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Abstract. Mobile devices are rapidly becoming the major service tools. However, traditional 

client-server-based mobile service models are unable to meet the increasing demands from 

mobile users in terms of diversity of services. Cloud computing can enable mobile devices to 

offload complex operations of mobile applications, which are infeasible on mobile devices alone. 

Mobile Cloud Computing (MCC) is widely accepted as a concept that can significantly improve 

the user experience when accessing mobile services. In order to enhance the capability of fault 

tolerance and ensure network security, it is necessary to provide a stable mobile cloud service 

environment. Due to the Byzantine Agreement (BA) problem is a fundamental issue in fault-

tolerant distributed systems. To enhance the reliability of a cluster-based MCC, it is the first 

time a protocol OACM (Optimal Agreement protocol for Cluster-based MCC) is proposed 

herein to solve the BA problem. The protocol makes all fault-free nodes communicate with each 

other and collect the exchanged messages to decide a common value. Based on the common 

value, the protocol ensures all fault-free nodes reach agreement without the influence of faulty 

components. Meanwhile, OACM uses the minimum number of rounds for message exchanges to 

make all fault-free nodes agree on a common value. The study has also proved the protocol can 

tolerate the maximum number of faulty components. 

Keywords:  Byzantine agreement, cluster cloud, distributed system, fault tolerant, mobile cloud 

computing 

1 Introduction 

Cloud computing is widely adopted by commercial and military environment to support data storage, on 

demand computing and dynamic provisioning [1]. Internet web service is currently the main way we 

access information from fixed or mobile terminals. Some of the information is stored in Internet clouds, 

where computing, communication and storage are common services provided for Internet users [2]. With 

the Internet environment applications, current mobile devices have many advanced features such as 

mobility, communication and sensing capabilities, and can serve as the personal information gateway for 

mobile users. However, when running complex data mining and storing operations, the integrated 

solution for the computation, energy and storage limitations of mobile devices relies on cloud-based 

computing. 

The MCC is defined by Mobile Cloud Computing Forum as follows: “Mobile Cloud computing at its 

simplest refers to an infrastructure where both the data storage and the data processing happen outside of 

the mobile device. Mobile cloud applications move the computing power and data storage away from 
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mobile phones and into the cloud, bringing applications and mobile computing not just to smart phone 

users but a much broader range of mobile subscribers” [3]. MCC would also be based on the basic cloud 

computing concepts. As discussed by Mei et al. in [4]: there are certain requirements that need to be met 

in a cloud such as adaptability, scalability, availability and self-awareness. These are also valid 

requirements for MCC. For example, a mobile computing cloud also needs cognizance of its availability 

and quality of service, as well as the ability to enable diverse mobile computing entities to dynamically 

plug themselves in [5].  

Therefore, in MCC, a mobile entity can be considered either as a physical mobile device or a mobile 

computing/storage software agent within a virtualized cloud resource provisioning system [2]. On one 

hand, the MCC is a development of mobile computing, and an extension to cloud computing. In MCC, 

the previous mobile device-based intensive computing, data storage and mass information processing 

have been transferred to clouds; thus, since the requirements of mobile devices in computing capability 

and resources have been reduced, the developing, running, deploying and mode uses of mobile 

applications have totally changed [6]. The terminals which people use to access and acquire cloud 

services are suitable for mobile devices like Smartphone, Tablet and iPad, but are not restricted to fixed 

devices (such as PC), which reflects the advantages and original intention of cloud computing. 

 

Fig. 1. Mobile cloud architecture [7] 

Fig. 1 shows a topology of MCC [7]. Furthermore, under the concept of MCC, the advantages of cloud 

computing will not only become available for users, but will provide additional functionality to the cloud 

as well. MCC will help to overcome the limitations of mobile devices, in particular those of processing 

power and data storage [8-9]. Moreover, one of the fundamental issues with MCC is reliability; through a 

highly reliable MCC, many cloud computing applications can be provided. 

As MCC has become increasingly popular, network topology has trended toward wireless connectivity, 

thus providing enhanced support for MCC. This technological trend has greatly encouraged distributed 

system design and support for cloud nodes [10]. The ‘cluster’ has attracted significant attention recently 

because it requires less infrastructure, it can be deployed quickly, and it can automatically adapt to 

changes in topology. Therefore, the structure of a cluster can suit military communication, emergency 

disaster rescue operations, and law enforcement [10], thanks to the cloud-computing technology of MCC 

[2, 7]. Therefore, in this study, cluster-based MCC will be the network topology explored. 

