
Journal of Computers Vol. 31 No. 1, 2020, pp. 208-217

doi:10.3966/199115992020023101018

208

A Web Service Composition Model k2-MDD-WS

Fengying Li, Xianqiang Wu, Rongsheng Dong*

Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology, Guilin 541004, China

lfy@guet.edu.cn, 530766583@qq.com, ccrsdong@guet.edu.cn

Received 13 January 2019; Revised 3 March 2019; Accepted 12 March 2019

Abstract. Web Service Dependency Graphs are the abstract model for the Web service

composition that are facing great challenges in both increasing size and finite state search space.

Compact representation and efficient operation of graph data are urgent topics, have been

attracting more and more attentions. A Web service composition model based on multi-valued

decision diagram, namely k
2
 Multi-valued Decision Diagram of Web Service Dependency

Graph (k
2
-MDD-WS), is proposed to reduce the storage space. The vertices of the Web Service

Dependency Graph are encoded, and the edge codes are then encoded according to the codes of

the vertices; so, the k
2
-MDD-WS is constructed based on the code sets of the edges. The k

2
-

MDD-WS can combine redundant web service nodes caused by a large number of isomorphic

sub-trees existing in the k
2
-tree to greatly reduce the number of nodes generated. Additionally,

the operations of the Web Service Dependency Graph are transformed into Boolean operations

under the k
2
-MDD-WS representation to further improve the efficiency of finding a Web service

composition solution that meets user needs. The experimental results indicate that compression

ratio in k
2
-MDD-WS is only 3.5%–7.5% of the in k

2
-tree.

Keywords: k
2
-MDD-WS, multi-valued decision diagram, web service composition, web service

dependency graph

1 Introduction

With the increasing number of Web services, a large number of simple and easy Web services are shared

on the Internet, and the needs of users are increasingly complex. It is difficult for a single Web service to

meet users’ needs, so it is necessary to combine multiple Web services to complete the complex needs of

the users. How to combine the results of service composition that can meet users’ needs in available mass

Web services has become one of the research hotspots [1-5].

The concept of the Web Service Dependency Graph is proposed, and it is introduced into the solution

of a Web service composition problem in the research of the graph-based Web service composition

method [1]. By using the planning algorithm to solve the problem of Web service composition on the

basis of the Web Service Dependency Graph [2], Hoffmann et al. Construct a Web Service Dependency

Graph from the initial state to the target state and then find a solution path through backward search. A

Web service combination method based on Dijkstra algorithm and the graph programming algorithm is

used to solve Web services composition problem [3]. A method of automatic Web service composition

based on dynamic programming algorithms is proposed [4]. Under the condition of large-scale Web

service, the above planning algorithm are limited by the search space, and it is difficult to get a feasible

solution. To solve the problem of restricted search space, the Web Service Dependency Graph model

based on k2-tree was proposed [5], and the k2-tree was introduced into the research of Web service

composition problem. However, when one uses k2-tree to represent a large-scale Web service

composition diagram, there are still a large number of isomorphic sub-trees, which have some limitations

[6-7].

Based on the Web Service Dependency Graph, we introduce the k2-MDD into the research of the Web

service composition problem [8-10]. The current study proposes a new Web service composition model

* Corresponding Author

Journal of Computers Vol. 31 No. 1, 2020

209

called k2-MDD-WS; it is based on multi-valued decision diagram and can merge a large number of

isomorphic sub-trees in the Web Service Dependency Graph model based on k2-tree to further reduce the

search state space.

The formal definition of the k2-MDD-WS model is as follows.

k2-MDD-WS = < Request < Rin, Rout >, CI, CO, Wj, V, E, k, f, S >
The model is defined as a tuple with the following components:

(1) Request < Rin, Rout>: A user’s given request; Rin is an input concept of the service, and Rout is an

output concept of the service;

(2) CI: CI is a finite set of typed input parameters of the Web service [11]. Among these parameters,

CI_i represents the ith input concept parameter in the Web service library; OWL-S (Web Ontology

Language for Web Services) files are used to define relationships between services and concepts. i∈N;

(3) CO: CO is a finite set of typed output parameters of the Web service [11]. Among these parameters,

