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Abstract. Face recognition algorithm has been widely used in many scenarios due to the great 

improvement of accuracy by using Convolutional Neuro Networks. People have achieved nearly 

99.7% accuracy on face authentication task in certain dataset. However, face recognition product 

still faces technological and cost problem due to the conflict of probable large amount of 

identities and the insufficient computing power on embedded devices. To have better 

performance on a lager dataset, we usually train a bigger network, resulting hard implementation 

on smart devices. Another facing problem is called one-shot learning, we usually don’t have 

more than one image of each identity to form face recognition database, resulting unreliable 

result. The main contribution in this paper is: (A) Implement a face recognition system on 

embedded device with specific hardware accelerator. (B) Bring up an easy method recognizing 

and augmenting dataset at the same time. (C) Furthermore, we divide the large database into 

small pieces according to districts and bring up a cloud to server local recognition system.  

Keywords:  embedded system, face recognition, hardware accelerator, hierarchical service 

system 

1 Introduction 

Since CNN (Convolutional Neuro Network) showed promising future on ImageNet (Alex-Net) in 2012 

[1], CNN architectural has spread through CV (Computer Vision) research area, including face detection 

and face recognition. With more plenteous datasets and deeper network, CNNs based on statistical model 

soon reach valuable result, even surpass human performance [2]. The commercialization process of these 

technology is just as dramatically rapid as other AI (Artificial Intelligence) method. Baidu once took lead 

of using face recognition gate instead of RFID ones. Face verification gates are also widely used in most 

first-tier cities’ railway stations in China to verify the passengers’ identity with their ID cards. Recently, 

Alibaba Cloud, Tencent, JDcom detruded their New Retail concept based on face recognition payment 

successively.  

Though face recognition has made great progress, there are still challenges. Once the amount of 

identities increased, the accuracy will drop exponentially. To maintain high performance, deeper 

networks are involved, resulting more computation complexity. Deep learning algorithms are getting 

higher performance, yet they are hardly used on embedded system.  

In this paper, we carefully choose a hardware accelerator called Intel Movidius Neural Compute Stick 

[3], using concurrently pipeline computation speed up the complex computation of CNNs. The workflow 

of our system is shown as Fig. 1, and will be explained in Section 3. Section 2 introduces some related 

CNN algorithm and other hardware accelerators. Our work also includes some usable tricks like splitting 

large dataset into small ones according to region information, which directly reduces the difficult in each 

model. Also, we implement a recognition and augmentation method, which allow the system augments 

database during working, to solve one-shot learning problem. There is a cloud service which combines 

different models of different regions. Some emulation result can be found in Section 4.  
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Fig. 1. Structure of the embedded face recognition system 

2 Related Work 

2.1 Face Detection Algorithm 

Face detection technique is to detect and locate faces in images, is usually the pre-process of face 

recognition. Early face detection was brought up during 1990s, the popular methods then were PCA [4] 

and LDA [5]. In 2001, Viola and Jones came up the idea of Harr-like feature and Adaboost classification 

method [6], which surpassed early methods with 2 order of magnitude accuracy. Hand-made feature like 

Harr feature dominated the area until 2015, Cascade CNN [7] was brought up with the high performance 

of CNN. Later methods were all based on CNNs. In 2016 MTCNN [8] advance the performance one 

more step, reaching a state-of-art. Recently, Shan’s group published their PCN work [9], which 

maintained high accuracy on askew faces and upside-down faces.  

2.2 Face Recognition Algorithm  

Given a database, face recognition algorithm is to identify an image of one face, and decide whether the 

face is in the database and which identity in the database matches the image. Early face recognition 

began with eigen face method [4-5]. After that, handmade features like SIFT, HOG and LBP raised [10]. 

These carefully designed feature were fast and easy to use. Till 2014, DeepFace [11] used CNN network 

reached 97.35% accuracy on LFW (Labeled Faces in the Wild) [12] dataset, a new age started. Later on 

2015, Google and their Facenet [2] directly mapped images of face into Euclidean space, using distance 

between embedded vectors represent different of the faces. The result was 99.63%. Early in this year, 

Facenet model trained on VGGFace2 reached 99.7% on LFW.  