The security assurance of cloud data management and transfer arises as a key issue. Cloud auditing can 

only be effective if all operations on the data can be tracked reliably [1]. Therefore, the reliability of 

cloud nodes is one of the most important aspects in MCC. In order to provide a reliable cluster-based 

MCC, a mechanism to allow a set of cloud nodes to agree on an agreement value is required. The 

Byzantine Agreement (BA) problem is one of the most fundamental problems in seeking to reach an 

agreement value in a distributed system [8-9]. The original BA problem defined by Lamport et al. is 

assumed as follows [9]: 

(1) There are n nodes in a synchronous distributed system, where n is a constant and n ≥ 4. 

(2) Each node can communicate with all other nodes through a reliable fully connected network. 

(3) One or more of the nodes might fail, so a faulty node may transmit incorrect message(s) to other 

nodes. 

(4) After message exchanges, all fault-free nodes should reach a common agreement, if and only if the 

number of faulty nodes t is less than one-third of the total number of nodes in the network, or t ≤ (n-1)/3. 

The solutions define a protocol, which can reach agreement by using the minimum number of rounds 

for message exchanges to obtain the maximum number of nodes with allowable faulty capability. The 

problem in the paper is to enable all fault-free cloud nodes to reach agreement underlying an n-nodes 

cluster-based MCC. The cloud main server (source node) chooses an initial value to start with, and 
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communicates to all other nodes by exchanging messages. The cloud nodes can reach an agreement if 

following conditions are satisfied [9]: 

(Agreement): All fault-free nodes agree on a common value. 

(Validity): If the source node is fault-free, then all fault-free nodes shall agree on the initial value the 

source node sent. 

In previous studies, the BA algorithms were designed in traditional network topology [8-9, 11-15]. A 

comparison of the studies among the most previous relative researches is given in Table 1. Those works 

reach Byzantine agreement underlying different topologies respectively, including Broadcasting Network 

(BCN), Fully Connected Network (FCN), Multicasting Network (MCN), Wireless Sensor Network 

(WSN), and Cloud Computing environment (CC). All those previous protocols are not suitable for MCC 

due to the difference of network topology. To enhance fault-tolerance of MCC, it is the first time a 

protocol OACM (Optimal Agreement protocol for Cluster-based MCC) is proposed in this study to solve 

the BA problem. The proposed protocol ensures that all fault-free nodes in MCC can reach an agreement 

value to cope with the influences of the faulty components by using the minimum number of message 

exchanges, while tolerating the maximum number of faulty components at any time.  

Table 1. The comparisons among previous approaches and the proposed protocol OACM 

Topology 

Results 
BCN FCN MCN WSN CC MCC 

Babaoglu et al. [11] V      

Lamport et al. [9]  V     

Fischer [8]  V     

Siu et al. [12]  V     

Wang et al. [13]   V    

Yan et al. [15]    V   

Wang et al. [14]     V  

OACM      V 

 

The rest of this paper is organized as follows. Section 2 discusses related works. Then, the proposed 

protocol OACM is introduced and illustrated in detail in Section 3. For easy understanding, an example 

of the execution of the proposed protocol is given in Section 4. Section 5 demonstrates the correctness 

and complexity of the protocol proposed. Finally, Section 6 concludes the study and the future works. 

2 Related Work 

Currently, the cluster cloud is a more practical kind of cloud computing. A cluster of multiple cloud 

nodes in a cluster cooperates to achieve some objectives [2]. Fig. 2 shows an example of Amazon's 

cluster-based cloud. 

 

Fig. 2 An example of Amazon’s cluster-based cloud 

Cluster-based cloud computing consists of a set of loosely or tightly connected cloud nodes that work 

together so that, in many respects, they can be viewed as a single system. The components of a cloud 

cluster are usually connected to each other through fast LANs (local area networks) with each cloud node. 

All cloud nodes of cluster-based cloud computing are usually deployed to offer better performance and 
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availability compared to a single computer. 

Mobile cloud computing is a combination of both technologies from the aspects of mobile computing 

and cloud computing [16]. The traditional algorithms of distributed, grid, or centralized are still able to 

continue to develop on this paradigm. Various mobile applications have taken the advantages of MCC, 

such as mobile commerce, mobile learning, mobile healthcare, and mobile gaming [17]. The typical 

cluster-based MCC is shown in Fig. 3.  

 

Fig. 3. Cluster-based MCC 

In conventional BA problem, many cases are solved on the assumption of node failure in a fail-safe 

network [18]. The optimal algorithm of solving BA problem requires using the minimum number of 

rounds for message exchanges to achieve agreement. A protocol to reach agreement in a reliable 

communication environment of traditional fully connected network was proposed firstly by Lamport et al. 

[9]. The typical protocol proposed by Fischer [8] can tolerate f ≤ ⎣(n–1)/3⎦ faulty nodes in malicious 

attacks and require σ (σ = f + 1) round(s) to get enough messages to achieve agreement where n is the 

total number of nodes in the network.  