CO_i represents the ith output concept parameter in the Web service library. i∈N;

(4) Wj: Wj is a finite set of the Web services, j∈N;

(5) V: V is the node set of the Web Service Dependency Graph; Wj, CI_i, CO_i∈V;

(6) E: E is the edge set of the Web Service Dependency Graph, < CI_i, Wj >, <Wj, CO_i >∈E, and
I_ ,i jC W

E
< >

represent the set of the corresponding edges of CI_i and Wj; O_,j iW C
E

< > represents a set of the

corresponding edges of Wj and CO_i;

(7) k: k represents a number of power blocks recursively divided into k by a Web service dependency

graph corresponding to the original adjacency matrix;

(8) f: D1_i × D2_i × … × Dn-1_i×Dn_i → S. The multivalued decision diagram of Web service is

constructed from a discrete multi-valued function f that contains n variables. N = ⎡logk|Vnums|⎤,i∈

{1,2,…,k2}, (
I _,j iW C

f
< >

||
I _ ,i jC W

f
< >

) = 1, which means that there is a dependency between CI_i and Wj;

(
O_,j iW C

f
< >

||
O_ ,i jC W

f
< >

) = 1 and that there is a dependency between Wj and Co_i, where S represents the

range of the discrete multi-valued function f, S∈{0,1};

(9) ∀ CI_i∈CI(W)(0 < I ≤ | CI(W)|); if and only if the input concepts of the corresponding Web service

are all provided, then Wj can be invoked.

To understand the above formal models easily, an example is provided in Example 1 to illustrate the

model definition above.

Example 1: By supposing W1, W2∈W; A, B, C ∈CI; D∈CO; A, B, C, D, W1, W2∈V; <A, W1>, <B,

W1>, <B, W2>, <C, W2>, <W1, D>, <W2, D>∈E, the Web Service Dependency Graph is illustrated in Fig. 1:

Fig. 1. Web service dependency graph

The corresponding adjacency matrix (adjMatrix(in), adjMatrix(out)) is determined based on the edge

relation <CI_i, Wj> and <Wj, CO_i> in the Web Service Dependency Graph, as presented in Table 1 and

Table 2.

Table 1. adjMatrix (in)

 W1 W2

A 1 0

B 1 1

C 0 1

D 0 0

A Web Service Composition Model k2-MDD-WS

210

Table 2. adjMatrix (out)

 A B C D

W1 0 0 0 1

W2 0 0 0 1

The original adjacency matrix adjMatrix(in) has four rows and two columns, by adding two columns

of 0 data, the adjacency matrix can be divided into a k2 sub-adjacency matrix, as presented in Table 3.

The original adjacency matrix adjMatrix(out) has two rows and four columns; by adding two rows of 0

data, the adjacency matrix can be divided into a k2 sub-adjacency matrix, as presented in Table 4.

Table 3. The adjMatrix (in) repaired with 0

 W1 W2

A 1 0 0 0

B 1 1 0 0

C 0 1 0 0

D 0 0 0 0

Table 4. The adjMatrix(out) repaired with 0

 A B C D

W1 0 0 0 1

W2 0 0 0 1

 0 0 0 0

 0 0 0 0

The corresponding k2-tree and k2-MDD-WS are obtained according to the adjacency matrix in Table 3,

as illustrated in Fig. 2.

(a) (b)

Fig. 2. The k2-tree and k2-MDD-WS of Table 3

The corresponding k2-tree and k2-MDD-WS are obtained according to the adjacency matrix in Table 4,

as illustrated in Fig. 3.

(a) (b)

Fig. 3. The k2-tree and k2-MDD-WS of Table 4

Journal of Computers Vol. 31 No. 1, 2020

211

A user request is given as Request <Rin, Rout>, A,B∈Rin, D∈Rout. A,B∈CI; A,B,D∈V; one can get W1

and W2 according to
I_ 1,
A

C W
f
< > = 1,

I_ 1,
B

C W
f
< > = 1,

I_ 2,
D

C W
f
< >

 = 1, because
1 I_,

A
W C

f
< > = 1,

1 I_,
B

W C
f
< > =1,

2 I_,
B

W C
f
< >

= 1,
2 I_,

C
W C

f
< > = 1, A, B∈Rin, C ∉ Rin, and the rule ∀ CI_i ∈ CI(W) (0 < I ≤ | CI(W)|) is meet. One can then

get W1; based on the above steps one can get W1 and get D, then the Request <Rin, Rout> is satisfied.

