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Abstract. Clustering analysis plays an important role in finding natural structures of datasets. It 

is widely used in many areas, such as data mining, pattern recognition and image processing. By 

generating a set of nested partitions of datasets, hierarchical clustering algorithms provide more 

information than partitional clustering algorithms. However, due to the generated clustering 

hierarchies are too complex to analyze, many existing hierarchical clustering algorithms cannot 

properly process many non-spherical and overlapping datasets. Clustering validity index is the 

key technique for forming the optimal clustering partitions and evaluating the clustering results 

generated by clustering algorithms. However, many existing clustering validity indexes suffer 

from instability and narrow range of applications. Aiming at these problems, the traditional 

Average-Linkage hierarchical clustering algorithm is firstly improved for better processing the 

above irregular datasets. Then, a new clustering validity index (MSTI) is defined to stably and 

effectively evaluate the clustering results of the improved algorithm. Finally, the new algorithm 

for determining the optimal clustering number is designed by leveraging the improved Average-

Linkage hierarchical clustering algorithm and the new MSTI. Experimental results have shown 

that our new clustering method is stable, accurate and efficient in processing many kinds of 

datasets. 
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1 Introduction 

Clustering analysis belongs to the unsupervised machine learning method. Similar to the principle of 

“birds of a feather flock together”, clustering divides dataset into clusters in the absence of prior 

information [1]. It is widely used in many areas, such as data mining, pattern recognition and graph 

processing [2]. Researches on cluster analysis are mainly focusing on two directions: clustering 

algorithms and cluster validity indexes (CVIs) [3]. 

The aim of any clustering algorithm is to find the natural structure of target datasets. Up to now, many 

clustering algorithms are proposed, but they can be broadly classified into two categories: partitional 

clustering algorithms and hierarchical clustering algorithms [4]. Partitional clustering algorithms partition 

the input dataset into groups or clusters. Famous implementations of partitional clustering algorithms are 

K-means, K-medians, K-medoids and fuzzy C-mean (FCM) [5]. On the other hand, hierarchical 

clustering algorithms build nested partitions of datasets. Implementations of hierarchical clustering 

algorithms can be divided into two categories [6]: the divisive hierarchical clustering (DHC) [7] and the 

agglomerative hierarchical clustering (AHC) [8]. By generating a set of nested partitions of datasets, 

hierarchical clustering algorithms provide more information than partitional clustering algorithms. 

However, due to the generated clustering hierarchies are too complex to analyze, many existing 

hierarchical clustering algorithms cannot properly process many non-spherical and overlapping datasets. 
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In this paper, based on the Euclidean geometry theory, we improve the traditional Average-Linkage 

hierarchical clustering algorithm. The improved algorithm is able to stably and effectively process many 

kinds of datasets, including non-spherical and overlapping datasets. 

Clustering algorithms divide datasets into several clusters. However, the number of clusters in a 

dataset is usually in a fuzzy interval, it is difficult to determine the optimal clustering number (Kopt) in 

practice [9]. CVI has always been the focus of cluster analysis [10]. Researches of CVIs mainly use 

mathematical knowledge to model the validity index. For example, when the clustering number takes 

different values, the clustering results are evaluated respectively. As the optimal value of a CVI is taken, 

the corresponding clustering result is the optimal clustering partition of the dataset, and the 

corresponding clustering number is the Kopt. 

By now, a variety of CVIs have been proposed and been applied to various fields. However, each CVI 

has its own advantages and limitations. There is no clustering algorithm integrated with certain CVI can 

handle all kinds of structured datasets [11]. For example, the DBI-index [12] is only suitable for 

measuring the clusters of datasets with “within-cluster compactness, between-cluster separation”. The I-

index [13] is only suitable for dealing with some datasets with less clustering numbers. The DI-index [14] 

is too sensitive to noise data points. The smaller the COP-index [4], the better clustering results of 

datasets are acquired. Generally speaking, since the cluster size and density are different, most of the 

existing CVIs cannot process datasets with non-spherical distribution and datasets with a large number of 

outliers and overlapping very well. In this paper, based on the knowledge of cost spanning tree in graph 

theory, we designed a new clustering validity index (MSTI). The new MSTI is able to stably and 

effectively form the Kopt for many kinds of datasets. 

Generally speaking, this paper makes the following contributions: 

Improves the traditional Average-Linkage hierarchical clustering algorithm. Due to the generated 

clustering hierarchies are too complex to analyze, many existing hierarchical clustering algorithms cannot 

properly process many non-spherical and overlapping datasets. Based on the Euclidean geometry theory, 

the traditional Average-Linkage hierarchical clustering algorithm is improved for stably and effectively 

processing these irregular datasets. 

Proposes a new clustering validity index—MSTI. By adopting the knowledge of cost spanning tree in 

graph theory, the minimum spanning trees among the clusters and maximal spanning tree within each 

cluster are constructed. By doing this, the MSTI is defined as the ratio of the cost of the minimum 

spanning tree among clusters to the cost of maximum spanning tree in each cluster. Under this 

circumstance, the Kopt is acquired when the above ratio reaches the biggest value.  

Designs a new algorithm for optimizing and determining the Kopt. This algorithm is designed by 

combining the revised Average-Linkage clustering algorithm and the new proposed MSTI. By this 

algorithm, optimal clustering numbers and optimal clustering partitions of many kinds of datasets can be 

effectively acquired. The experimental results have also shown that the new proposed algorithm is 

reliable and accurate while without incurring much runtime overhead on processing many kinds of 

datasets. 

The remainder of this paper is organized as follows: Section 2 discusses the related work. Section 3 

presents the new MSTI and the corresponding new hierarchical clustering algorithm for determining the 

Kopt. Section 4 evaluates the experimental results. Finally, Section 5 briefly concludes this paper and 

outlines our future work. 