Most parts of a distributed computing system may not be fully connected. The cluster-based MCC is 

one of them and differs from the traditional network. So, the pervious protocols of reaching BA are not 

suitable for the cluster-based MCC. As the result, a new protocol is proposed that can be used to solve 

the BA problem with malicious faulty nodes in a cluster-based MCC. When all fault-free nodes reach 

agreement, the fault tolerance capability has been enhanced, even if the communication media may have 

failed between nodes; the backbone of the system can be used to provide a backup route [19]. 

3 The Proposed Protocol 

In this section, the scenario of the protocol OACM (Optimal Agreement protocol for Cluster-based MCC) 

is illustrated to solve the BA problem in a cluster-based MCC. Basically, the messages received from 

non-faulty components will be the same as from other nodes. Based on the same messages, every fault-

free node can reach the same agreement value. Thus, the protocol OACM should help the fault-free 

nodes to remove all influences of faulty components in the messages received from all other nodes.  

The assumptions, notations and parameters of the proposed protocol OACM are shown as follows: 

‧ Each node in the network can be identified uniquely. 

‧ Let n be the total number of nodes in the cluster-based MCC. 

‧ Let C be the total number of clusters in the cluster-based MCC, and C ≥ 4. 

‧ Let x be the cluster identifier, where 1 ≤ x ≤ C and C ≥ 4. 

‧ Let nx be the total number of nodes in cluster Cx, 0 ≤ x ≤ C. If there are more than ⎡nx /2⎤ malicious 

faulty cloud nodes in Cx, then Cx will be named as a malicious faulty cluster. 

‧ Let TFC be the total number of malicious faulty clusters. 

‧ Let val(i) be the value stored in the vertex i. 

‧ Let σ be the number of rounds executed. 

‧ Let θ be the total number of rounds required. 

The purpose of the BA protocol is to enable all fault-free nodes to reach common agreement in the 
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cluster-based MCC. For this reason, nodes should exchange messages with all other nodes. Each fault-

free node receives messages from other nodes by a number of rounds of message exchanges. Afterwards, 

all fault-free nodes can get enough messages to make a decision value that is called an agreement value 

or a common value. Thus, all fault-free nodes agree on the same value. 

In order to reach agreement, each node should exchange messages with all other nodes. Then, each 

fault-free node collects enough messages to determine the decision value (the agreement value); all fault-

free nodes’ agreement values should be identical. Therefore, the nodes executing the proposed protocol 

should receive messages from other nodes within a predictable period. If the message is not received on 

time, the message must have been influenced by faulty components. 

The first step of the proposed protocol is to determine the number of rounds of messages exchanged so 

that the number of message exchanges required can be minimized. After determining the required rounds 

of message exchanges, a BA protocol must execute two phases of work: the message exchange phase and 

the decision-making phase. The task of the message exchange phase is to collect enough messages from 

other nodes through the cluster-based MCC. Furthermore, in the decision-making phase, each fault-free 

node uses the messages received during the phase of message exchanges to determine the common 

agreement value. 

In a cluster-based MCC, the proposed protocol OACM can solve the BA problem of which faulty 

nodes may send wrong messages to influence the system to reach agreement. Based on the protocol 

proposed by Fischer [8], OACM can reach common agreement by θ rounds of message exchanges, where 

θ = ⎣(C−1)/3⎦ + 1 and C is the total number of clusters in the cluster-based MCC, once we treat the 

clusters of MCC as the nodes of traditional network. 

The proposed protocol OACM is organized into two phases: message exchange phase and decision 

making phase. In the first round of the message exchange phase, the cloud main server sends its initial 

value to all clusters, and then receiver node stores the received value in the root of its mg-tree. The mg-

tree is a tree structure that is used to store the received message from the cloud main server in the 

message exchange phase [15]. A detail description of mg-tree is illustrated in Appendix A. After the first 

round of the message exchange phase (σ>1), each node transmits the value at level σ−1 in its own mg-

tree to all other nodes. At the end of each round, the receiver node applies the function RMAJ(V) to the 

values received from the same cluster to get a single value. Moreover, each receiver node stores the 

received messages and the value of function RMAJ(V) in its mg-tree.  

After finishing ⎣(C−1)/3⎦ + 1 rounds of the message exchange, each node will execute the decision 

making phase. In order to mitigate the influence of malicious faulty nodes and avoid the repetition of 

faulty clusters, no cluster name is repeated in any vertex, and each fault-free node must reorganize the 

mg-tree into a corresponding ic-tree by using the following reorganization rules (A detailed description is 

presented in Appendix B.): 

‧ The leaves in level ⎣(C−1)/3⎦ + 1 of the mg-tree are deleted. 

‧ The vertices with repeated cluster’s names are deleted. 

