the ability to learn and predict multiple sample

categories at the same time.

The Mixup training method in the original paper is implemented by using a random value to weight

the samples and their labels. Mixup can be formalized as:

Deeply Integrated Convolutional Neural Networks

50

(1)

(1)

. . 0 1

i j

i j

x x x

y y y

s t

λ λ

λ λ

λ

= + −

= + −

≤ ≤

�

� (5)

where (,)
i i
x y and (,)

j j
x y are two examples drawn at random from our training data, ~ (,)Betaλ α α

for λ in [0,1] . In the Mixup, training samples and their labels simultaneously reduce the λ or 1 λ−

times, implying this linear relationship. The signal strength scaled by λ or 1 λ− times. Our experiments

show that training samples and their labels do not simply have a linear relationship.

Mixup-XL. Let’s take the sample’s mixing ratio as
x

λ and the sample label’s mixing ratio as
l

λ . Our

empirical experiments show that the sample mixing ratio
x

λ and the label mixing ratio
l

λ do not have to

be the same and do not have to come from the same distribution. We define the two ratios of
x

λ and
l

λ

to be [0.5 , 0.5]
x x

R R− + and [0.5 , 0.5]
l l

R R− + respectively, where ,
x l

R R in [0,0.5] . When
x

R is equal

to
l

R , we write them uniformly as R . Conversely, when we use R , it means
x

R is equal to
l

R . Fig. 2

analyzes the training accuracy of Mixup training methods for different values of
x

R and
l

R . In Fig. 2,

0
x

R = , only
l

R is changing. We call this training method Mixup-L. If 0
l

R = , only
x

R is changing, this

training method is called Mixup-X. When
x l

R R= , this training method is the original Mixup. If
x

R and

l
R are all changing (

x l
R R≠), and they obey different distributions. This trianing method is called

Mixup-XL:

(1)

(1)

. . 0 , 1

x i x j

l i l j

x l

x x x

y y y

s t

λ λ

λ λ

λ λ

= + −

= + −

≤ ≤

�

� (6)

where ~ (,)
x

Betaλ α α and ~ (,).
l

Normal m vλ Using different distributions of random values to

separately weighted the training samples and their labels, and this method can also achieve the same

effect as the Mixup. This shows that neural networks not only learn simple linear interpolation of input

and output, but also learn interpolation between different distributions. However, the neural network will

have higher training error and loss if either the input or the output of the fixed neural network is used

(only the samples are weighted by a random value or the samples are weighted by random values). The

generalization error of the Mixup is higher than that of the traditional training method.

Fig. 2 shows that the Mixup training method is quite different from the traditional training methods. In

the traditional training method, the input and output are fixed, the training error can be reduced to 0. In

Mixup, however, the training error is not reduced to 0 if the inputs and outputs are fixed, but this does not

guarantee that the generalization error is higher than the generalization error of the network using the

traditional method. The use of mixup has a higher loss than the traditional method, but it can achieve a

lower generalization error, which shows that the two training methods are different in essence. This also

shows that the neural network will become more clear the critical surface, sample confusion will be

further eliminated. When 0
l

R = , the training accuracy gradually increases with the increase of
x

R ,

which is already higher than that of ERM training when 0.5
x

R = . When 0
x

R = , the performance of the

network gradually declines, indicating that the simple regularization method does not work well after the

data augmentation of the Mixup method is removed. It can be found that the performance of the Mixup-

XL method is slightly higher than that of the Mixup method, which means that differently distributed

samples and label combinations can achieve better results.

Journal of Computers Vol. 31 No. 1, 2020

51

(a) (b)

Fig. 2. Training and testing accuracy of Mixup and its variants using the PreAct-ResNet-18 [23] network

on CIFAR-10 dataset [24]. The x-axis represents the range of variation of the mixing ratio.

3.4 Loss Function

The difference with the traditional network is that DICNN has multiple base classifiers. We directly add

the cross-entropy of the output of multiple base classifiers. The loss of the whole network is:

~ ()

1

1

[log ()]

. . 1

N

k y p y k

k

N

k

k

Loss E C y

s t

β

β

=

=

=

=

∑

∑

 (7)

where
k

β represent the weight value of loss function of the base classifier. If the Mixup or Mixup-XL

method is used to train DICNN, the corresponding loss function can be formalized as:

~ ()

1

~ ()

1

([log ()]

[log ((1))])

. . 1

i i

j j

N

k y p y k i

k

y p y k j

N

k

k

Loss E C y

E C y

s t

β λ

λ

β

=

=

=

+ −

=

∑

∑

 (8)

where
i
y and

j
y represent the labels corresponding to the random sample

i
x and

j
x in the training set,

and
k

β represent the weight value of loss function of the base classifier.