2 Related Work 

Since the number of clusters in a dataset is usually in a fuzzy interval, it is difficult to determine the Kopt 

and the optimal clustering partition in practice. As an important method to get the optimal clustering 

numbers and the optimal clustering partitions for datasets, CVI plays an important role in the cluster 

analysis. Generally speaking, commonly used CVIs can be divided into 3 categories [1]: indexes based 

on the fuzzy division of datasets, indexes based on the statistical information of datasets and indexes 

based on the geometric structure of a datasets.  



Journal of Computers Vol. 31 No. 1, 2020 

121 

2.1 Fuzzy Division Based CVIs 

Fuzzy division based CVIs are commonly used to evaluate the results of fuzzy clustering algorithms. 

WGLI [15] is a representative fuzzy division based CVI that utilizes the optimum membership as its 

global property and the modularity of bipartite network as its local independent property. Xie-Beni [16] 

is a famous CVI that combines the objective function of fuzzy clustering, the structure of the dataset 

itself and the nature of the fuzzy membership degree. By utilizing two factors, a normalized partition 

coefficient and an exponential separation measure for each cluster, Wu and Yang [17] creates the PCAES 

validity index. The fuzzy division based CVIs can objectively evaluate the clustering results, but they are 

not suitable to evaluate the results of hard clustering algorithms. The improved Average-Linkage 

hierarchical clustering algorithm in our paper is one of the hard clustering algorithms, so the fuzzy 

division based CVIs are not suitable to evaluate the results of our improved algorithm.  

2.2 Statistical Information Based CVIs 

Statistical information from datasets can be used to design CVIs. IGP [18] is a representative CVI based 

on the statistical information of datasets. It uses the in-group radio of the intra data points to evaluate the 

clustering results. Based on the risk calculated by loss functions and possibilities, Yu et al. [19] design a 

clustering validity evaluation function. This is an automatic method by extending the decision-theoretic 

rough set model to clustering. Since it only focuses on the adjacent consistency, this kind of CVIs is not 

stable for many datasets. This means the number of clusters generated by these indexes is usually less 

than the actual number.  

2.3 Geometric Structure Based CVIs 

Based on the geometric structure of a dataset, many CVIs have been proposed. The DBI-index [12] is 

presented which indicates the similarity of clusters. This index is suitable for measuring the clusters of 

datasets with “within-cluster compactness, between-cluster separation”. So the greater the overlap of 

dataset is, the worse the performance of DBI-index clustering evaluation. The DI-index [14] is used in 

detecting the compact well-separated clusters. This CVI is too sensitive to the noise data. It is difficult to 

find the Kopt for datasets with outliers. By calculating the average distance between the sample points of 

each cluster to its center, the COP-index [4] measures the compactness of the sample distribution within 

each cluster. The separability among clusters is measured by farthest distance. Accordingly, the smaller 

the COP-index, the better clustering results of dataset. The CH-index [20] is proposed for identifying 

clusters of points in a multi-dimensional Euclidean space. Through extensive contrasts in different 

datasets, we find that, in most cases, the CH-index is superior to most CVIs in evaluating the clustering 

performance and determining the Kopt. Yue et al. [10] firstly developed a new measure, called as dual 

center, to represent the separation among clusters. Then, according to the new defined measure, a validity 

index (SMV) is proposed for evaluating the clustering performance of partitional algorithms. The SMV-

index exhibits high accuracy but narrow range of applications. The I-index [13] is suitable for dealing 

with some datasets with less clustering numbers, but it relies too much on preset parameters.  

The optimal numbers of clusters derived by CVIs, DI-index, DBI-index, CH-index, I-index, COP-

index, SMV-index, are based on the assumption that the optimal partition is already made for the target 

datasets [3]. As a matter of fact, the correctness of the clustering results is not verified. In addition, due to 

the random selection of initial clustering centers and different settings of parameters, even the same 

clustering algorithm will divide a single dataset into different clustering partitions. Many of the existing 

CVIs have good clustering performance for the dataset of “within-cluster compactness, between-cluster 

separation” and “each cluster presenting a spherical distribution”. However, most of them cannot 

properly deal with datasets with non-spherical distributions and datasets with a large degree of 

overlapping. A lot of studies [21] have shown that there is no CVI that can optimally process all datasets. 

Of course, there are already many CVIs for datasets with non-spherical distribution [22], different 

clusters with different sample sizes and density [23] and large degree overlap among clusters [24]. 

Compared with these CVIs, our new MSTI is able to process many kinds of datasets. Meanwhile, it 

incurs relatively lesser time cost and exhibits higher stability than above CVIs. 
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3 The New Hierarchical Clustering Method 

In this section, the traditional Average-Linkage hierarchical clustering algorithm is firstly revised by 

utilizing the Euclidean geometry theory. Then, the new clustering validity index, MSTI, is given by 

utilizing the cost spanning tree in the graph theory. Finally, a new algorithm for optimizing and 

determining the Kopt is designed by leveraging the revised Average-Linkage clustering algorithm and the 

new proposed MSTI. 