Subsequently, all fault-free nodes can use function VOTE(μ) to remove the influence of malicious 

faulty clusters and to obtain a common agreement value. It is noteworthy that the function VOTE only 

counts the non-value “μ” (excluding the last level of the ic-tree) for all vertices at the μ-th level of an ic-

tree, where 1 ≤ μ ≤ ⎣(C−1)/3⎦ + 1. Since VOTE(s) is a common value, each fault-free node can mitigate 

the influence of malicious faulty clusters and agree on the same value, thus reaching agreement. In 

addition, a detailed definition of the OACM is shown in Fig. 4. 

4 An Example of OACM Executed 

An example of the execution of OACM is given for easy understanding. The example topology of 

cluster-based MCC is shown in Fig. 5. There are 21 nodes falling into 7 clusters. C1 contains n1 and n2. 

C2 includes n3, n4, n5 and n6. C3 has n7, n8, n9 and n10. C4 is organized by n11 and n12. Nodes n13 and n14 

compose C5. C6 is comprised by n15 and n16. Nodes n17, n18, n19, n20 and n21 form C7.  

In BA problem with fallible nodes, the worst situation occurs when the source node is no longer honest 

[8]. Simply, to illustrate the worst case of the example, the source node (let it be ncs) of the cloud main 

server is supposed in malicious. It means ncs may arbitrarily send different message values (e.g., replicate 

command [16]) to different clusters. The scenario of the example is described as follows: 
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OACM (cloud main server ncs with initial value vs) 

Pre-Execute. Computes the number of rounds required θ = ⎣(C−1)/3⎦ + 1, where C is the total number of clusters in the cluster-

based MCC. 

Message Exchange Phase: 

Case σ = 1, run 

1. The ncs transmits its initial value vs to each cluster’s nodes. 

2. Each receiver node obtains the value and stores it in the root of its mg-tree. 

Case 1 < σ  ≤ θ, run 

1. Each node without the ncs transmits the values at level σ −1 in its mg-tree to each cluster’s nodes. 

2. Each receiver node applies RMAJ to its received messages and stores the RMAJ value in the corresponding vertices at 

level θ of its mg-tree. 

Decision Making Phase: 

Step 1. The mg-tree is reorganized into a corresponding ic-tree. 

Step 2. After using function VOTE on the root s of each node’s ic-tree, the common value VOTE(s) is obtained. 

Function RMAJ(V) 

The majority value of the vector Vi = [v1, …, vηx-1, vηx], if the majority exists. 

Otherwise, a default value φ is chosen. 

Function VOTE(µ) 

If the μ is a leaf, then outputs val(μ). 

If the majority value in the set of {VOTE(μ j)| 1 ≤ j ≤ C and vertex μj is a child of vertex μ} exists 

then outputs the majority value 

else a default value φ is outputted. 

Fig. 4. The proposed protocol OACM 

 

Fig. 5. The initial status of executing OACM 

‧ The messages are sent from the cloud main server (source node) ncs and then start to execute OACM. 

‧ The cloud main server ncs is assumed to be a malicious faulty server. 

‧ ncs sends 1 to all nodes of C2, C4, C5, C6 and C7, and sends 0 to all nodes of C1 and C3. 

Therefore, in order to solve the BA problem among fault-free nodes of this example, OACM requires 

θ = ⎣(C–1)/3⎦ + 1 = ⎣(7–1)/3⎦ + 1 = 3 rounds of message exchanges, where C = 7. The cloud main server 

ncs transmits messages to all other nodes in the first round of the message exchange phase. The message 

obtained by each fault-free node is listed in Fig. 6.  
 

 Level 1( Root s) 
C1’s fault-free nodes 0 
C2’s fault-free nodes 1 
C3’s fault-free nodes 0 
C4’s fault-free nodes 1 
C5’s fault-free nodes 1 
C6’s fault-free nodes 1 
C7’s fault-free nodes 1 

Fig. 6. The mg-tree of each node in the first round 

In the second round of message exchange phase, each node transmits the values at the first level in its 

mg-tree to all other nodes and itself. Subsequently, each receiver node applies RMAJ() to its received 

messages; and stores the received messages and RMAJ() values at the corresponding vertices at the 

second level of its mg-tree. The mg-tree of fault-free node n1 at the second round in the message 

exchange phase is shown in Fig. 7. For easy understanding, the message affected by the faulty nodes is 

denoted in bold and italic. 
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Level 1 Level 2 Take RMAJ 
val(s)=1 s1 0 (0,0) 
 s2 1 (1,1,0,1) 
 s3 0 (0,0,0,0) 
 s4 1 (1,1) 
 s5 1 (1,1) 
 s6 1 (1,1) 
 s7 0 (0,0,1,0,1) 

Fig. 7. The mg-tree of fault-free node n1 at second round 

In the third round of message exchange phase, each node transmits the values at the second level of its 
mg-tree to all other nodes and itself. Subsequently, each receiver node applies RMAJ() to the messages 
received; and stores the received messages and RMAJ() values at the corresponding vertices at the third 
level of its mg-tree. The mg-tree of fault-free node n1 at the second round of the message exchange is 
shown in Fig. 8.  