4 Experiments

4.1 Dataset

The CIFAR-10 [24] dataset consists of 60000 32× 32 color images in 10 classes, with 6000 images per

class. There are 50000 training images and 10000 test images. The dataset is divided into five training

batches and one test batch, each with 10000 images. The test batch contains exactly 1000 randomly-

selected images from each class. The training batches contain the remaining images in random order, but

some training batches may contain more images from one class than another. Between them, the training

batches contain exactly 5000 images from each class.

The CIFAR-100 [24] dataset has 100 classes, 500 training images and 100 testing images for each

classes. Channel means are computed and subtracted in preprocessing. We also apply standard

augmentation [5-6]: horizontal flipping and translation by 4 pixels are adopted in our experiments.

Deeply Integrated Convolutional Neural Networks

52

4.2 Training

For comparison purposes, we use the ResNet-56 [5] and DenseNet-BC-70 [6] network architecture for all

datasets and set the same hyperparameters and training procedures for neural networks trained on

CIFAR-10 [24] dataset. ResNet-56 [5] and DenseNet-BC-70 [6] are used as the basic network

architecture.

All the networks are trained on two Tesla k80 GPUs using stochastic gradient descent (SGD). We use

a weight decay of 1x10-4 and a Nesterov momentum [25] of 0.9 without dampening. The batch size on

each GPU is set to 128 for 100 epochs. The initial learning rate is set to 0.1 and is divided by 10 at 40%,

60% and 80% of the total number of training epochs. The balance factor α in Eq. (2) is set to
1

N
, and

the balance factor in Eq. (7) and Eq. (8) is set to
1

N
. The mean m and the variance v in Eq. (6) are set

to 0.6 and 0.3 for
l

λ , and the value of α is set to 1 for
x

λ .

4.3 Fineturning Mixup Training Method

For networks using different Mixup training, further finetuning can improve the generalization

performance of the single-category network. Note that in this finetuning process, multiple categories of

input and output layers will be replaced by a single category.

We carried out experiments use ResNet-56 [5] on CIFAR-10 [24] and CIFAR-100 [24]. The ResNet-

56 [5] is divided into 3 blocks, each of which is a residual block containing two convolutional layers.

After each block, the feature size is halved and the number of channels is doubled. ResNet-56 [5] is used

for all datasets and set the same hyperparameters and training procedures for neural networks trained on

different datasets.

The results are shown in Table 1 and Table 2. From the Table 1, we can see that the single class

precision of the network after the finetuning has a greater increase, which is because the confusion

between multiple categories is eliminated. This makes the network better fit for a single class of samples.

From Table 2, it can also be seen that the network performance after the finetuning has improved

significantly, with an average of 3% improvement in accuracy. This shows that in the finetuning process,

the Mixup method eliminates the confusion of other classification categories, so it increases the

generalization ability of the network.

Table 1. Finetuning the ResNet-56 [5] using different training methods on CIFAR-10 [24]

Network Mixup-X Mixup-L Mixup-C Mixup-XL

Original 90.2% 90.8% 92.5% 92.8%

Finetuning 93.1% 93.5% 93.7% 94.1%

Table 2. Finetuning the ResNet-56 [5] using different training methods on CIFAR-100 [24]

Network Mixup-X Mixup-L Mixup-C Mixup-XL

Original 74.9% 75.2% 75.5% 76.1%

Finetuning 77.8% 78.9% 79.2% 79.8%

4.4 DICNN Performance

In this section, we use DenseNet-BC-70 [6] as the basic network architecture. The network has three

block structures, each block structure consisting of 11 densely concatenated 1× 1 and 3× 3 convolutional

layers. The transfer structure consists of a 1× 1 convolutional layer and a pooled layer with a step size of

2, which is followed by all block structures but does not include the last block structure. DICNN added a

basic classifier to each transfer structure of DenseNet-BC-70 [6], so DICNN has three classifiers.