3.1 The Improved Average-Linkage Hierarchical Clustering Algorithm 

In the Euclid space Rm, a dataset X={x1, x2, …, xn} containing n samples is given. Where, each sample 

point xi={xi1, xi2, …, xim} has m feature attributes. By the clustering algorithm, X is divided into K clusters 

C={C1, C2, …, CK}, and a K×n partition matrix, represented as U(D)=[uki], is derived. uki (k=1, 2, …, K; 

i=1, 2, …, n) is the degree of membership of sample point xi to cluster Ck. Clustering can be divided into 

hard clustering and soft clustering (fuzzy clustering). Since the Average-Linkage hierarchical clustering 

algorithm used in this paper is in the category of hard clustering, the membership degree uki should be 

satisfied with: 

 
1,

0,

i k

ki

if x C
u

otherwise

∈⎧
= ⎨
⎩

.  (1) 

Where, the clustering results must be satisfied with Ci≠Ø, X=C1∪C2∪...∪CK, Ci∩Cj= Ø, i≠j, i, j=1, 

2, …, K. 

Definition 1. The Euclid space distance between sample points xi={xi1, xi2, …, xim} and xj={xj1, xj2, …, 

xjm} and (marked as d(xi, xj)) can be calculated as (each sample point contains m feature attributes): 

 2 2
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By clustering and partitioning the datasets at different levels, the hierarchical clustering finally forms a 

tree clustering structure. Generally, the hierarchical clustering utilizes two strategies to partition the target 

datasets, i.e. the “top down” splitting strategy and the “bottom up” merging strategy. In this paper, we use 

the later one. By this algorithm, each sample point in the target dataset is initially set as a cluster. Then, 

the distance between each of the two clusters pair is calculated, and the two clusters with the shortest 

distance are merged into a single cluster. The above steps are executed repeatedly until the target dataset 

is divided into K clusters. 

Based on the above definitions, the key step of the Average-Linkage hierarchical clustering algorithm 

is to calculate the distance between each of the two clusters pair. By drawing the Euclid space distance 

between two sample points defined in Definition 1, the distance between clusters Ci and Cj is defined as 

Definition 2. 

Definition 2. During the clustering and partitioning process of the Average-Linkage hierarchical 

clustering algorithm, the distance between clusters Ci and Cj (marked as davg(Ci, Cj) can be calculated as 

the following formula: 

 
1
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C C
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= ∈ ∈ . (3) 

In the formula, |Ci| and |Cj| represent the number of sample points in the cluster Ci and Cj respectively. 

d(xk, yt) is the Euclid space distance between sample point xk and yt. Base on this definition, the 

traditional Average-Linkage hierarchical clustering algorithm is improved in Fig. 1. In this figure, each 

sample point in the target dateset X is initially treated as a single cluster (lines 1-2). Then, the distance 

between each of the two clusters is calculated according to Definition 2 (lines 3-5). The initial clustering 

number is set as the number of sample points in X (line 6). Repeatedly merges the nearest two clusters in 

to a single one until the number of the clusters reaches to K (lines 7-18). More specifically, line 8 is 

utilized to merge the two nearest clusters; lines 9-10 are utilized to renumber the clusters after two 

nearest clusters are merged; lines 11-16 are utilized to adjust the distances after the cluster merging. The 

improved Average-Linkage hierarchical clustering algorithm can properly resolve the datasets with non-

spherical distribution and datasets with a large number of overlapping points. 
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Input: (1) Dataset X={x1, x2, …, xn}; (2) Clustering number K;  

(3) The function davg=(Ci, Cj) for calculating the distance between cluster Ci and Cj. 

Output: Dataset X is divided into K clusters: C={C1, C2, …, CK}. 
1. for i=1,2,…, n do 
2.     Ci ←{xi}; 
3.  for i=1,2,…, n-1 do 
4.     For j=i+1, i+2,…, n do 

5.         )( ji,Γ ←davg(Ci, Cj); 
6.  m←n; //set the initial clustering number 
7.  while m≠K do 
8.     Find the nearest two clusters: Ci* and Cj*, then Ci* ←Ci*∪Cj*;  // suppose i*<j*  
9.     for j= j*+1, j*+2,…m do 
10.        Renumbering the cluster Cj as Cj-1; 
11.     for i=1,2,…, m do // Since cluster Cj* is deleted, the distance associate with this cluster is also delete. 

12.        if i< j* delete )( *ji,Γ  

13.        else if i> j*  delete )( i,jΓ * ; 
14.     for j=1,2,…, m do //Since the original cluster Ci* is changed, recalculates the distance associate with new Ci*  

15.        if j< i*  )( *ij,Γ ←davg(Cj, Ci*) 

16.        else if j> i*  )( j,iΓ * ←davg(Ci*, Cj);  

17.     m←m-1; 

18.   end while. 

Fig. 1. The improved Average-Linkage hierarchical clustering algorithm 

3.2 The Proposed MSTI 

The traditional PRIM algorithm used for constructing the minimal and maximum cost spanning trees is 

firstly introduced. Then, the MSTI is designed to leverage the theory of Euclidean geometry and the 

PRIM algorithm. 

PRIM algorithm. Supposing in a weighted connected graph G=(V, E), V and E represent the vertexes set 

and the edges set of G respectively. Each edges in E is assigned with a weight (in this subsection, the 

weight is omitted for simplicity). VT and ET are the vertexes set and the edges set of minimal (or 

maximum) cost spanning tree produced by the PRIM algorithm.  

At the beginning of the PRIM algorithm, a vertex u0 is selected randomly from V as the only element 

of VT (VT={u0}, u0∈V). Meanwhile, the edges set ET is set null (ET = Ø). Then, for all edges (u, v)∈E, 

where u∈V and v∈V-VT, the edge with the minimum (or maximum) cost ((ui, vi)) is selected and put into 

the edges set ET.  

Meanwhile, vi is put into the vertexes set VT. The above steps is repeatedly executed until VT is equal to 

V (VT=V). After the algorithm is completed, the minimum (or maximum) cost spanning tree T=(VT, ET) is 

constructed. Where, set ET contains n-1 edges. Fig. 2 describes the pseudo code of the PRIM algorithm. 