Level 1 Level 2 Level 3 Take RMAJ( ) 
s s1 s11 0 (0) 
0 0 s12 0 (0,0,0,0) 
 (0) s13 0 (0,1,0,0) 
  s14 0 (0,0) 
  s15 0 (0,0) 
  s16 0 (0,0) 
  s17 1 (1,1,1,0,1) 
     
 s2 s21 1 (1) 
 1 s22 1 (1,1,1,1) 
 (1,1,1,1) s23 1 (1,1,1,1) 
  s24 1 (1,1) 
  s25 1 (1,1) 
  s26 1 (1,1) 
  s27 0 (0,0,1,0,1) 
     
 s3 s31 0 (0) 
 0 s32 0 (0,0,1,0) 
 (0,0,0,0) s33 0 (0,1,0,0) 
  s34 0 (0,0) 
  s35 0 (0,0) 
  s36 0 (0,0) 
  s37 0 (0,0,1,0,1) 
     
 s4 s41 1 (1) 
 1 s42 1 (1,1,0,1) 
 (1,1) s43 1 (1,1,1,1) 
  s44 1 (1,1) 
  s45 1 (1,1) 
  s46 1 (1,1) 
  s47 1 (1,1,1,0,1) 
     
 s5 s51 1 (1) 
 1 s52 1 (1,1,1,1) 
 (1,1) s53 1 (1,0,1,1) 
  s54 1 (1,1) 
  s55 1 (1,1) 
  s56 1 (1,1) 
  s57 0 (0,0,1,0,1) 
     
 s6 s61 1 (1) 
 1 s62 1 (1,1,1,1) 
 (1,1) s63 1 (1,1,1,1) 
  s64 1 (1,1) 
  s65 1 (1,1) 
  s66 1 (1,1) 
  s67 1 (1,1,1,1,1) 
     
 s7 s71 0 (0) 
 0 s72 1 (1,1,1,1) 
 (0,0,1,0,1) s73 0 (0,0,0,0) 
  s74 1 (1,1) 
  s75 0 (0,0) 
  s76 1 (1,1) 
  s77 0 (0,0,1,0,1) 

Fig. 8. The final mg-tree of node n1 after the message exchange phase 
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After the message exchange phase, the mg-tree of each fault-free node is reorganized to the ic-tree by 

deleting the vertices with duplicated names. The example ic-tree is shown in Fig. 9.  
 

Level 1 Level 2 Level 3 Take RMAJ 
s s1 s11   
0 0 s12 0 (0,0,0,0) 

 s13 0 (0,1,0,0) 
 s14 0 (0,0) 
 s15 0 (0,0) 
 s16 0 (0,0) 
 s17 1 (1,1,1,0,1) 
    
s2 s21 1 (1) 
1 s22   
 s23 1 (1,1,1,1) 
 s24 1 (1,1) 
 s25 1 (1,1) 
 s26 1 (1,1) 
 s27 0 (0,0,1,0,1) 
    
s3 s31 0 (0) 
0 s32 0 (0,0,1,0) 
 s33   
 s34 0 (0,0) 
 s35 0 (0,0) 
 s36 0 (0,0) 
 s37 0 (0,0,1,0,1) 
    
s4 s41 1 (1) 
1 s42 1 (1,1,0,1) 
 s43 1 (1,1,1,1) 
 s44   
 s45 1 (1,1) 
 s46 1 (1,1) 
 s47 1 (1,1,1,0,1) 
    
s5 s51 1 (1) 
1 s52 1 (1,1,1,1) 
 s53 1 (1,0,1,1) 
 s54 1 (1,1) 
 s55   
 s56 1 (1,1) 
 s57 0 (0,0,1,0,1) 
    
s6 s61 1 (1) 
1 s62 1 (1,1,1,1) 
 s63 1 (1,1,1,1) 
 s64 1 (1,1) 
 s65 1 (1,1) 
 s66   
 s67 1 (1,1,1,1,1) 
    
s7 s71 0 (0) 
0 s72 1 (1,1,1,1) 
 s73 0 (0,0,0,0) 
 s74 1 (1,1) 
 s75 0 (0,0) 
 s76 1 (1,1) 

 

 s77   

Fig. 9. The ic-tree of node n1 

Finally, the function VOTE is applied to the root (the vertex s) of each fault-free node’s ic-tree, an 

agreement value 1 can be obtained, as shown in Fig. 10. The decision making phase has been completed. 

