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Abstract. The ensemble learning system based on neural network requires a large number of 

networks as the basic classifier, which makes the parameters and calculations of the system 

increase sharply. Integrating the neural network in depth can not only reduce the parameters and 

calculations of the network, but also improve the overall network performance. In this paper, a 

deeply integrated convolutional neural network (DICNN) was proposed, and several different 

integration methods were proposed for integrated learning of DICNN. The Mixup is used to 

train the DICNN because it uses multiple samples for training and it can be better combined 

with DICNN. A series of ablation experiments were done to prove that the training method of 

Mixup is equivalent to a regularization and data augmentation. Therefore, a different multi-

sample training method as variations of the Mixup (Mixup-XL) can be used to train the DICNN.  

Keywords:  computer vision, deep learning 

1 Introduction 

Neural network ensemble is regarded as an engineering neural computing technology with broad 

application prospects, and has become a research hotspot in the field of machine learning and neural 

computing [1-2]. It can significantly improve the generalization ability of the learning system by training 

multiple neural networks and combining their conclusions [3-4]. The use of deep neural networks for 

ensemble learning will make the learning system have a huge amount of parameters and computation, 

which is also a challenge for existing ensemble algorithms. In this paper, a depth-based integrated 

convolutional neural network framework is proposed (DICNN). The architecture uses different depths of 

network blocks for ensemble learning, and each block structure is considered a basic classifier. The basic 

block structure can be integrated using different algorithms. For example, these base classifiers can be 

concatenated, added, maximized, and voted. DICNN is a method of neural network pseudo-ensemble 

learning, because its basic classifiers are not completely independent, but its various classifiers are not 

inseparable. DICNN can make multiple basic classifiers have the opportunity to participate in the final 

classification decision, which is beneficial to improve the generalization performance of the entire neural 

network. Fig. 1 shows the architecture of DICNN schematically. 

                                                           
* Corresponding Author 



Journal of Computers Vol. 31 No. 1, 2020 

47 

 

Fig. 1. The architecture of DICNN. The cube represents the convolutional layer, and the cuboid 

represents the fully connected layer. The symbol “c” represents the concatenation operation, and the 

symbols “+”, “m”, and “v” represent the addition operation, the maximize operation, and the voting 

operation, respectively. 

Although the existing channel-fused neural network achieves implicit supervision, such as ResNets [5] 

and DenseNets [6], the network performance is lower than explicit supervising or integrating layers of 

different depths. Some experiments in this paper prove that DICNN can effectively improve the network 

with residual structure. The Mixup [7] method is used to train DICNN because it can take multiple 

samples as input at the same time, so that different loss functions can be used on the basic classifier at 

different depths. We also did some experiments to verify and explain why the Mixup is better than the 

Empirical Risk Minimization (ERM) [8] training method. These experiments prove that Mixup not only 

plays a role in data augmentation, but also plays a role in regularizing network parameters. A variant of 

the Mixup method (Mixup-XL) can be obtained by mixing the sample and the label separately using 

random values of different distributions. DICNN trained using the Mixup-XL method will have better 

generalization capabilities. 

2 Related Work 

Convolutional neural networks have made great progress in many fields, and the research of the network 

architecture has never stopped. There are a lot of networks that have achieved very good performance by 

applying new architectures. AlexNet [9] is the first to demonstrate the generalization ability of 

convolutional neural networks on large data. VGGNets [10] show that better performance can be 

achieved with smaller convolutional kernels and deeper layers. GoogLeNets [11] use different 

convolution kernels to establish more connections and more diverse representations between adjacent 

layers. ResNets [5] and Highway Networks [12] add the front layer information to the back layer through 

the bypass structure, which is more conducive to the backpropagation of the gradient, thus further 

deepening the depth of the network. ResNeXts [13] combine group convolution into ResNets [5], which 

perform split-transform-merge operations on features to improve network performance while reducing 

parameters. DenseNets [6] pass the features of each preceding layer to all of its subsequent layers to 

alleviate the vanishing/exploding gradient problem and to facilitate information fusion between layers.  