The nodes of k2-MDD-WS include terminal nodes and nonterminal nodes. The nonterminal nodes are

represented by xi and contain k2 pointers to other nodes, which correspond to the function f. The formal

description is fxi=c = f (x1, x2, …, xi-1, c, xi+1, …, xn). When a set of values of the multi-valued variables x1 to

xn is given, a unique terminal node value can be obtained. The simplification rules of k2-MDD-WS can be

summarized as follows:

Rule 1: Remove duplicate terminal nodes. Eliminate all but one terminal node with a given value and

redirect all pointers to the eliminated nodes to the remaining one.

Rule 2: Remove duplicate nonterminal nodes. If nonterminal nodes m and n are in the same layer,

pointerm(1) = pointern (1), …, pointerm(k2) = pointern(k
2), then eliminate one of the two nodes and redirect

all incoming pointers to the other node.

Rule 3: Remove redundant nodes. If all pointers of nonterminal node m point to the same node n, then

eliminate m and redirect all incoming pointers to n.

Example 2: Suppose f x y= × is a multi-valued discrete function, x∈{1, 2, 3}, y∈{1, 2, 3}, the range

of the discrete function f is set {0, 1, 2}, the initial multi-valued decision graph corresponding to discrete

function f as illustrated in Fig. 4(a), according to simplification Rule 1, the simplified result of Fig. 4(a) is

illustrated in Fig. 4(b); according to simplification Rule 2, the simplified result of Fig. 4(b) is illustrated

in Fig. 4(c); and according to simplification Rule 3, the simplified result of Fig. 4(c) is illustrated in Fig.

4(d).

(a) The initial multivalued decision

graph of decision function f x y= ×

(b) The result after used Rule 1

(c) The result after used Rule 2 (c) The result after used Rule 3

Fig. 4. The simplified rules of k2-MDD-WS

2 The Construction Process of k
2
-MDD-WS

In the Web Service Dependency Graph, the Web service Wj and the Web service concept parameter CI or

CO are abstracts into vertex set V, and then the dependency relationships between the Web services and

A Web Service Composition Model k2-MDD-WS

212

Web service concept parameter are abstracted into edge set E. The construction process of k2-MDD-WS

includes binary coding of vertex set V of the Web Service Dependency Graph, encoding of edge set E

according to the codes set of vertices, and constructing k2-MDD-WS based on the codes set of edges. The

specific algorithm implementation steps are as follows:

2.1 Encoding the Vertices of a Web service Dependency Graph

When the vertices of a Web Service Dependency Graph G = (V, E) are binary coded, the number of bits

in the binary code is N=⎡logk|V_nums|⎤, where V_num is the number of vertices of the Web Service

Dependency Graph, and k = 2. Algorithm 1 illustrates the pseudo-code algorithm process of binary

coding for the vertices of the Web Service Dependency Graph. Assuming (A, B, C, W1, W2) ∈ V, V_num

= 5, and the number of bits in the binary code is n = 3, according to Algorithm 1. The result of binary

encoding of the vertices is illustrated in Fig. 5.

Algorithm 1. Binary encoding the vertices of a Web service dependency graph.
Input: the vertex number V_num that needs a binary code
Output: the vertex binary array V_Code[]
1. Binary_V_Encoding (V_Code[], V_num) /* The vertex V_num of the Web

Service Dependency Graph is encoded in binary form, and the encoding
exists in the V_Code[] array. */

2. n ←logk|V_nums| /* V_num is the number of vertices of the Web Se rvice
Dependency Graph, and n is the number of bits in the binary code.*/

3. left ← 1
4. right ← Pow (2, n) /* Take a number of powers that are not less than

2 to V_nums */
5. i ← 1
6. While (left <= right) Do
7. mid ← (left + right) / 2
8. If V_num <= mid Then
9. V_Code [i] ← 0
10. right ← mid – 1
11. Else
12. V_Code [i] ← 1
13. left ← mid + 1
14. i ← i + 1
15. End While

Fig. 5. The code of vertices

2.2 Encoding the Edges of a Web Service Dependency Graph

The edge relationship between one vertex and another represents the dependency between the Web

service and the input/output concept parameters, and the edge of the vertex to the vertex can be described

by the feature discrete function
0 1
,V V

E
< > .