Every fault-free node shall agree on the value VOTE(s) = 1. 
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Level 1 Level 2 Level 3  

s1 s11  
VOTE(s1) s12 0 
= the majority of  s13 0 
(val(s12), val(s13), val(s14), val(s15), val(s16), val(s17)) s14 0 
=the majority of (0,0,0,0,0,1) s15 0 
=0 s16 0 
 s17 1 
   
s2 s21 1 
VOTE(s2) s22  
= the majority of  s23 1 
(val(s21), val(s23), val(s24), val(s25), val(s26), val(s27))  s24 1 
=the majority of (1,1,1,1,1,0) s25 1 
=1 s26 1 
 s27 0 
   
s3 s31 0 
VOTE(s3) s32 0 
= the majority of  s33  
(val(s31), val(s32), val(s34), val(s35), val(s36), val(s37)) s34 0 
=the majority of (0,0,0,0,0,0) s35 0 
=0 s36 0 
 s37 0 
   
s4 s41 1 
VOTE(s4) s42 1 
= the majority of  s43 1 
(val(s41), val(s42), val(s43), val(s45), val(s46), val(s47)) s44  
=the majority of (1,1,1,1,1,1) s45 1 
=1 s46 1 
 s47 1 
   
s5 s51 1 
VOTE(s5) s52 1 
= the majority of  s53 1 
(val(s51), val(s52), val(s53), val(s54), val(s56), val(s57)) s54 1 
=the majority of (1,1,1,1,1,0) s55  
=1 s56 1 
 s57 0 
   
s6 s61 1 
VOTE(s6) s62 1 
= the majority of  s63 1 
(val(s61), val(s62), val(s63), val(s64), val(s65), val(s67)) s64 1 
=the majority of (1,1,1,1,1,1) s65 1 
=1 s66  
 s67 1 
   
s7 s71 0 
VOTE(s7) s72 1 
= the majority of  s73 0 
(val(s71), val(s72), val(s73), val(s74), val(s75), val(s76)) s74 1 
=the majority of (0,1,0,1,0,1) s75 0 
=φ s76 1 

s 
 
 
 

VOTE(s) 
= the majority of 
(VOTE(s1), VOTE(s2), VOTE(s3), 
VOTE(s4), VOTE(s5), VOTE(s6), 
VOTE(s7)) 
=the majority of (0,1,0,1,1,1, φ) 
= 1 

 s77  

Fig. 10. The common value VOTE(s) for fault-free node n1 

5 Correctness and Complexity 

In this section, the correctness and complexity of the protocol will be proved by some lemmas and 

theorems.  

5.1 Correctness of OACM 

To prove our protocol’s correctness, the value reached by all fault-free nodes should be the same whether 

the source node is fault-free or not. Because the values of exchanged are all stored in the tree structure, 

the vertex of the tree is called common [8] if each fault-free node has the same value for the vertex. That 
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means the vertex is common, then the value stored in the vertex of every fault-free node’s mg-tree or ic-

tree is identical. In other words, if OACM can make the root s be common, then all fault-free nodes can 

reach an agreement by the value of the root VOTE(s). Next, we should prove the value of VOTE(s) to be 

the initial value if the source node is fault-free. Thus, the constraints (Agreement) and (Validity) can be 

rewritten as: 

(Agreement’): Root s is common, and 

(Validity’): VOTE(s) = vs for each fault-free node, if the source node is fault-free. 

To prove that a vertex is common, the term common frontier is defined as follows: When every root-

to-leaf path of the tree (an mg-tree or an ic-tree) contains a common vertex, the collection of common 

vertices forms a common frontier [14]. In other words, every fault-free node has identical messages 

collected in the common frontier if a common frontier exists in a fault-free node’s tree structure (mg-tree 

or ic-tree). Subsequently, using the same majority function to compute the root value of the tree structure, 

every fault-free node can obtain the same root value because they all have the same collected messages in 

the common frontier. 

To prove OACM can satisfy the constraints (Agreement’) and (Validity’), the following two terms 

need to be defined: 

(1) Fault-free vertex: A fault-free vertex is a place to store the values received from the fault-free node 

or the fault-free cluster. 

(2) True value: The stored value of a fault-free vertex is called the true value. 

By definition, a correct vertex is one that contains a stored value that is received from the nodes in a 

fault-free cluster, and a fault-free cluster always transmits the same value to all nodes. Therefore, the 

fault-free vertices of such an mg-tree are in common. After reorganizing the mg-tree into its 

corresponding ic-tree by deleting the vertices with repeated cluster names, the values stored in the fault-

free vertices of an ic-tree are the same. As a result, all the fault-free vertices of an ic-tree are also in 

common. Again, by the definition of a fault-free vertex, a common frontier does exist in the ic-tree 

inasmuch as Agreement’ and Validity’ are true, regardless of whether the source node is fault-free or 

faulty if the BA problem has been solved. 

Lemma 1: All fault-free vertices of an ic-tree are common. 