Different basic methods are used to integrate these basic classifiers to obtain different performance

DICNN variants. The performance of these methods are shown in Fig. 3.

Journal of Computers Vol. 31 No. 1, 2020

53

Fig. 3. Test accuracy of different network (DICNN and DenseNet-BC-70 [6]) structures and different

training methods (ERM and Mixup-XL) on the CIFAR10 dataset. The subgraphs connected by dashed

lines are the amplified test process after 110 epoch.

In Fig. 3, it can be seen that the performance of DICNN is slightly higher than that of DenseNet-BC-

70 [6]. The performance of DICNN trained with Mixup-XL is higher than that of DICNN trained with

ERM, which demonstrates the effectiveness of the DICNN architecture and the Mixup-XL training

method. More specific performance tests on DICNN are shown in Table 3 and Table 4.

Table 3. DICNN performance using different training methods on CIFAR-10 [24].

 DenseNet-BC-70 DICNN-C DICNN-A DICNN-M DICNN-V

ERM 93.1% 93.7% 93.4% 93.3% 93.5%

Mixup 93.8% 94.2% 94.1% 93.8% 94.1%

Mixup-XL 93.9% 94.5% 94.3% 94.2% 94.3%

Table 4. DICNN performance using different training methods on CIFAR-100 [24].

 DenseNet-BC-70 DICNN-C DICNN-A DICNN-M DICNN-V

ERM 71.5% 72.8% 72.6% 72.5% 72.8%

Mixup 74.0% 74.5% 74.3% 74.3% 73.4%

Mixup-XL 75.2% 75.4% 75.4% 75.2% 75.4%

In Table 3 and Table 4, it can be found that DICNN-C combined with Mixup-XL can achieve the best

performance. This is because DICNN-C uses a fully connected layer more than other methods in the final

integration. By adding all the basic classifiers, DICNN-A also achieved relatively good performance. The

performance of the DICNN-M is relatively lower, but almost consistently higher than the DenseNet-BC-

70 [6]. This also illustrates the effectiveness of the DICNN architecture and the Mixup-XL method.

4.5 DICNN-V

In this section, we experimented with DICNN’s voting algorithm, which uses the same network

architecture as the Sect. 4.4. Eq. (7) is used as the loss function to train the networks with different finalC .

Fig. 4(a) shows the test performance of DICNN which use Eq. (2) to obtain finalC . Since multiplying all

the base classifiers directly to get finalC will cause the DICNN to not converge (using composite function

f to do the regression can make it converge, just like Eq. (1)), we multiply any two base classifiers and

add them as finalC of the DICNN, which is formalized as:

Deeply Integrated Convolutional Neural Networks

54

1

N N

final i j

i j i

C C C

= >

=∑∑ (9)

Fig. 4(b) shows the test performance of training DICNN using Eq. (9) as finalC . In Fig. 4(a), all

methods can be predicted normally. Compared to other methods, the performance of DICNN-M is

slightly lower. This means that even if a classifier has the highest prediction probability for a category, it

is possible to predict failure. DICNN-VM combines the advantages of DICNN-V and DICNN-M, and its

test performance is the highest. This is because when some categories predict errors, it chooses the

category with the highest probability as the final classifier. In Fig. 4(b), the voting algorithm based

DICNN does not work properly. Using Eq (9) as finalC makes it impossible to vote with a single base

classifier alone because they are multiplicatively related to each other. Somewhat strangely, DICNN-M

still works, and its performance is similar to DICNN-A. The reason for this phenomenon is that there is

competition between all basic classifiers when training DICNN using Eq (9). As a result, only some of

the classifiers have larger predicted probability values, while other basic classifiers that fail in

competition have less influence on the final prediction results.

(a) (b)

Fig. 4. Different voting algorithms are used to test DICNN

5 Conclusions

In this paper, a method similar to neural network integration is proposed. The method first divides an

basic network architecture into multiple base classifiers in the depth direction and then integrates these

base classifiers in a way similar to ensemble learning. Although deeply integrated convolutional neural

network (DICNN) is a pseudo-ensemble learning method, it can achieve higher performance than the

original network. In addition to training DICNN using traditional ERM method, a Mixup variant

approach was proposed. This method uses different distributions to mix the samples and their labels,

achieving better generalization performance than the original method. In the experimental section, the

performance of various variants of DICNN were compared separately, and the adaptation based on the

voting algorithm and its disadvantages were analyzed. This approach can be easily extended to other

network architectures and can use a wider range of ensemble algorithms for better generalization

performance.