Assuming X = (x1, …, xn) and Y = (y1, …, yn) is the coding vector for the vertices in the Web service

graph, When k = 2, the feature discrete function of the edge of vertex X to vertex Y is represented as E(X,

Y): {0, 1}n × {0, 1}n → {1, 2, 3, 4}n.

Journal of Computers Vol. 31 No. 1, 2020

213

A code of edge is generated by the binary encoding of two vertices; the value of each binary bit of the

vertex code is in {0, 1}, and the value of each bit of the edge code is in {1, 2, 3, 4} according the value of

the vertex code. The encoding of the corresponding edges illustrated in Fig. 6 can be obtained by the

vertex encoding A, B, C, W1, W2 in Fig. 5. The specific Algorithm 2 is as follows:

Algorithm 2. Encoding the edges of a Web Service Dependency Graph
Input: The number of start vertex start_V_num and the number of end vertex

end_V_num
Output: The corresponding edge of the start vertex and the end vertex is an

encoded array E_Code[]
1. Binary_E_Encoding (E_Code[], start_V_num, end_V_num) /*The encoding of

the corresponding start vertex and the encoding of the end node.*/
2. Binary_V_Encoding (V_Code1[], start_V_num) /*Get the code of the start

vertex*/
3. Binary_V_Encoding (V_Code2[], end_V_num) /* Get the code of the end vertex

*/
4. For i ← 1…codeNum Do
5. E_Code[i] ← V_Code1 [i] * 2 + V_Code2[i] + 1
6. EndFor

Fig. 6. The code of edges

2.3 Constructing k2 - MDD-WS According to the Set of Edge Codes

k2-MDD-WS is constructed by using apply() operation on the code set of the edges, the k2-MDD-WS has

n variables for the dependency graph of the Web service, and the values of the n variables are True and

False. For example, according to the edge encoding in Fig. 6, the k2-MDD-WS structure is illustrated in

Fig. 2(b). In the current study, the MEDDLY [12] (multi-terminal and edge-valued decision diagram

library) discrete function library is used as a reference in constructing k2-MDD-WS. The MEDDLY

function library is a C++ open-source project for manipulating MDD; it was developed by Iowa State

University under the Linux platform, which provides rich MDD constructs and operational functions.

The createVariablesBottonUp() function is applied to define the number of the variables and the value of

each variable in the MDD. The MDD of the edge is created according to the createEdge() function, and

then merge the MDD of the two edges according apply() function and the UNION operation. The

specific algorithm 3 of constructing k2-MDD-WS is as follows:

Algorithm 3. Constructing k2-MDD-WS
Input: A set of the edge codes
Output: k2-MDD-WS
1. CreateK2MDD-WS() /*Construct the k2-MDD-WS according the set of the edge

codes*/
2. For i ← 1…codeNum Do /*set the number of the variables and set the range

of the variables */
3. Bounds[i] ← 4
4. EndFor
5. createVariablesBottomUp(bounds[], codeNum) /*create variable*/
6. Binary_E_Encoding(edgeCode[], start_V_num[1], end_V_num[1]) /*encoding

the first edge*/
7. createEdge(edgeCode[], 1, all) /*create the first MDD from the first edge

code*/

A Web Service Composition Model k2-MDD-WS

214

8. For i ← 2…edgeNum Do
9. Binary_E_Encoding(edgeCode[], start_V_num[i], end_V_num[i]) /* encoding

the ith edge */
10. createEdge(edgeCode[], 1, rest) /*create the MDD of the ith edge code*/
11. apply(UNION, all, rest, all) /*merge these created MDD according the