Proof: After reorganization, no repeatable vertices are in an ic-tree. At the level TFC + 1 or above, 

the fault-free vertex α has at least 2TFC + 1 children among which at least TFC + 1 children 

are fault-free, where TFC is the total number of malicious faulty clusters. The true value of 

these TFC + 1 fault-free vertices is in common, and the majority value of vertex α is 

common. The fault-free vertex α is common in the ic-tree if the level of α is less than TFC 

+ 1. As a result, all fault-free vertices of the ic-tree are common. 

Lemma 2: The common frontier exists in the ic-tree. 

Proof: There are TFC + 1 vertices along each root-to-leaf path of an ic-tree in which the root is 

labeled by the source name, and the others are labeled by a sequence of cluster names. 

Since at most TFC clusters can fail, at least one vertex is fault-free along each root-to-leaf 

path of the ic-tree. By Lemma 1, the fault-free vertex is common, and the common frontier 

exists in each fault-free node’s ic-tree. 

Lemma 3: Let α be a vertex; α is common if there is a common frontier in the subtree rooted at α. 

Proof: If the height of α is 0 and the common frontier (α itself) exists, then α is common. If the 

height of α is σ, the children of α are all in common by using induction hypothesis with 

the height of the children at σ-1; then the vertex α is common. 

Corollary 1: The root is common if the common frontier exists in the ic-tree. 

Theorem 1: The root of a fault-free node’s ic-tree is common. 

Proof:  By Lemmas 1, 2 and 3 and Corollary 1, the theorem is proved.  

Theorem 2: Protocol OACM solves the BA problem in a cluster-based MCC. 

Proof: To prove the theorem, it has to show that OACM meets the constraints (Agreement’) and 

(Validity’) 

 (Agreement’): Root s is common. By Theorem 1, (Agreement’) is satisfied. 

 (Validity’): VOTE(s)=v for all fault-free nodes if the initial value of the source is vs, then v 

= vs. 

 Since most of the nodes are correct, they transmit the messages to all the others. The value 

of correct vertices for all fault-free nodes’ mg-tree is v. When the mg-tree is reorganized 
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into an ic-tree, the correct vertices still exist. As a result, each correct vertices of the ic-tree 

is common (Lemma 1), and its true value is v. By Theorem 1, this root is common. The 

computed value VOTE(s) = v is stored in the root for all fault-free nodes. (Validity’) is 

satisfied. 

5.2 Complexity of OACM 

The complexity of OACM is evaluated in terms of: (1) the minimum number of rounds for message 

exchanges and (2) the maximum number of allowable faulty components. Theorems 3, 4 and 5 below 

will show that the optimal solution is reached. 

Theorem 3: OACM requires TFC + 1 rounds to solve the BA problem with malicious fault in a cluster-

based MCC where TFC ≤ ⎣(C-1)/3⎦ and C is the total number of clusters in the cluster-based 

MCC. 

Proof: Due to the message passing being required in the message exchange phase only, the 

message exchange phase is a time consuming phase. Fischer [8] pointed out that t +1 (t ≤ 

⎣(n-1)/3⎦) rounds are the minimum number of rounds to get enough messages to achieve 

BA. The unit of Fischer is a node [8], but the unit of the cluster-based MCC is a cluster. 

The number of required rounds of message exchange in the cluster within cluster-based 

MCC is TFC + 1(TFC ≤ ⎣(C-1)/3⎦). Thus, OACM requires TFC + 1 rounds, and this number 

is the minimum. 

Theorem 4: The total number of allowable faulty components by OACM is TFC malicious faulty 

clusters, where TFC ≤ ⎣(C-1)/3⎦ and C is the total number of clusters in the cluster-based 

MCC. 

Proof: Based on the model of Fischer [8], the maximum number of allowable faulty nodes to 

reach BA underlying a network is f and f ≤ ⎣(n-1)/3⎦. However, the unit of cluster-based 

MCC is a cluster, so we can treat a node in Fischer [8] as a cluster in cluster-based MCC. 

Therefore, f ≤ ⎣(n-1)/3⎦ in Fischer [8] implies TFC  ≤ ⎣(C-1)/3⎦ in cluster-based MCC. Then, 

the total number of allowable faulty components by OACM is TFC malicious faulty clusters. 

Theorem 5. The number of allowable faulty nodes TFN is the maximum. 

Proof: Every fault-free node agrees on a value, which is dominated by most of the nodes in a 

cluster of MCC. When the number of faulty nodes is greater than a half of all the nodes in 

a cluster, the cluster is a faulty cluster. For this reason, two cases of fault tolerance are 

discussed, the best case and the worst case. There is the maximum number of faulty nodes 

in a MCC, and no more faulty node can be increased, named best case; if a faulty node is 

increased in any non-faulty, and let the non-faulty cluster be a faulty cluster, named worst 

case. 