2.3 Light CNN Structure 

It has been a hot topic to reduce deep learning’s computation since the method went red. Some of the 

researchers brought up light structure of CNN network like Mobilenet [13], Squeezenet [14], Shufflenet 

[15] and so on. They use 1*1 convolutional kernel to shrink the feature map size, so that reducing the 

computation complexity while maintain a higher accuracy. To achieve great performance on an 

embedded device, which lacks computation power, on the one hand, we use hardware accelerator. On the 

other hand, we choose light network architecture like Mobilenet to cut the need of computer power.  

2.4 Hardware Accelerator 

In order to apply face recognition technique on embedded machine, numbers of work have been tried. 

Most of the studies were based on the classical Harr feature [16-18], which was included in OpenCV 

toolkit. Some of them tried hardware accelerator like FPGAs [18] or DSPs in order to achieve real time 

performance. When it comes to CNNs, more compute resources are needed. Xilinx proposed a PYNQ 

based accelerator of CNNs [19], which had great result on LeNet and Cifar10 Network. Some institute 

used Movidius’ hardware and SDK to accelerate CNN reference [3, 20], showing us a feasible way to 

implement our work.  
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3 System Architecture 

Like Fig. 1 shows in Section 1, our system combines of different modules, such as pre-face detection, 

face recognition and hardware modules. In this chapter, we will talk about some detail of each module.  

3.1 Face Detection Algorithm 

We choose MTCNN as the face detection algorithm in our system. MTCNN is consist of three different 

CNN networks, which all contribute to a same purpose: To find whether there is a face and where the 

bounding boxes and key points of faces are. The architecture of MTCNN is shown in Fig. 2 below. By 

using three small CNN networks cascade together, the network reached high performance. Furthermore, 

cascade structure abandons most useless area at the first stage, thus reduces plenty of computations.  

MTCNN is one of the real time face detection algorithm, however, when we first implemented it on 

our Raspberry device, it took 1.3s to execute one frame. Because of MTCNN’s unique structure, it’s hard 

to accelerate its computation over Movidius NCS (Neural Compute Stick). We eventually choose 

Tencent’s CNN reference framework, which provide about 10 times acceleration performance on 

MTCNN.  

 

Fig. 2. MTCNN structure 

3.2 Face Recognition Algorithm 

Facenet is one of the most successful network of face recognition. The main idea of facenet is shown in 

Fig. 3. Facenet firstly combined 1:1 face verification and 1:N face recognition tasks into one network. 

The principle here is quite simply, a deep CNN network is used to extract abstract feature of a face image. 

We know CNNs can extract images’ feature into vectors, which could be used for classification or other 

tasks. This embedded feature could be a representation of the face identity. When training a facenet 

model, we mainly want the representations of the same identity to be closer, and those of different 

identities to be further, as it’s shown in Fig. 4. 

 

Fig. 3. Basic idea of facenet 
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Fig. 4. Distance of images on facenet 

We use triple loss to train the CNN network in facenet. The batch of facenet input is combined of 

different triple pairs. Each pair contains three images of two identities, those images of same person is 

called A (for Anchor) and P (for Positive), the other one is called N (for Negative). Then the loss 

function can be represented as: 
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The left part of the formula is the distance between the same identity, and the right part is the distance 

of different identities. When minimize the loss function, the distance between A, P goes smaller and the 

distance of A, N goes higher. Fig. 4 also shows how this algorithm works, if we choose the threshold 

distance value to be 1.1, we can easily distinguish these three identities.  

3.3 Hardware Framework 

We select Raspberry 3B+ as the embedded system’s control unit. Raspberry supports Linux OS like 

Rasbian, and have very convenient hardware connector like USB2.0 input and HDMI output. The 

framework of the hardware structure is shown as follow. Notice that we use Intel Movidius NCS as 

hardware accelerator to handle the computation of CNN of face recognition. Each NCS consists of serval 

shave that like GPU cores to GPU. The shaves allow the compute stick reference the CNN parallelly.  

The software flow is shown in Fig. 5. Firstly, the ARM processor reads a frame from USB camera. 