Hansen and Salamon [1] pioneered the neural network ensemble method. They proved that the 

generalization ability of the neural network system can be significantly improved by simply training 

multiple neural networks and synthesizing the results. Maclin and Opitz [3] believe that neural network 

ensemble refers to multiple independently trained neural networks to learn and jointly determine the final 

output, and does not require the integrated network to learn the same subproblem. When neural network 

ensemble is used for regression estimation, the integrated output is typically generated by the output of 

each network by simple averaging or weighted averaging. Perrone and Cooper [14] believe that using a 

weighted average gives better generalization than a simple average. However, Opitz and Shavlik [15] 

believe that optimizing the weights will lead to overfitting, which will reduce the generalization ability of 

the ensemble. Therefore, they recommend using a simple average. Zhang et al. [16] use multiple neural 

networks to combine multiple predictions. Jabcobs [17] optimize each group of subnets to better handle 

an input subspace. However, Jimenez [18] does not use the linear combination method, but use some 

dynamic weights that vary with the degree of certainty of the individual network output to produce the 

final classification. Ueda [19] has chosen the best network for each output classification based on the 
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minimum classification error and then estimated the optimal linear weight to integrate the individual 

networks. 

There are many ways to make the deep neural network achieve good generalization ability. Data 

augmentation is one of the most effective methods. Because it does not increase the parameters of the 

model and is easy to implement, it is widely used in deep neural network to control the complexity of the 

model and improve its generalization performance. For example, commonly used random clipping, 

horizontal flipping, adding a small amount of noise, and adjust the brightness, saturation, contrast of 

images. SamplePairing [20] and Mixup [7] have proven to be more generalizable than traditional training 

methods on many different datasets. In Mixup [7], a data augmentation method using a combination of 

two pictures in a training set is proposed. SamplePairing [20] randomly selects a sample in the training 

set to perturb the original sample (adding the two samples and then averaging them) and using the label 

of the original sample as the label of the new sample. Because different types of training samples are 

introduced during training, the neural network trained by the method has high training errors and losses, 

and the original samples need to be used to finetune the neural network or use a certain proportion of 

original samples in each batch. Mixup [7] uses a random value from the beta distribution as a weight to 

interpolate the two samples and their corresponding labels, respectively. The neural network trained in 

this way can achieve relatively low training errors and losses without the need for finetuning. This 

method trains a neural network on convex combinations of pairs of examples and their labels, which 

regularizes the neural network to favor simple linear behavior in-between training examples.  

3 DICNN Architecture  

In this section, how to divide the neural network into basic classifiers will first be introduced in Section 

3.1. Then, the integrated methods for each basic classifier is proposed in Section 3.2. Finally, the loss 

function used to train DICNN is introduced in Section 3.3.  

3.1 Basic Classifier 

In order to integrate the neural network in depth, it is first necessary to divide the network into multiple 

basic classifiers. Generally speaking, a basic classifier can be divided every few fixed layers, and then the 

basic classifiers can be integrated into different methods to obtain an integrated learning system. For a 

neural network with a block structure, it is highly desirable to treat each block structure as a base 

classifier because these blocks have a complete feature structure as classification information.  

When the block structure of a network is used as the basic classifier, it is first necessary to perform 

batch normalization (BN) [21] operation and rectified linear unit (Relu) [22] operation on its features, 

and then perform downsampling pooling on the feature map to obtain a one-dimensional fully connected 

layer. We record the basic classifier of DICNN as 
i

C , where i  is the number of the classifier, its value 

increases with depth. 

3.2 Ensemble method 

As shown in Fig. 1, there are many integration methods available: the basic classifiers can be 

concatenated, added, maximized, voted, etc.  

Concatenation. Combine all the basic classifiers to get a one-dimensional vector, then perform BN and 

Relu operations on the vector, and finally use a fully connected layer to match the number of sample 

categories. This method is called DICNN-C: 
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where the brackets “[ ]” represent the concatenation operation, and f  represents a composite function 

containing BN, Relu, and fully connected layers. Eq. (1) shows that the final vector of the input 
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composite function f  can be obtained by the concatenation operation, the addition operation, or the 

multiplication operation. We identify the various methods by adding suffixes. For example, finalC  

obtained by the concatenation operation is recorded as DICNN-C. The method of obtaining finalC  by the 

addition operation is recorded as DICNN-CA. Similarly, the finalC  obtained by the multiplication 

operation is recorded as DICNN-CM. 

Addition. Add all the base classifiers directly as the final classifier. It should be noted that the number of 

each base classifier should be equal to the number of sample categories. This method is called DICNN-A: 

 
1

1

. . 1, 0

N

final i i

i

N

i i

i

C C

s t

α

α α

=

=

=

= >

∑

∑

 (2) 

where 
i

α  in represent the weight value of each base classifier. 

Maximize. The classifier with the highest prediction probability among all the base classifiers is used as 

the final classifier. This method is called DICNN-M: 

 max{ } 1final i
i

C C i N= ≤ ≤  (3) 

Voting. Relative majority voting rules are used to vote on the basic classifiers: a classification becomes 

the final result if and only if the classification has the largest number of base classifiers. This method is 

called DICNN-V: 
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where ( )
i

I C  represents the maximum probability category index in 
i

C . In Eq. (4), if there are two 

largest elements in the final vector, the final classifier will be set to a classifier that adds all the base 

classifiers or takes the highest probability among all the base classifiers. The method using only the 

voting operation is recorded as DICNN-V, and the method of combining the voting operation and the 

maximizing operation is recorded as DICNN-VM. 