UNION operation*/
12. EndFor
13. k2-MDD-WS ← all /*constructing the k2-MDD-WS according the all edge

MDD*/

If the Request <Rin,Rout> is given, Rin∈CI; Rout∈CO;CI_i∈Rin; Rin,Rout∈V. If the discrete function

I_ ,i jC W
f
< >

 = 1 is true, the corresponding edge
I_ ,i jC W

E
< > represents that there is correlation between the

concept parameter CI_i and the Web service Wj; otherwise, there is no dependency relationship. The

MEDDLY function library provides the INTERSECTION operation that can compute the intersection of

two MDDs. The edge query can be done by appling the INTERSECTION operation between k2-MDD-

WS and the MDD of the edge, if the value of the INTERSECTION operation is true, that indicate the

edge exist in the k2-MDD-WS. The specific algorithm 4 of the edge query is as follows:

Algorithm 4. Querying whether there is an edge relationship algorithm between

two given vertices
Input: The start vertex numbers start_V_num and end vertex numbers end_V_num

of the edge
Output: Indication whether the corresponding edge exists
1. edgeQuery(start_V_num, end_V_num)
2. Binary_E_Encoding(edgeCode[], start_V_num, end_V_num)
3. createEdge(edgeCode[], 1, tmp)
4. apply(INTERSECTION, K2MDD-WS, tmp, res)
5. If res.getNode() = 0 Then
6. Print false
7. Else
8. Print true
9. End if

Suppose the assignment of a vertex parameter CI is V1 and all service vertices Wj are assigned to V2; if

the discrete function
1 2
,V V

f
< >

 = 1, then V2 is the service that corresponds to the parameter V1; otherwise, it

is not. The specific algorithm 5 is as follows:

Algorithm 5. Querying the end vertex of a given start vertex
Input: The number of the start vertex start_V_num
Output: The number of the end vertex end_V_num
1. outNeighborQuery(start_V_num,end_V_num) /*The end vertex query according

to the start vertex*/
2. Binary_V_Encoding (nodeCode[], nodeID) /* Encode the vertices */
3. For i←1… nodenum Do
4. EdgeQuery(start_V_num, node i) /* Determine whether there is an edge

between the start vertex and the query vertex.*/
5. If res.getedge() = 0. then /*if res.getedge() = 0, then there is no

edge between the start vertex and the query vertex. */
6. Print false
7. Else
8. Print(node i)
9. End if
10. End for

In this model system, edges between services and concepts are compressed and represented as two

types of k2-MDD-WS: one for services and input concept parameters and the other for services and

output concept parameters (k2-MDD-WSin and k2-MDD-WSout, respectively). We search the k2-MDD-WS

Journal of Computers Vol. 31 No. 1, 2020

215

for matching services and concepts. According to user’s Request <Rin,Rout> and the rules ∀ CI_i∈CI (Wj)

(0 < I ≤ | CI (Wj) |), traversed k2-MDD-WSin and k2-MDD-WSout are to find a set of the invoke Web

service sequences that meet the needs of users. In k2-MDD-WSin, Rin∈CI, Rout∈CO, CI_i∈Rin, if
I_ ,i jC W

f
< >

= 1, then get the set of the edge
I_ ,i jC W

E
< >

, and
I_ ,i jC W

E
< >

 ⇒ Wj, i∈N,j∈N; if
I_,j iW C

f
< >

 = 1, then get the set

of the edge
I_,j iW C

E
< >

, i∈N, j∈N,
I_,j iW C

E
< > ⇒ CI_i and CI_i ∈ Rin; it is determined that Wj can be invoked

through the rule ∀ CI_i∈CI (Wj) (0 < I ≤ | CI (Wj) |). In the k2-MDD-WSout, if the Wj can be invoked and

the discrete function
_

,j O iW C
f
< >

 = 1, then get the set of the edge
O_,j iW C

E
< >

,
O_,j iW C

E
< > ⇒ CO_i and CO_i∈

Rout,Rout= 1− (Rout∩CO_i); if the Rout=∅, then it satisfies the conditions, and the combination is done;

otherwise, Rin = CO _i ∪ Rin, and we repeat the above steps. The specific algorithm 6 is as follows:

Algorithm 6. Solving the problem of Web service composition
Input: Request <Rin,Rout>
Output: solution: a set of solution services
1. Conceptset ← initial
2. Serviceset ← initial
3. While Rout ⊄ Conceptset
4. For i←1...Rin_num Do
5. Conceptset ← Rin
6. End For
7. For i←1...Conceptsetnum Do
8. start_V_num ← Conceptset
9. Addservice ← outNeighborQuery(start_V_num,end_V_num) /*The

services of the corresponding to the known input concept parameters are
obtained according to the function outNeighborQuery
(start_V_num,end_V_num) in k2-MDD-WSin */

10. End For
11. For i←1…addservicenum Do
12. end_V_num ← addservice
13. Temp ← inNeighborQuery(start_V_num, end_V_num) /* Query all input

concept parameters of the service through the function
inNeighborQuery(start_V_num, end_V_num) and determine whether the service

satisfies the rule ∀ CI_i∈CI (Wj) (0 < I ≤ | CI (Wj) |) in k2-MDD-WSin
*/

14. Temp1 ← outNeighborQuery(start_V_num, end_V_num)
15. If Temp ⊆ Conceptset && Temp1 Conceptset

16. Serviceset ← addservice
17. End If
18. End For
19. For i←1…servicenum
20. start_V_num←serviceset
21. Conceptse t← outNeighborQuery(start_V_num, end_V_num) /* The

input concept parameters of the corresponding to the known service is
obtained according to the function outNeighborQuery
(start_V_num,end_V_num) in k2-MDD-WSout*/

22. End For
23. End while

3 Time Complexity Analysis of the Algorithm

The construct of k2-MDD-WS is constructed from the edge codes set involving the MDD initialization,

generation, and simplification and other operations. When k2-MDD-WSin and k2-MDD-WSout are

constructed, the time complexity of a single vertex code for a web service dependency graph is (log)
k

O V .

Similarly, the time complexity of encoding a single edge for the Web service dependency graph is

A Web Service Composition Model k2-MDD-WS

216

(log)
k

O V , so the time complexity of encoding all edges of the Web service dependency graph is

(log)·

k
O E V . According to Request<Rin, Rout> given by the user, finding a Web service composition

solution that meets the needs of the users’ requirements in the k2-MDD-WS model and the external

neighbor query and inner neighbor query operations are involved in the implementation process. Because

the height of k2-MDD-WS is n=⎡logk|V|⎤, the time complexity of the outer neighbor query and the inner

neighbor query is equal to that of the k2-tree.

4 Acknowledgements

The current study paper used the C++ language and the MEDDLY library to implement the proposed

algorithm. The experimental machine configuration software platform is an Ubuntu14.04 LTS 64-bit

operating system (kernel Linux 3.19.0-61-generic), and the hardware platform is 8 GB of memory

operated under the device.

Table 5. The WSC’08 test data set

 Test01 Test02 Test03 Test04 Test05 Test06 Test07 Test08

Number of Concept 457 558 3087 3136 3068 12469 3076 12338

Number of Service 158 1665 604 1041 1090 2198 4113 8119

The data of the experiment are all from the data set of the Web Service Challenge competition. In the

WSC’08 data set, the WSDL file describes the information about the Web service, and ontology

describes the semantic relationship of all input/output object instant concept parameters in an XML file.

The data set includes eight sub Web service libraries that include 457-12,469, the service corresponding

input/output concept parameters, and 158-8119 Web services. Table 6 lists the results of experiments

using k2-tree and k2-MDD-WS, The CR represents the compression rate and is expressed as formula (1):

2

MDD WS
CR

k structure

Services Concepts

− −

=

×

. (1)

Table 6. Experimental results

 Test01 Test02 Test03 Test04 Test05 Test06 Test07 Test08

k
2-tree

CR

Search (ms)

16%

153

4.8%

426

5.7%

2406

3%

778

3%

1594

0.9%

10300

3.1%

2570

1%

11266

k
2-MDD-WS

CR

Search (ms)

