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Abstract. Webshell is a web backdoor which can be used to remotely control web servers by 

hackers. Due to the continuous development of escaping technology, Webshell detection has 

become more and more difficult. Based on the analysis of evolving Webshell detection 

technology in recent years, we proposed Multi-classifier ensemble Model in this paper. Firstly, 

effective information of PHP files are extracted including static characters, grammar character 

and corresponding opcode; secondly, different base classifiers and modified classifier are trained 

and analyzed for further model, at last the ensemble model based on stacking is proposed and 

verified. Our dataset collected from multiple GitHub open source projects. The mothod 

proposed in this paper could ultimately achieve the accuracy of 98.447% and precision of 

99.227%, which showed excellent performance compared with mainstream detection tools. 
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1 Introduction 

In recent years, a large number of emerging Internet industries have emerged rapidly. Various web 
application systems are widely used in social and banking services, which bring convenience to people's 
work and life. However, the security threats are not to be underestimated. And Webshell is one of them. 
Webshell is a command execution environment in the form of web files such as asp, php, jsp or cgi. After 
malicious users invades a Web site, they usually upload the Webshell file to the server and get a 
command execution environment to control the target Web server. Then they can prepare for subsequent 
authorization operations. In the 2017, 360 website guardian interception vulnerability statistics TOP 10, 
Webshell ranks the second place [1]. Although many security companies currently launch security 
products such as cloud WAF to protection. There are also many researchers use lexical analysis and other 
technologies to detect Webshell [2]. But as escape technology becomes more and more complex. These 
methods still have a lot of shortcomings. 

In this paper, we study the existing technology in the field of Webshell detection, and propose a 
detection framework for multi-classifier fusion. By comparing various machine learning models, we 
finally adopted a dynamic detection method based on the Stacking model. Section 3 introduces the 
system framework and feature selection. And section 4 introduces the Fusion of Stacking model and 
multi-classifier, and introduces the principle and calculation of multi-classifier. Section 5 is the 
experiment and analysis, expounding the whole process from data collection, evaluation indicators to 
Webshell test results and analysis. Finally, we summarize the work and look forward to the future 
development of Webshell detection technology. 
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2 Related Work 

There are usually two kinds of Webshell detection method: static detection and dynamic detection. 
Feature based file code detection is one of the static detection. After Webshell oprates, static method 
detects the bytecode of Webshell and its communication is dynamic detection. Based on the detection of 
static features, this file does not need to be executed, detect Webshell only from the file code side. Static 
feature detection is the most basic and most common method. In terms of static detection, Zheng et al. 
analyzed the realization mechanism of Linux Webshell, described the common characteristics and the 
characteristic mixed method. On this basis, a detection method based on SVM classifier is put forward 
and realized [3]. Fei et al. analyzed the HTML feature of Webshell pages, proposed a black box detecting 
method based on support vector machine (SVM) classification algorithm. The method is one sort of 
supervised machine learning system which can detect unknown Webshell without the knowledge of 
source code [4]. Cui et al. proposed a Webshell detection method based on XGBoost algorithm. The 
proposed method improved the problem of lack of Webshell feature coverage by using the characteristics 
of Webshell statistic [5]. Log analysis as a means of forensics and prediction to detect Webshell. Shi et al. 
based on the analysis of the server log text file, and the Webshell is detected from the three angles: text 
feature, statistical features and correlation feature [6]. 

In recent years, due to the development of machine learning, it is more and more widely applied to the 
field of Webshell detection. Dai et al. supervised machine learning algorithm was put forward to detect 
Webshell intelligently. By learning the features of existing Webshell and non-existing Webshell pages, 
the algorithm can make prediction of the unknown pages [7]. There are still many applications for 
machine learning. To improve the Webshell detection feature coverage and the ability of detection 
algorithm, Jia et al. proposed a Webshell detection method based on random forest improved algorithm, 
which improved the method of random forest feature selection and analyzed features of three kinds 
Webshell, and built multi-dimensional features which had comprehensive coverage of static attributes 
and dynamic behaviors [8]. Khan MS et al. developed a new cognitive host based anomaly detection 
system based on supervised AdaBoost machine learning algorithm. Information fractal dimension based 
approach is incorporated in the original AdaBoost machine learning algorithm to assign higher weight to 
the classifier that estimates wrong hypothesis [9]. 