The MTCNN method then goes through the frame to look whether there is a face. Here we use Cython to 

import the ncnn-based MTCNN library, which is 10 times faster by using MISD technique on ARM 

processors. If the detector finds a face, the face will be cropped and resized. The identifier is running on 

NCS, a SDK port is provided to communicate the NCS with the Raspberry. After process, the identifier 

returns the embedded vector of the face, and leave the processor to compare it with the database and 

finally determine the identity.  
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Fig. 5. Diagram of software flow 

3.4 Augmentation while Recognition 

Another problem of face recognition system is that we often don’t have enough data to form a database. 

For example, if we were building an access control system for a small company, very likely we could 

only get one photograph for an employee. The insufficient of data would make the system less robust. To 

solve the problem and deployment our system agilely, we introduce a method called Augmentation while 

Recognizing. Like it’s shown in Fig. 6, the system was based on a origin database which only contains 

few images. This system couldn’t be too precise, so we lowed the threshold a little bit, so the system 

could be stricter, with high precision but low recall. After each identity was confirmed, we simply took 

this image mixed with the older database. After a while, the database became strong, and we could relax 

the condition but still get a good performance. Meanwhile, the stronger database could be used to train a 

new CNN network, which would fix the distribution of our client better.  

 

Fig. 6. Diagram of augmentation while recognition process 
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3.5 Database Split and Cloud Server 

In some face recognition application scenarios, it’s convenient to split the data base into small ones 

according to region attribute. For example, if we were building a payment system in a city, we could split 

the whole city’s customers’ database into pieces of different neighbors. Because of the lack of 

computation power, our system runs light CNN architecture which could not handle big database. Instead, 

a cloud platform is involved. When the customer showed in the local database, which is common for 

most people don’t travel too far, the embedded system could recognize the person and finish the payment 

efficiently. Whenever the customer was not found in the local database, the image will upload and 

carefully examined with a bigger network and bigger dataset.  

 

Fig. 7. Diagram of cloud server 

4 Tests and Results 

This chapter shows some tests and result of our embedded system, including a reference speed test, a 

simulation of the improvement of Augmentation while Recognition method. We use Taigman Y. et al’s 

MTCNN as face detection model. The Facenet work base on Schroff F’s work is trained on VGGFace2. 

There are two version of this network. The one with Mobilenet_v1 is a smart one and can be inferenced 

on embedded device. The other one with Inception_Resnet_v1 is a heavy model which contains over 140 

layers. The heavy model outperformances the smart one, with no doubts, shown in Table 1. Notice that 

with the increase of amount N, the 1: N recognition accuracy drops dramatically.  

Table 1. Accuracy test on LFW 

Algorithms 1:1 test (verification) 1:N test (recognition) 

Facenet with Mobilenet_v1 0.991 0.764 

Facenet with Inception_Resnet_v1 0.997 0.801 

 

Fig. 8 shows the hardware of the system and a simply demonstration. Table 2 explains the reference 

speed test of the system. We use the ncnn framework shorten the MTCNN inference time form 1.10s to 

0.13s. The Mobilenet of facenet is still too heavy for ARM CPU to process, so there is not a reliable time. 

At last, we test the overall spend time is around 0.5s. 

 

 

(a) Hardware System (b) Face Recognition Demonstration 

Fig. 8. Reference speed test 
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Table 2. Reference speed test on raspberry 

 Algorithms Raspberry3 B+ (s) Raspberry3 B+ & NCS (s) 

MTCNN 1.10 0.13 

Facenet with mobienet_v1 - 0.34 

MTCNN+Facenet - 0.49 

 

5 Conclusion 

To implement face recognition system on embedded devices, the paper does the rest work: (A) Train a 

Facenet model with smart network architecture Mobilenet, and implement a face recognition system on 

Raspberry along with MTCNN face detection method. (B) Use Movidius NCS as an accelerator speed up 

the CNN reference and use ncnn framework fasten the MTCNN process. (C) Come up with an approach 

called Augmentation while Recognition which would be useful in practice. (D) By splitting up the large 

dataset and coming up a cloud service, we find a solution to reduce the local database so that light model 

could work properly. 
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