3.3 Training Method 

Mixup. SamplePairing and Mixup are very similar to traditional data augmentation methods, but they are 

also different. SamplePairing adds other samples from the training set as noise to regularize the neural 

network during training. Mixup does not explicitly use the original sample training network, but the 

combination of the original sample. In some sense, Mixup is a smooth way of SamplePairing. Mixup is 

also a good regularization method. Our experiments show that Mixups actually train and predict two or 

more samples simultaneously. When training multiple samples at the same time, there are cases where 

multiple samples are confused with each other. The Mixup approach avoids the confusion between 

multiple samples, easily separating two different categories.  

Mixup uses the convex combination of the original samples to train the neural network. Does the 

neural network make convex interpolation to the sample? Our experiments show that there is no 

connection between the way of samples combination and the way of labels combination. These 

combinations can come from different distributions, and neural networks can accurately capture these 

combinations. In other words, the neural network has the ability to learn and predict multiple sample 

categories at the same time. 

The Mixup training method in the original paper is implemented by using a random value to weight 

the samples and their labels. Mixup can be formalized as: 
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where ( , )
i i
x y  and ( , )

j j
x y  are two examples drawn at random from our training data, ~ ( , )Betaλ α α  

for λ  in [0,1] . In the Mixup, training samples and their labels simultaneously reduce the λ  or 1 λ−  

times, implying this linear relationship. The signal strength scaled by λ  or 1 λ−  times. Our experiments 

show that training samples and their labels do not simply have a linear relationship.  

Mixup-XL. Let’s take the sample’s mixing ratio as 
x

λ  and the sample label’s mixing ratio as 
l

λ . Our 

empirical experiments show that the sample mixing ratio 
x

λ  and the label mixing ratio 
l

λ  do not have to 

be the same and do not have to come from the same distribution. We define the two ratios of 
x

λ  and 
l

λ  

to be [0.5 , 0.5 ]
x x

R R− +  and [0.5 , 0.5 ]
l l

R R− +  respectively, where ,
x l

R R  in [0,0.5] . When 
x

R  is equal 

to 
l

R , we write them uniformly as R . Conversely, when we use R , it means 
x

R  is equal to 
l

R . Fig. 2 

analyzes the training accuracy of Mixup training methods for different values of 
x

R  and 
l

R . In Fig. 2, 

0
x

R = , only 
l

R  is changing. We call this training method Mixup-L. If 0
l

R = , only 
x

R  is changing, this 

training method is called Mixup-X. When 
x l

R R= , this training method is the original Mixup. If 
x

R  and 

l
R  are all changing (

x l
R R≠ ), and they obey different distributions. This trianing method is called 

Mixup-XL: 
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where ~ ( , )
x

Betaλ α α  and ~ ( , ).
l

Normal m vλ  Using different distributions of random values to 

separately weighted the training samples and their labels, and this method can also achieve the same 

effect as the Mixup. This shows that neural networks not only learn simple linear interpolation of input 

and output, but also learn interpolation between different distributions. However, the neural network will 

have higher training error and loss if either the input or the output of the fixed neural network is used 

(only the samples are weighted by a random value or the samples are weighted by random values). The 

generalization error of the Mixup is higher than that of the traditional training method. 

Fig. 2 shows that the Mixup training method is quite different from the traditional training methods. In 

the traditional training method, the input and output are fixed, the training error can be reduced to 0. In 

Mixup, however, the training error is not reduced to 0 if the inputs and outputs are fixed, but this does not 

guarantee that the generalization error is higher than the generalization error of the network using the 

traditional method. The use of mixup has a higher loss than the traditional method, but it can achieve a 

lower generalization error, which shows that the two training methods are different in essence. This also 

shows that the neural network will become more clear the critical surface, sample confusion will be 

further eliminated. When 0
l

R = , the training accuracy gradually increases with the increase of 
x

R , 

which is already higher than that of ERM training when 0.5
x

R = . When 0
x

R = , the performance of the 

network gradually declines, indicating that the simple regularization method does not work well after the 

data augmentation of the Mixup method is removed. It can be found that the performance of the Mixup-

XL method is slightly higher than that of the Mixup method, which means that differently distributed 

samples and label combinations can achieve better results. 
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(a) (b) 

Fig. 2. Training and testing accuracy of Mixup and its variants using the PreAct-ResNet-18 [23] network 

on CIFAR-10 dataset [24]. The x-axis represents the range of variation of the mixing ratio. 