 [Best case]: 

 According to the proof of Theorem 4, the total number of allowable faulty components by 

OACM is TFC malicious faulty clusters, where TFC ≤⎣(C-1)/3⎦ and C is the total number of 

clusters in cluster-based MCC. Therefore, in the best case of malicious faulty nodes, let 

nmax(i) be the number of nodes in i-th maximum cluster. The number of malicious faulty 

nodes is max( )

1

FC
T

i

i

n

=

∑ . An additional number of malicious faulty nodes 
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cannot influence the network, and the number of malicious faulty nodes cannot be 

increased. If the number of malicious faulty nodes is increased, the assumption of TFC ≤ 

⎣(C-1)/3⎦ is contradicted. Therefore, the number of allowable malicious faulty nodes can 

be written as TFN = max( )

1

FC
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∑ +
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 [Worst case]: 

 In the worst case of malicious faulty nodes, let nmin(i) be the number of nodes in the i-th 

minimum cluster. The number of nodes in the malicious faulty cluster is min( )

1

/ 2
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additional number of malicious faulty nodes ⎡
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⎤ − 1 cannot influence the 
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network. Nevertheless, if a malicious faulty node is increased in min(TFC+1)
th cluster, then a 

malicious faulty cluster is increased, and the assumption of TFC ≤ ⎣(C-1)/3⎦ is contradicted. 

Thus, the number of allowable malicious faulty nodes can be written as TFN = min( )

1

/ 2

FC
T

i

i

n

=

⎡ ⎤⎢ ⎥∑  

+ (⎡
1

min( ) / 2
FC

T
n

+

⎤ − 1). 

As a result, OACM requires the minimum number of rounds for message exchange and tolerates a 

maximum number of faulty components to reach a common agreement. The optimality of the protocol is 

proved. 

6 Conclusion 

In this study, the reliable Byzantine Agreement problem was redefined by the OACM protocol in an 

MCC paradigm. The proposed protocol ensures that all fault-free nodes in the network can agree on a 

common value to cope with the influences of the faulty nodes. In the meanwhile, the protocol requires 

the minimum number of message exchanges and can tolerate the maximum number of faulty nodes at 

any time. Our protocol is the first time to visit the Byzantine Agreement problem under the paradigm 

MCC. To sum up, the OACM is an optimal protocol with the following features: solving the BA problem 

in a cluster-based MCC, allowing the join nodes to reach the same agreement value, by costing the 

minimum number of rounds of message exchanges, and increasing the fault tolerance capability by 

allowing for malicious faulty nodes. 

Furthermore, in a generalized case, the fallible components are not only nodes, but also 

communication media. Protocol OACM may be extended in the future to reach BA in a generalized case 

underlying the topology of the cluster-based MCC. 
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Appendix A: The Message-Gathering Tree (mg-tree) 

Fig. 8 shows an mg-tree for a cluster-based MCC in Fig. 5. Each fault-free node maintains such an mg-

tree during the execution of OACM. In the first round, the source (node ns) multicasts its initial value to 

each cluster’s nodes. When fault-free node receives the value sent from the source, it stores the received 

value, denoted as val(s), at the root of its mg-tree as shown in Fig. 6. In the second round, each node 

multicasts the value stored in the root of the mg-tree to each cluster’s nodes (except the source node). If 

the node n1 sends message val(s) to the nodes in cluster C4, then the nodes in cluster C4 stores the 

received value from node n1, denoted as val(s4), in vertex s4 of its mg-tree, which is shown in Fig. 7. 

Similarly, if the nodes in cluster C2 sends messages val(s1) to the nodes in cluster C1, then the value is 

denoted as val(s12) and stored in vertex s12 of node n1’s mg-tree in the third round, which is illustrated in 

Fig. 8. The val(αi) tells that the message is sent to a series of receivers, denoted as α, and the nodes in 

cluster Ci are the latest receivers. For instance, the message val(s1…4), stored in the vertex s1…4 of an 

mg-tree, which implies that the message just received was sent through the source, the nodes in cluster C1, 

the nodes in cluster C4 (the nodes in cluster C4 is the latest nodes to pass the message). In addition, it is 

denoted as val(α4). When the message is transmitted through the nodes in cluster more than once, the 

name of the cluster will be repeated correspondingly. For example, val(s11), stored in vertex s11 of Fig. 8, 

indicates that the message is sent from s to the nodes in cluster C1, then to the nodes in cluster C1 again. 

In summary, the root of an mg-tree is always named s to denote that the stored message is sent from 

the source node in the first round, and the vertex of an mg-tree is labelled by a list of cluster names. The 

cluster name list contains the names of the clusters through which the stored message was transferred. 

Appendix B: The Information-Collecting Tree (ic-tree) 

An ic-tree is reorganized from a corresponding mg-tree by removing the vertices with repeated cluster 

names in order to reduce the influence from a faulty node repeatedly in an ic-tree. Fig. 9 is an example of 

reorganizing an mg-tree to an ic-tree by deleting the repeated cluster names of mg-tree. 
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