Acknowledgements

The work is partially supported by the Technology and Development Project of Shandong (No.61373081)

and the Taishan Scholar Project of Shandong, China.

Journal of Computers Vol. 31 No. 1, 2020

55

References

[1] L. K. Hansen, P. Salamon, Neural network ensembles, IEEE Trans Pattern Analysis and Machine Intelligence 12 (10)(1990)

993-1001.

[2] P. Sollich, Learning with ensembles, How over-fitting can be useful. Advances in Neural Information Processing Systems

8(1996) 190-196.

[3] R. Maclin, D. Opitz, Popular ensemble methods: an empirical study, Journal of Artificial Intelligence Research 11(1999)

169-198.

[4] L.N. Cooper, Hybrid neural network architectures: equilibrium systems that pay attention, in: R.J. Mammone, Y.Y. Zeevi

(Eds.), Neural Networks: Theory and Applications, Academic Press, 1991, pp. 81-96.

[5] K.-M. He, X.-Y. Zhang, S.-R. Ren, J. Sun, Deep residual learning for image recognition, in: Proc. IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2016.

[6] H. Gao, Z. Liu, K.Q. Weinberger, Densely connected convolutional networks, in: Proc. IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2017.

[7] H. Zhang, M. Cisse, Y.N. Dauphin, D. Lopez-Paz, Mixup: beyond empirical risk minimization, in: Proc. International

Conference on Representation Learning (ICLR), 2017.

[8] V.N. Vapnik, Statistical Learning Theory, John Wiley, 1998.

[9] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in: Proc.

International Conference on Neural Information Processing Systems (NIPS), 2012.

[10] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z.-H. Huang, A. Karpathy, A. Khosla, M. Bernstein,

Imagenet large scale visual recognition challenge, International Journal of Computer Vision 115(3)(2014) 211-252.

[11] C. Szegedy, W. Liu, Y.-Q. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper

with convolutions, in: Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

[12] R.K. Srivastava, K. Greff, J. Schmidhuber, Training very deep networks, in: Proc. International Conference on Neural

Information Processing Systems (NIPS), 2015.

[13] S. Xie, R. Girshick, P. DollÃar, Z.-W. Tu, K.-M. He, Aggregated residual transformations for deep neural networks, in:

Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[14] M.P. Perrone, L.N. Cooper, When networks disagree: ensemble methods for hybrid neural networks, in: Proc. Artificial

Neural Networks for Speech and Vision, 1993.

[15] D. Opitz, J. Shavlik, Actively searching for an effective neural network ensemble, Connection Science 8(1996) 337-353.

[16] X. Zhang, J.P. Mesirov, D.L. Waltz, Hybrid system for protein secondary structure prediction, Journal of Molecular

Biology 225(4)(1992) 1049-1063.

[17] R. Jabcobs, Adaptive mixtures of local experts, Neural Computation 232(2)(1991) 584-599.

[18] D. Jimenez, Dynamically weighted ensemble neural networks for classification, in: Proc. IEEE International Joint

Conference on Neural Networks Proceedings, 1998.

[19] N. Ueda, Optimal linear combination of neural networks for improving classification performance, IEEE Trans Pattern

Analysis and Machine Intelligence 22(2)(2000) 207-215.

Deeply Integrated Convolutional Neural Networks

56

[20] H. Inoue, Data augmentation by pairing samples for images classification. <https://arxiv.org/abs/1801.02929>, 2018.

[21] I. Sergey, S. Christian, Batch normalization: accelerating deep network training by reducing internal covariate shift, in:

Proc. International Conference on Machine Learning (ICML), 2015.

[22] X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural networks, in: Proc. International Conference on Artificial

Intelligence and Statistics (AISTATS), 2011.

[23] K.-M. He, X. Zhang, S. Ren, J. Sun, Identity mappings in deep residual networks, in: Proc. European Conference on

Computer Vision (ECCV), 2016.

[24] A. Krizhevsky, G. E. Hinton, Learning multiple layers of features from tiny images, Tech Report, 2009.

[25] I. Sutskever, J. Martens, G. Dahl, G.E. Hinton, On the importance of initialization and momentum in deep learning, in:

Proc. International Conference on Machine Learning (ICML), 2013.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