3.4 Loss Function 

The difference with the traditional network is that DICNN has multiple base classifiers. We directly add 

the cross-entropy of the output of multiple base classifiers. The loss of the whole network is: 
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where 
k

β  represent the weight value of loss function of the base classifier. If the Mixup or Mixup-XL 

method is used to train DICNN, the corresponding loss function can be formalized as: 
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where 
i
y  and 

j
y  represent the labels corresponding to the random sample 

i
x  and 

j
x  in the training set, 

and 
k

β  represent the weight value of loss function of the base classifier.  

4 Experiments 

4.1 Dataset 

The CIFAR-10 [24] dataset consists of 60000 32× 32 color images in 10 classes, with 6000 images per 

class. There are 50000 training images and 10000 test images. The dataset is divided into five training 

batches and one test batch, each with 10000 images. The test batch contains exactly 1000 randomly-

selected images from each class. The training batches contain the remaining images in random order, but 

some training batches may contain more images from one class than another. Between them, the training 

batches contain exactly 5000 images from each class.  

The CIFAR-100 [24] dataset has 100 classes, 500 training images and 100 testing images for each 

classes. Channel means are computed and subtracted in preprocessing. We also apply standard 

augmentation [5-6]: horizontal flipping and translation by 4 pixels are adopted in our experiments. 



Deeply Integrated Convolutional Neural Networks 

52 

4.2 Training 

For comparison purposes, we use the ResNet-56 [5] and DenseNet-BC-70 [6] network architecture for all 

datasets and set the same hyperparameters and training procedures for neural networks trained on 

CIFAR-10 [24] dataset. ResNet-56 [5] and DenseNet-BC-70 [6] are used as the basic network 

architecture.  

All the networks are trained on two Tesla k80 GPUs using stochastic gradient descent (SGD). We use 

a weight decay of 1x10-4 and a Nesterov momentum [25] of 0.9 without dampening. The batch size on 

each GPU is set to 128 for 100 epochs. The initial learning rate is set to 0.1 and is divided by 10 at 40%, 

60% and 80% of the total number of training epochs. The balance factor α  in Eq. (2) is set to 
1

N
, and 

the balance factor in Eq. (7) and Eq. (8) is set to 
1

N
. The mean m  and the variance v  in Eq. (6) are set 

to 0.6 and 0.3 for 
l

λ , and the value of α  is set to 1 for 
x

λ . 

4.3 Fineturning Mixup Training Method 

For networks using different Mixup training, further finetuning can improve the generalization 

performance of the single-category network. Note that in this finetuning process, multiple categories of 

input and output layers will be replaced by a single category. 

We carried out experiments use ResNet-56 [5] on CIFAR-10 [24] and CIFAR-100 [24]. The ResNet-

56 [5] is divided into 3 blocks, each of which is a residual block containing two convolutional layers. 

After each block, the feature size is halved and the number of channels is doubled. ResNet-56 [5] is used 

for all datasets and set the same hyperparameters and training procedures for neural networks trained on 

different datasets.  

The results are shown in Table 1 and Table 2. From the Table 1, we can see that the single class 

precision of the network after the finetuning has a greater increase, which is because the confusion 

between multiple categories is eliminated. This makes the network better fit for a single class of samples. 

From Table 2, it can also be seen that the network performance after the finetuning has improved 

significantly, with an average of 3% improvement in accuracy. This shows that in the finetuning process, 

the Mixup method eliminates the confusion of other classification categories, so it increases the 

generalization ability of the network. 

Table 1. Finetuning the ResNet-56 [5] using different training methods on CIFAR-10 [24] 

Network Mixup-X Mixup-L Mixup-C Mixup-XL 

Original 90.2% 90.8% 92.5% 92.8% 

Finetuning 93.1% 93.5% 93.7% 94.1% 

Table 2. Finetuning the ResNet-56 [5] using different training methods on CIFAR-100 [24] 

Network Mixup-X Mixup-L Mixup-C Mixup-XL 

Original 74.9% 75.2% 75.5% 76.1% 

Finetuning 77.8% 78.9% 79.2% 79.8% 

 

4.4 DICNN Performance 

In this section, we use DenseNet-BC-70 [6] as the basic network architecture. The network has three 

block structures, each block structure consisting of 11 densely concatenated 1× 1 and 3× 3 convolutional 

layers. The transfer structure consists of a 1× 1 convolutional layer and a pooled layer with a step size of 

2, which is followed by all block structures but does not include the last block structure. DICNN added a 

basic classifier to each transfer structure of DenseNet-BC-70 [6], so DICNN has three classifiers. 