 

Input: a weighted connected graph G=(V, E). 

Output: the minimal (or maximum) cost spanning tree of GT=(VT, ET). 

1. Initialize a empty tree: ET ←Φ, VT ←Φ; 

2. Randomly select a vertex u0 from V, and let VT ={ u0}; 

3. while (V - VT)≠Φ do  

4.     for all edges in E, the minimum / maximum cost edge (u, v) (u�VT, v�V-VT) is selected;  

5.     ET ←ET {(∪ u, v)}; 

6.     VT ←VT ∪{v}; 

7. end while. 

Fig. 2. The pseudo code of the PRIM algorithm 

In the PRIM algorithm, the key step is to construct a weighted connected graph. To this end, the 

weighted connected graphs are constructed by connecting all the sample points in each cluster (for the 

maximum cost spanning trees) or by connecting all the clustering centers of all the clusters (for the 

minimum cost spanning tree). By doing this, the weighted connected graph contains n×(n-1)/2 edges (n is 

the number of sample points of a cluster or the number of the clusters in a dataset). Where, the weight of 
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an edge is defined as the Euclidean distance between its associated two vertexes. The time complexity of 

the PRIM is O(n2), which is irrelevant to the number of edges in the graph. By this feature, the PRIM 

algorithm is more suitable to construct the minimum (or maximum) cost spanning tree from the graph 

with dense edges. 

The design of MSTI. Combing the Euclidean geometry theory and the PRIM algorithm, the new 

clustering validity index MSTI is designed for the Average-Linkage hierarchical clustering algorithm.  

Definition 3. In the Euclid space Rm, a dataset X={x1, x2, …, xn} containing n samples is given. By the 

Average-Linkage hierarchical clustering algorithm, X is divided into K clusters C={C1, C2, …, CK}, and a 

partition matrix, UK, is derived. Then, the CVI VK is used to evaluate the effect of the clustering. When 

the clustering parameter K takes different values, the corresponding partition matrix of the clustering 

results is Ui (i=2, 3,…, n ); its corresponding clustering index value is Vi (i=2, 3, …, n ). According to 

the property of the CVI, the optimal clustering partition of the dataset is obtained as follows: 

 
n

m
U...UUU ↑↑↑=

32
. (4) 

Where, Up=Ui↑Uj indicates that the partition matrix of the optimal clustering result is assigned to Up. 

Therefore, Um in formula (4) is the optimal partition matrix of the dataset X, and m is the value of the Kopt. 

Definition 4. In the Euclid space Rm, a dataset X={x1, x2, …, xn} containing n samples is given. By the 

Average-Linkage hierarchical clustering algorithm, X is divided into K clusters C={C1, C2, …, CK}. Then, 

K weighted connected graphs G={G1, G2, …, GK} are constructed by connecting all the sample points in 

each cluster. In each graph, the weight of an edge is defined as the Euclidean distance between its 

associated two vertexes. For each graph Gi, i=1, 2, …, K, the PRIM algorithm described in Fig. 2 is used 

to construct the maximum cost spanning tree Ti, i=1, 2, …, K. By doing this, a trees set T={T1, T2, …, TK} 

that contains K maximum cost spanning trees is constructed. Finally, the compactness inner the cluster k 

(k=1, 2, …, K) can be evaluated as follows: 

 }...,,,{=
21 K

TTTk
VVVmaxθ . (5) 

Where, )|C/(|λV
iiT

K

1-= ; 
i
λ is the sum of weights on all edges of Ti (constructed from cluster Ci); |Ci| is 

the number of sample points in cluster Ci, i=1, 2, …, K. 

Definition 5. In the Euclid space Rm, a dataset X={x1, x2, …, xn} containing n samples is given. By the 

Average-Linkage hierarchical clustering algorithm, X is divided into K clusters C={C1, C2, …, CK}. 

Where, vi is the clustering center point of Ci, i=1, 2, …, K. By connecting all the clustering center points 

vi (i=1, 2, …, K), the weighted connected graph N is constructed. In this graph, the weight on each edge 

is defined by the Euclidean distance between its associated two vertexes. Then, the PRIM algorithm 

described in Fig. 2 is used to construct the minimal cost spanning tree TN. Finally, the separation among 

the clusters can be evaluated as follows ( )K/(δV
N

T
1-= ; δ  is the sum of weight on all edges of TN): 

 
N

TK
Vφ = . (6) 

Definition 6. In the Euclid space Rm, a dataset X={x1, x2, …, xn} containing n samples is given. By the 

Average-Linkage hierarchical clustering algorithm, X is divided into K clusters C={C1, C2, …, CK}. 

Where, vi is the clustering center point of Ci, i=1, 2, …, K. By connecting all the clustering center points 

vi (i=1, 2, …, K), the weighted connected graph N is constructed. In this graph, the weight on each edge is 

defined by the Euclidean distance between its associated two vertexes. Then, the PRIM algorithm 

described in Fig. 2 is used to construct the minimal cost spanning tree TN. Finally, the new clustering 

validity index, MSTI, is defined as follows: 
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==)(
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Where, 
k

θ and 
K

φ are defined by formulas (5) and (6) respectively. The Kopt can be derived by the 

following means (in this formula, the number of clustering number follows the empirical rule: 

nK
max

≤≤2 ): 

  KMSTImax|K=K
nKopt )}}({{

≤≤2
. (8) 
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3.3 The K Value Determination and Optimization Algorithm Based on New MSTI 

By combining the improved Average-Linkage algorithm and the new proposed MSTI, the new 

hierarchical clustering algorithm for determining and optimizing the K value is designed (as shown in Fig. 