In the application of neural networks, Qi et al. proposed a Webshell detection method based on Multi-
Layer Perception (MLP) neural network. In this method, they used TF-IDF to calculate the word 
frequency matrix, and on this basis, the feature matrix of trained sample set is selected. Finally, the 
detection model is obtained through multi-layer neural network training. The experimental results 
indicate that the detection model can handle unknown and variant samples well [10]. In multi-model 
analysis, Cui et al. used the common statistical features of PHP source files and extracted opcode 
sequence features from PHP source files, proposed a PHP Webshell detecting model, the RF-GBDT 
(Random Forest-Gradient Boosting Decision Tree) model, which is the combination of random forest 
classifier and GBDT classifier. Opcode sequence features and statistical features such as information 
entropy, index of coincidence and so forth, carry out TF-IDF vector and hash vector [11]. Firdaus et al. 
proposed to use the bio-inspired method of practical swarm optimization (PSO) and also adopted 
boosting (adaboost, realadaboost, logitboost, and multiboost) to enhance the machine learning prediction 
that detects unknown root exploit [12]. 

In addition, there are many other detection techniques, such as Webshell detection method based on 
correlation analysis [13], semantics-based Webshell detection method [14]. Tu et al. proposed a novel 
method based on the optimal threshold values to identify files that contain malicious codes from web 
applications [15], Multi-strategy based framework for Webshell detection [16] and so on. 

3 System Framework 

The Webshell detection model proposed in this paper is shown in Fig. 1. First, in the data preprocessing, 
we extracted the TF-IDF vector 1 by removing the annotations and code blocks in the data set and 
extracted feature based on the word bag n-gram and TF-IDF techniques. We also encode the sample to 
obtain opcode, and get the TF-IDF vector 2 based on N-gram participle and TF-IDF vectorization. Then, 
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we chose several machine learning algorithms to test the vector and integrated the better classifier. The 
detailed information will be discussed in Section 4.  

 

Fig. 1. Webshell detection framework 

3.1 Static Characters Analysis 

Webshell cannot implement certain functions without some specific keywords and sensitive functions. 
Static detection makes the rules of web files according to their characteristics and apply to Webshell 
detection. Each detection method corresponds to one function, and all functions (ie detection methods) 
are located in the same file, which is imported into the main file as a whole module. It can be detected by 
scanning a specific directory. Unencrypted Webshell can be detected based on sensitive key-words such 
as control-u, phpspy, Webshell, CMD. Exe, evel() and so on. The Webshell file encrypted by some 
encrypted websites or tools such as php shield, may contain relevant encryption information. 

In addition to detecting specific keywords, there are some features of known shell files, such as " 
r57shell". In addition to regular expression matching for sensitive functions of eval, assert, etc., for 
example [\'"]e[\'"]\.[\'"]v[\'"]\.[\'"]a [\'"]\.[\'"]l[\'"]. And there will also be a combination feature search. If 
the keywords such as “cmd.exe” and “program files” appear simultaneously in the file content, it can be 
basically judged that this file is a shell file containing sensitive keywords. 

Some Webshells have specific features, for example packaging all the files on the website to obtain the 
website source code for auditing. Webshell for packaging files usually uses specific functions, for 
example the gzencode, gzdeflate and gzcompress functions for compressing files in PHP. In addition to 
the compression function, there will be some sensitive keywords appearing in the shell file, such as 
“package, unix2DosTime”. 

However, the attacker encrypts the sensitive features in the string, reversibly maps them to another 
string, and decrypts them when they are accessed. This escape technology is widely used in various kill-
free webshells. Take the PHP language as an example, and built-in encryption methods such as base64 
and rot13. In order to better resist detection, some malicious programs use a custom encryption function 
to escape. After using regular replacement and base64 encoding, the sensitive features of malicious files 
are well hidden. 
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For the encryption technology, scholars proposed to use the index of coincidence in cryptography for 
analysis, combined with information entropy to judge. Information entropy referring to the disorder and 
uncertainty of given information by measuring the average uncertainty of all possible sources of 
information. The entropy is higher, the information is more disordered. Generally, a Webshell is 
encrypted, encoded and introduced some random strings to achieve the goal of obfuscation and thus it is 
of high perplexity which will lead to a high information entropy. Hence, we can better identify Webshell 
by virtue of the value of information entropy. Index of coincidence, also called IC, which can be 
leveraged to evaluate the probability of finding two same letters by randomly selecting two letters from a 
given text. Meanwhile, Webshell tends to possess a relatively lower IC than a normal file does, in that the 
randomness of a text will be improved after encryption. This method can detect the effect to a certain 
extent, but for the purpose of protecting intellectual property rights and preventing source code leakage, 
many normal applications also use encryption technology to process the code. In this case, there is a 
possibility of false positives for the detection based on the above means. 