Different basic methods are used to integrate these basic classifiers to obtain different performance 

DICNN variants. The performance of these methods are shown in Fig. 3. 
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Fig. 3. Test accuracy of different network (DICNN and DenseNet-BC-70 [6]) structures and different 

training methods (ERM and Mixup-XL) on the CIFAR10 dataset. The subgraphs connected by dashed 

lines are the amplified test process after 110 epoch. 

In Fig. 3, it can be seen that the performance of DICNN is slightly higher than that of DenseNet-BC-

70 [6]. The performance of DICNN trained with Mixup-XL is higher than that of DICNN trained with 

ERM, which demonstrates the effectiveness of the DICNN architecture and the Mixup-XL training 

method. More specific performance tests on DICNN are shown in Table 3 and Table 4.  

Table 3. DICNN performance using different training methods on CIFAR-10 [24]. 

 DenseNet-BC-70 DICNN-C DICNN-A DICNN-M DICNN-V 

ERM 93.1% 93.7% 93.4% 93.3% 93.5% 

Mixup 93.8% 94.2% 94.1% 93.8% 94.1% 

Mixup-XL 93.9% 94.5% 94.3% 94.2% 94.3% 

Table 4. DICNN performance using different training methods on CIFAR-100 [24]. 

 DenseNet-BC-70 DICNN-C DICNN-A DICNN-M DICNN-V 

ERM 71.5% 72.8% 72.6% 72.5% 72.8% 

Mixup 74.0% 74.5% 74.3% 74.3% 73.4% 

Mixup-XL 75.2% 75.4% 75.4% 75.2% 75.4% 

 

In Table 3 and Table 4, it can be found that DICNN-C combined with Mixup-XL can achieve the best 

performance. This is because DICNN-C uses a fully connected layer more than other methods in the final 

integration. By adding all the basic classifiers, DICNN-A also achieved relatively good performance. The 

performance of the DICNN-M is relatively lower, but almost consistently higher than the DenseNet-BC-

70 [6]. This also illustrates the effectiveness of the DICNN architecture and the Mixup-XL method. 

4.5 DICNN-V 

In this section, we experimented with DICNN’s voting algorithm, which uses the same network 

architecture as the Sect. 4.4. Eq. (7) is used as the loss function to train the networks with different finalC . 

Fig. 4(a) shows the test performance of DICNN which use Eq. (2) to obtain finalC . Since multiplying all 

the base classifiers directly to get finalC  will cause the DICNN to not converge (using composite function 

f  to do the regression can make it converge, just like Eq. (1)), we multiply any two base classifiers and 

add them as finalC  of the DICNN, which is formalized as: 
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Fig. 4(b) shows the test performance of training DICNN using Eq. (9) as finalC . In Fig. 4(a), all 

methods can be predicted normally. Compared to other methods, the performance of DICNN-M is 

slightly lower. This means that even if a classifier has the highest prediction probability for a category, it 

is possible to predict failure. DICNN-VM combines the advantages of DICNN-V and DICNN-M, and its 

test performance is the highest. This is because when some categories predict errors, it chooses the 

category with the highest probability as the final classifier. In Fig. 4(b), the voting algorithm based 

DICNN does not work properly. Using Eq (9) as finalC  makes it impossible to vote with a single base 

classifier alone because they are multiplicatively related to each other. Somewhat strangely, DICNN-M 

still works, and its performance is similar to DICNN-A. The reason for this phenomenon is that there is 

competition between all basic classifiers when training DICNN using Eq (9). As a result, only some of 

the classifiers have larger predicted probability values, while other basic classifiers that fail in 

competition have less influence on the final prediction results. 

  

(a) (b) 

Fig. 4. Different voting algorithms are used to test DICNN 

5 Conclusions 

In this paper, a method similar to neural network integration is proposed. The method first divides an 

basic network architecture into multiple base classifiers in the depth direction and then integrates these 

base classifiers in a way similar to ensemble learning. Although deeply integrated convolutional neural 

network (DICNN) is a pseudo-ensemble learning method, it can achieve higher performance than the 

original network. In addition to training DICNN using traditional ERM method, a Mixup variant 

approach was proposed. This method uses different distributions to mix the samples and their labels, 

achieving better generalization performance than the original method. In the experimental section, the 

performance of various variants of DICNN were compared separately, and the adaptation based on the 

voting algorithm and its disadvantages were analyzed. This approach can be easily extended to other 

network architectures and can use a wider range of ensemble algorithms for better generalization 

performance. 
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