3). In the algorithm, the range of the maximum clustering number Kmax is firstly specified by the number 

of sample points (n) in data set X={x1, x2, …, xn} and the empirical rule 
max

2 K n≤ ≤  (line 1). Then, for 

different K in ]2[ n, , the value of MSTI(K) is calculated by the improved Average-Linkage hierarchical 

clustering algorithm shown in Fig. 1 and formula (7) (line 3-5). Lastly, the minimal MSTI(K), K ∈ ]2[ n, , 

is selected (line 6-13). By doing so, the value of K is the corresponding Kopt of dataset X. Consequently, 

the dataset X is optimal divided into C={C1, C2, …, CKopt} (line 14). 

 

Input: (1) Dataset X={x1, x2, …, xn}; (2) Clustering number K;  

(3) The function davg=(Ci, Cj) for calculating the distance between cluster Ci and Cj. 

Output: (1) The optimal clustering number Kopt;  

(2) The optimal clustering partition C={C1, C2, …, CK} of dataset X. 
1. According to the number of sample points n in dataset X and the empirical rule, we can get: 2≤Kmax≤ n ; 
2. for K=2,3,…, n do 
3.     Using the improved Average-Linkage hierarchical clustering algorithm on dataset X; 
4.     Evaluate the clustering result according to the new MSTI(K) described as formula (7); 
5. end for; 
6. let max←MSTI(2); 
7. for K = 3, 4, …, n do 
8.     if max<MSTI(K)  
9.         then max←MSTI(K);  
10.                Kopt←K; 
11.         else  keeping max unchanged; 
12.     end if; 
13. end for; 
14. The optimal clustering partition C={C1, C2, …, CKopt} of the dataset X is get when the clustering validity index 

reaches the maximum value. Consequently, the value of K is the corresponding optimal clustering number Kopt. 

Fig. 3. The new hierarchical clustering algorithm for determining Kopt 

4 Experimental Results 

This section presents the detailed results of simulation experiments on verifying the performance of our 

new clustering method. The test environment of this section consists of an Intel Pentium CPU (E6700 at 

3.2GHz), 2.0GB RAM and Windows 7 OS. Meanwhile, the MyEclipse 8.6 with jdk 1.8 is selected for 

running our Java programs. The tested datasets in this section consist of three simulated datasets (R15, 

Pathbased and Aggregation (http://cs.joensuu.fi/sipu/datasets/)) and three UCI machine learning 

databases (Iris, Pima and Seeds (http://archive.ics.uci.edu/ml/data sets.html)). A detailed description of 

the 6 experimental datasets is shown in Table 1. 

Table 1. Description of tested datasets 

Dataset name Sample number Clustering number (K) Dimensions Range of K 

R15 600 15 2 2<=K<=24 

Pathbased 300 3 2 2<=K<=17 

Aggregation 754 6 2 2<=K<=27 

Iris 150 3 4 2<=K<=12 

Pima 768 2 8 2<=K<=27 

Seeds 210 3 7 2<=K<=14 

4.1 Spatial Distribution of Tested Datasets 

Fig. 4 shows the spatial distributions of the R15, Pathbased and Aggregation datasets. As Fig. 4(a) shows, 

there are 15 clusters in the R15 analog dataset. Among them, the peripheral seven clusters are 

characterized by “within-cluster compactness, between-cluster separable”. The internal eight clusters are 

characterized by “within-cluster compactness, between-cluster linear separable”. As shown in Fig. 4(b), 
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the spatial distribution of Pathbased dataset is similar to “human face”. From Fig. 4(b), we can see that 

there are three clusters in this dataset. The spherical distributions of the internal two clusters are 

characterized by “within-cluster compactness, between-cluster linear separable”. The spatial distribution 

of the outside cluster exhibits a big arc. So, there is a great difference among the spatial distributions of 

different clusters. Fig. 4(c) describes the spatial distribution of the Aggregation dataset. From the figure, 

we can see that the dataset is comprised of 6 clusters, and each cluster has a uniform and compact 

distribution of sample points. However, the number of sample points contained by each cluster varies 

greatly. 

  

(a) Pathbased  (b) and Aggregation  (c) datasets 

Fig. 4. The spatial distribution of the R15 

Fig. 5. shows the spatial distributions of the Iris, Pima and Seeds datasets. Iris is a commonly used 

experimental dataset for clustering and classification. It is collected by Fisher based on the characteristics 

of iris plants. The Iris dataset is divided into 3 clusters, 50 samples per cluster, and each sample has four 

attribute values. Since the Iris dataset is four dimensions, it is necessary to reduce the dimensions to be 

displayed in the low dimensional space. Currently, there are mainly two kinds of high dimensional data 

visualization tools, the linear dimensionality reduction tools and the nonlinear dimensionality reduction 

tools. In this paper, we select the widely used nonlinear dimensionality reduction tool T-SNE [25] to 

process datasets in Fig. 5. From Fig. 5(a), we can observe that the sample points of two clusters in the Iris 

dataset have a small degree of overlap. But the two clusters are linearly separable. The other one is far 

apart from these two clusters. From Fig. 5(b), we can see that the Pima dataset can be divided into two 

clusters. However, the large degree of overlap between the two clusters brings huge challenges to 

clustering algorithms and CVIs. Fig. 5(c) is a three-dimensional spatial distribution graph of the Seeds 

dataset after dimensionality reduction by the T-SNE method. Actually, the sample points in this dataset 

can be divided into three clusters, and each cluster represents a different wheat variety. However, the 

spatial distribution shown in Fig. 5(c) demonstrated that, among the three clusters, two clusters with near 

distance have large overlap and they are linearly separable to the third cluster. For this reason, 2 is the 

more reasonable optimal clustering number for this dataset. 