1.2%

221

0.3%

673

0.2%

6289

0.15%

1921

0.16%

4308

0.04%

28364

0.13%

6992

0.04%

31293

Table 6 presents the experimental results based on k2-MDD-WS and k2-tree. From the data of the

experimental results in Table 6, we can see that the CR of nodes in k2-MDD-WS in the selected eight

web service libraries is only 3.5% to 7.5% of that in k2-tree. The increase in the number of the concept

parameters and the number of Web services from the original eight service libraries indicates that more

nodes in k2-MDD-WS is reduced when the number of concept parameters and the number of Web

services are larger. It can be concluded that using k2-MDD-WS to represent Web service composition

issues reduces the number of nodes and is more suitable for large-scale Web service composition issues.

In a Web service dependency graph of same scale, the corresponding k2-MDD-WS is the same height as

the k2-tree structure, so the complexity of traversal time is the same when the Web service composition

problem is implemented. From the combined time in Table 6, it can be seen that the combined time is at

the same time complexity, and the desired effect is achieved.

5 Conclusions

Based on multivalued decision graph, this paper presents a new Web service composition model k2-

MDD-WS, and which is constructed according to Web Service Dependency Graph. In the construction

Journal of Computers Vol. 31 No. 1, 2020

217

process of k2-MDD-WS, the redundant Web service nodes resulting from the large number of isomorphic

subtrees existing in the k2-tree are merged to reduce the number of Web service nodes, thus reducing the

search state space in the process of finding the Web service satisfying the user’s requirements. The k2-

MDD-WS transforms the Web service composition problem into the search problem of the multivalued

decision graph, and the Boolean logic operations are used to improve the efficiency of searching the Web

service that satisfies the user’s requirement.

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China under Grant

61762024, and in part by the Natural Science Foundation of Guangxi Province under Grant No.

2017GXNSFDA198050, Grant No. 2016GXNSFAA380054.

References

[1] S.-V. Hashemian, F. Mavaddat, A graph-based approach to web services composition, in: Proc. IEEE the 2005 Symposium

on Applications and the Internet, 2005.

[2] J. Hoffmann, P. Bertoli, M. Pistore, Web service composition as planning, revisited: in between background theories and

initial state uncertainty, in: Proc. the 22nd National Conference on Artificial Intelligence, 2007.

[3] Y. Yan, M. Chen, Y. Yang, Anytime QoS optimization over the Plan Graph for web service composition, in: Proc. the 27th

Annual ACM Symposium on Applied Computing, 2012.

[4] M. Kuzu, N.-K. Cicekli, Dynamic planning approach to automated web service composition, Applied Intelligence 36(1)

(2012) 1-28.

[5] J. Li, Y. Yan, D. Lemire, A web service composition method based on compact K2-trees, in: Proc. IEEE International

Conference on Services Computing, 2015.

[6] N.-R. Brisaboa, S. Ladra, G. Navarro, K2-trees for compact web graph representation, in: Proc. the 16th International

Symposium on String Processing and Information Retrieval, 2009.

[7] N.-R. Brisaboa, S. Ladra, G. Navarro, Compact representation of web graphs with extended functionality, Information

Systems 39(1)(2014) 152-174.

[8] R.-S. Dong, X.-K. Zhang, H.-D. Liu, T.-L. Gu, Representation and operations research of K2-MDD in large-scale graph

data, Journal of Computer Research and Development 52(12)(2016) 2783-2792.

[9] T.-L. Gu, The novel abstract data type: ordered binary decision diagrams, Journal of Guilin University of Electronic

Technology 30(5)(2010) 374-388.

[10] Web ontology language for web services.

[11] D. Martin, M. Burstein, J. Hobbs, D. McDermott, S. McIlraith, S. Narayanan, M. Paolucci, B. Parsia, T. Payne, E. Sirin, N.

Srinivasan, K. Sycara, OWL-S: Semantic Markup for Web Services. <http://www.w3.org/submission/owl-s/>, 2018

(accessed 30.10.18).

[12] Iowa State University Research Foundation. MEDDLY: Multi-terminal and edge-valued decision diagram library. New in

Version 0.11.486, February, 2014.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