   

(a) Pima  (b) and Seeds  (c) datasets 

Fig. 5. The spatial distribution of the Iris  
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4.2 Effectiveness Evaluation 

For the 6 datasets listed in Table 1, the empirical rule K ≤ n  is firstly used to get the range of K. Then, 

for different K in ]2[ n, , our improved clustering algorithm is used to perform the clustering partition for 

different datasets. At last, the five CVIs are compared with each other to evaluate the effectiveness of the 

clustering results. Because of too much difference among the values of the 5 tested CVIs, it is needed to 

standardize the CVI values to facilitate displaying and analyzing the experimental results. In this paper, 

the following methods are adopted:  

 )}((2)(1){ nFI,...,FI,FImax=MaxI . (9) 

 nK
MaxI

KFI
=KFI

S
≤≤240,×

)(
)( . (10) 

Where, FI(K) is the clustering validity index function (there are n CVIs participated in the comparison). 

The inequality 2≤K≤ n is the empirical rule. FIS(K) is the standardized CVI values which will be 

displayed and analyzed in the following subsections. Through the standardization of the above methods, 

the values of the 5 CVIs will be limited to the interval of [0, 40]. 

Table 2 lists the standardized CVI values of R15 dataset evaluated by 5 CVIs. Through the 

standardization of the methods of the formula (9) and (10) and the empirical rule 2≤K≤ n , values of 

different CVIs are limited to the interval [2, 40]. In this table, the values of K locate at the same row with 

the underlined bold index values are the Kopt calculated by different CVIs. As the optimal clustering 

number of the R15 dataset is 15 (Kopt=15), so CVIs, DBI-index and MSTI can get the optimal clustering 

partition. However, the I-index, COP-index and SVM-index cannot obtain the optimal clustering 

partition (that is, the optimal clustering numbers 7 and 8 they got are not the optimal clustering results of 

the R15 dataset). 

Table 2. Standardized CVI values of R15 dataset 

K BDI I COP SMV MSTI 

2 40.000 11.680 36.952 40.000 10.825 

3 36.883 12.264 37.850 36.022 12.785 

4 32.710 14.521 40.000 30.880 13.296 

5 30.574 14.065 39.444 28.527 15.496 

6 25.066 0.887 32.348 23.052 15.234 

7 20.753 40.000 25.259 17.680 14.981 

8 14.759 1.102 18.805 11.810 20.162 

9 20.337 5.869 28.463 14.015 18.928 

10 19.153 1.243 28.295 14.027 21.425 

11 19.053 1.479 26.790 14.183 23.740 

12 18.591 1.356 26.272 13.153 22.771 

13 17.757 7.418 23.641 12.863 22.802 

14 15.818 1.760 21.006 12.601 22.362 

15 13.329 2.023 18.908 11.947 40.000 

16 13.962 1.907 19.950 12.901 37.820 

17 13.972 1.528 19.901 12.676 36.588 

18 14.132 1.412 19.779 13.279 35.977 

19 14.569 1.449 20.955 14.228 34.721 

20 14.898 0.011 21.237 14.662 33.389 

21 15.871 1.342 21.406 15.006 31.621 

22 18.382 1.315 23.166 17.286 30.998 

23 18.253 1.234 23.178 16.776 29.884 

24 19.028 1.255 23.785 16.534 28.852 

 

Table 3 lists the standardized CVI values of Pathbased dataset processed by different CVIs. In this 

table, index values with underlined bold fonts specify the Kopt that calculated by different CVIs. As a 

matter of fact, the optimal cluster number of the Pathbased dataset is 3. From Table 3, we can see that 
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only the cluster validity index MSTI proposed in this paper can get the optimal clustering partition of this 

dataset. The I-index can obtain the near optimal cluster partition. However, DBI-index, COP-index and 

SMV-index cannot get the optimal clustering number. 

Table 3. Standardized CVI values of Pathbased dataset 

K DBI I COP SMV MSTI 
2 0.8007 4.4093 0.3735 0.7265 0.6635 
3 0.6309 2.6375 0.3176 0.6272 0.9780 
4 0.6237 2.7725 0.3069 0.6423 0.9757 
5 0.5724 2.5361 0.2955 0.5978 0.8664 
6 0.6029 1.8025 0.3047 0.5346 0.7620 
7 0.7052 0.2634 0.3169 0.6143 0.8648 
8 0.6831 0.9326 0.3160 0.5527 0.8079 
9 0.7114 0.1064 0.3291 0.6141 0.9330 
10 0.6860 0.2739 0.3252 0.6367 0.8626 
11 0.6595 0.0735 0.3144 0.6328 0.8393 
12 0.6956 0.0725 0.3372 0.6485 0.8448 
13 0.6918 0.3966 0.3347 0.6384 0.8214 
14 0.6751 0.0643 0.3263 0.6500 0.7868 
15 0.6563 0.0685 0.3200 0.6396 0.7388 
16 0.7142 0.0840 0.3501 0.6623 0.8572 
17 0.6952 0.2096 0.3428 0.6436 0.8062 

 

Table 4 gives the standardized CVI values of Aggregation dataset processed by different CVIs. In this 

table, index values with underlined bold fonts specify the optimal cluster numbers Kopt calculated by 

different CVIs. As a matter of fact, the optimal cluster number of the Aggregation dataset is 6. From 

Table 4, we can see that CVIs, DBI-index, COP-index and MSTI, can get the optimal clustering number. 

The SMV-index can obtain the near optimal cluster partition. However, the I-index cannot get the 

optimal clustering number. 

Table 4. Standardized CVI values of Aggregation dataset 

K BDI I COP SMV MSTI 
2 40.000 38.474 40.000 40.000 26.85 
3 27.386 34.562 33.786 31.581 31.102 
4 24.102 40.000 30.732 31.645 38.939 
5 22.736 1.052 29.193 27.508 35.795 
6 20.857 8.516 27.800 30.036 40.000 
7 24.342 1.965 29.943 30.174 33.762 
8 29.379 12.752 34.767 29.639 32.470 
9 31.122 7.071 35.406 29.001 35.564 
10 30.349 0.859 34.690 30.311 33.450 
11 32.425 7.120 36.564 30.704 31.372 
12 34.848 1.948 38.697 33.067 32.199 
13 35.947 2.003 39.205 33.348 31.972 
14 36.783 0.775 39.495 33.956 30.908 
15 37.342 1.964 39.584 33.862 29.527 
16 36.070 0.743 39.366 34.777 28.679 
17 36.349 1.868 39.881 34.493 32.596 
18 36.078 0.914 39.486 34.430 31.580 
19 35.726 1.747 38.966 34.131 33.908 
20 34.876 1.731 38.320 34.456 33.250 
21 34.841 1.900 38.153 34.296 31.996 
22 35.125 0.662 38.385 34.543 32.188 
23 35.128 0.839 38.570 34.483 31.614 
24 35.040 0.300 38.508 34.536 31.680 
25 35.259 0.699 38.425 35.117 30.402 
26 35.411 0.381 38.060 35.376 30.824 
27 35.795 0.677 38.387 35.656 30.183 

 

Table 5 lists the experimental results of the standardized CVI values of Iris dataset processed by 

different CVIs. As shown in Fig. 5(a), there are three clusters in this data. But the sample points of two 
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clusters in the Iris dataset have a small degree of overlap. For this reason, CVIs, DBI-index, COP-index 

and SMV-index, treat them as a single one. Thus, they only obtain the near optimal cluster partition for 

the dataset. As a matter of fact, the overlapped two clusters in the Iris dataset are linearly separable. It is 

more reasonable for the dataset being divided into 3 clusters. In this experiment, the I-index and our 

proposed MSTI can get the optimal clustering number for this dataset. 

Table 5. Standardized CVI values of Iris dataset 

K DBI I COP SMV MSTI 

2 0.3836 0.3751 0.1767 0.4497 1.1869 

3 0.6588 0.4422 0.2525 0.4568 1.2462 

4 0.6267 0.3535 0.2726 0.5117 0.9936 

5 0.6860 0.3298 0.2848 0.5857 0.9623 

6 0.6393 0.0881 0.2860 0.5435 0.9061 

7 0.7363 0.1328 0.3169 0.6254 0.8882 

8 0.7965 0.1246 0.3148 0.6226 0.8429 

9 0.8246 0.0097 0.3500 0.5793 0.8994 

10 0.7773 0.0847 0.3593 0.5290 0.8829 

11 0.7896 0.0818 0.3670 0.5638 0.8582 

12 0.8352 0.1664 0.3644 0.6023 0.9010 

 

Table 6 lists the experimental results of Pima dataset evaluated 5 tested CVIs. In this table, index 

values with underlined bold fonts specify the optimal cluster numbers Kopt calculated by different CVIs. 

Fig. 5(b) has shown that it is more reasonable to divide this dataset into 2 clusters. From Table 6, we can 

see that CVIs, DBI-index, COP-index and SMV-index and MSTI can get the optimal clustering number. 

The I-index could only get the near optimal clustering partition for this dataset. 

Table 6. Standardized CVI values of Pima dataset 

K BDI I COP SMV MSTI 

2 11.366 0.179 13.300 20.059 40.000 

3 24.692 40.000 27.660 30.266 36.155 

4 25.134 0.755 28.230 32.678 34.354 

5 22.425 1.353 28.190 34.338 29.270 

6 28.479 12.52 30.741 37.758 32.371 

7 27.679 10.12 30.658 34.972 30.804 

8 29.756 8.937 30.806 37.039 28.665 

9 30.239 7.866 33.358 36.878 27.623 

10 32.760 4.850 36.879 38.381 29.988 

11 34.231 0.046 36.979 37.929 28.315 

12 34.530 1.555 35.205 39.170 27.498 

13 38.969 0.042 36.204 40.000 27.371 

14 38.317 0.330 36.906 39.900 26.409 

15 36.823 4.810 36.899 37.614 25.318 

16 33.864 0.000 36.839 33.296 23.877 

17 34.874 0.381 38.784 33.874 24.159 

18 36.538 0.000 40.000 34.192 24.972 

19 36.609 1.204 39.919 34.423 24.305 

20 36.055 0.381 39.994 34.626 24.127 

21 36.321 0.056 39.499 35.345 26.274 

22 37.235 0.000 39.530 35.658 25.634 

23 39.283 0.000 39.406 37.889 24.914 

24 40.000 0.263 39.555 38.308 27.572 

25 39.205 0.264 39.450 37.806 27.338 

26 38.637 0.018 39.378 36.597 27.143 

27 37.111 0.245 39.264 34.117 26.901 

 

The Seeds dataset has 3 clusters. But the spatial distribution shown in Fig. 5(c) has demonstrated that, 

among the three clusters, 2 clusters with near distance have large overlap and they are linearly separable 
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to the third one. So, it is reasonable to divide this dataset into 2 clusters. Table 7 lists the experimental 

results of Seeds dataset evaluated 5 tested CVIs. In this table, index values with underlined bold fonts 

specify the optimal cluster numbers Kopt calculated by different CVIs. From the experimental results, we 

can see that CVIs, DBI-index, I-index and MSTI can get the Kopt. The COP-index and the SMV-index 

cannot get the optimal clustering partition for this dataset. 

Table 7. Standardized CVI values of Seeds dataset 

K BDI I COP SMV MSTI 

2 0.6381 2.2854 0.3179 0.6796 0.9462 

3 0.7604 1.0533 0.3087 0.6333 0.9109 

4 0.7149 0.0250 0.3004 0.5989 0.8366 

5 0.7203 0.5640 0.3091 0.5814 0.7821 

6 0.8672 0.0423 0.3730 0.6936 0.7910 

7 0.7730 0.0835 0.3315 0.6670 0.7297 

8 0.8428 0.1066 0.3468 0.6756 0.7571 

9 0.8340 0.1350 0.3558 0.7154 0.7007 

10 0.8407 0.0745 0.3611 0.7088 0.8253 

11 0.8147 0.0195 0.3571 0.6874 0.8099 

12 0.8067 0.1114 0.3541 0.6973 0.7710 

13 0.7680 0.0125 0.3521 0.6656 0.7625 

14 0.7642 0.0894 0.3587 0.6692 0.7466 

 

From Table 2-Table 7, we can see that, for all tested datasets with different spatial distributions, the 

proposed MSTI can get the optimal clustering number Kopt. 

4.3 Performance Evaluation 

In order to better display the 5 CVIs’ execution time on processing the six different datasets, the 

following standard methods are adopted: 

 )}(..,(2),(1),{ nExe.ExeExemax=ExeMax . (11) 

 nk
ExeMax

kExe
=kSTDExe ≤≤240,×

)(
)( . (12) 

Where, Exe(k) is the execution time of certain dataset processed by CVI k (there are n CVIs 

participated in the comparison); STDExe(k) is the standardized execution time processed by CVI k. 

Through the standardization of the above methods, the execution time of each CVI on certain dataset will 

be limited to the interval of [0, 40].  

Fig. 6 shows the efficiency of the 5 CVIs in solving the optimal clustering numbers of the 6 

experimental datasets. From the figure, we can see that our proposed MSTI do not incurs more execution 

time on resolving the optimal clustering numbers compared with the other 4 CVIs. 

 

Fig. 6. The standardized execution time comparison of different CVIs on processing different datasets 
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4.4 Accuracy Evaluation 

The third column of Table 8 lists the clustering accuracy rates when the proposed algorithm (shown in 

Fig. 3) is used to process different testing datasets. From the results, we can conclude that, no matter the 

tested datasets with non-spherical distribution, overlap among different clusters, density and number of 

sample points vary greatly among different clusters, our proposed algorithm can get high clustering 

accuracy rate. 

Table 8. Accuracy evaluation on different datasets 

Dataset Clustering number Accuracy rate 

R15 15 99.50% 

Pathbased 3 87.67% 

Aggregation 6 99.60% 

Iris 3 94.67% 

Pima 2 76.10% 

Seeds 3 90.95% 

 

In order to verifying the correctness of the proposed MSTI, 12 other datasets from UCI machine 

learning da tabases (http://archive.ics.uci.edu/ml/datasets.html) are tested. Table 9 lists the experimental 

results. In the table, “SamNum”, “AttrNum”, and “CluNum” represent for “Sample Points Number”, 

“Attribute Number” and “Cluster Number” respectively. From this table, we can see that the proposed 

MSTI exhibits relatively high accuracy. As there is no label for each sample, we cannot evaluate the 

accuracy of “S1” dataset by MSTI. Meanwhile, except “Glass”, it can get all the optimal clustering 

numbers. 

Table 9. Accuracy evaluation on 12 other UCI datasets 

Datasets SamNum AttrNum CluNum Kopt MSTI Accuracy 

Cancer 699 9 2 2 0.7467 94.37% 

Haberman 306 3 2 2 1.0146 89.95% 

Glass 214 9 7 6 1.0323 68.85% 

Breast Tissus 106 9 6 6 6.305 72.91% 

Parkinsons 195 22 2 2 1.5116 85.38% 

Ecoli 336 7 8 8 0.8647 79.76% 

Spectf 267 44 2 2 0.9982 81.04% 

Energy_efficiency 768 8 12 12 19.879 93.75% 

statlog(German) 1000 24 2 2 1.103 91.00% 

S1 5000 2 15 15 1.2673 No Label 

Ionosphere 351 34 2 2 0.8543 74.39% 

Libras movement 360 90 15 15 0.6987 81.39% 

 

5 Conclusion and Future Works 

When the traditional cluster partition algorithms solve the clustering problems, it is necessary to set the 

value of the clustering number K in advance. But in practice, the numbers of clusters (K values) are 

usually in a fuzzy interval. This seriously limits the further application of the traditional cluster partition 

algorithms. For the purpose of elevating the stability and enlarging the application scope of clustering, 

this paper proposed an effective hierarchical clustering algorithm based on the new designed clustering 

validity index (MSTI). In the algorithm, the traditional Average-Linkage hierarchical clustering 

algorithm was firstly improved for better processing the irregular datasets. Then, the new MSTI was 

defined by utilizing the cost spanning trees in the graph theory. Lastly, the new clustering algorithm was 

proposed by integrating the revised Average-Linkage hierarchical clustering algorithm and the new 

designed MSTI. The experimental results demonstrated that the new algorithm was accurate while 

without scarifying much time cost. However, the proposed algorithm does not solve the intrinsic defects 

of the traditional hierarchical clustering algorithm, so it still cannot process the dataset with a large 
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number of noise points. The efficiency of the algorithm still needs to be improved when it is used to 

process large scale datasets. Therefore, these defects and deficiencies should be improved as our future 

work. 
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