3.2 Opcode and Other Features Extraction 

Grammatical semantic analysis is based on the implementation of php language scan and compilation, 
stripping code, comments, analysis variables, functions, strings, language structure analysis methods to 
achieve the capture of key dangerous functions. This can perfectly solve the situation of underreporting. 
However, there are still problems in the false positives. The problem of false positives is that the detected 
file is a legal PHP grammar file. It is not verified whether it is a legitimate PHP grammar file. It is only 
scanned and analyzed. 

Our approach is based first on grammar analysis, stripping tokens, comments, strings, variables, 
language constructs, treating PHP files as a complete string, using the most common word bag model, 
and extracting the word bag model using 2-gram. And processing is performed using the TF-IDF model 
to obtain the TF-IDF vector 1. Then PHP syntax detection, extract opcode code to solve the missing 
report problem. 

Opcode is part of a computer instruction that specifies the operation to be performed. The format and 
specification of the instruction are specified by the processor's instruction specification. In addition to the 
operands required by the instruction itself, there may be instructions that do not require the operands to 
be displayed. These operands may be values in registers, values in the stack, values in a block of memory, 
or values in an I/O port. Usually opcode has another name---byte codes. For example, the Java Virtual 
Machine (JVM) and the .NET Common Intermeditate Language (CIL). The opcode in PHP belongs to 
the latter in the introduction. 

In this paper, we read the directory where the webshell sample and the normal php file are saved, and 
load the corresponding opcode string, where the mark webs hell is 1, the normal php file is 0; use 2-Gram 
to process the opcode string, using the TF-IDF model is further processed to obtain the TF-IDF vector. 

We parse the PHP file into opcode and get the opcode sequence. For the convenience, we intercept 
only a fixed length of the opcode sequence, and exceed the truncation of a fixed length. we also 
complement the insufficient by 0. Take a common PHP example: 

<?php 
 Echo $_GET[‘r’]; 
?> 
Obtain the corresponding opcode sequence as: 
(FETCH_R, FETCH_DTM_R, ECHO, ECHO, RETURN) 

4 Dynamic Multiple-classifier Model 

4.1 Base Classifier Selection 

In this paper, we first use a variety of mainstream machine learning algorithms to detect Webshell, the 
results are shown in Table 5. Overall, Random Forest has the highest detection rates. Random Forest is a 
classifier that contains multiple decision trees. Its output results are determined by the output of multiple 
decision trees. Random Forest first generates training samples and test samples by resampling. Then, the 
training sample generates a plurality of base classifiers to form a strong classifier for detection. However, 
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due to the lack of abnormal samples, the traditional single classifier classification method can not achieve 
high classification results. Therefore, we proposed a Webshell detection method based on RF-AdaBoost 
multi-classifier fusion. 

4.2 Improved Classifier Based on RF-AdaBoost 

A single classifier is difficult to achieve better detection results, and a hybrid model that integrates 
multiple machine learning techniques has attracted more attention from researchers. Xue et al. [17] 
integrated multiple classifiers of Softmax, XGBoost and Random Forest to calculate the probability per 
pixel class. Finally, the fully connected conditional random fields (CRF) is used to enhance the final 
performance; Li et al. [18] used the gradient boosted decision tree (GBDT) algorithm to detect network 
attacks and used particle swarm optimization (PSO) algorithm to optimize GBDT parameters. Vajdi et al. 
[19] classified installed applications based on AdaBoost and J48 hybrid models to make the average true 
positive rate increase from 98.9% to 99.2% (with gain ratio). This paper proposes a detection method for 
RF-AdaBoost multi-classifier fusion. 

4.2.1 Principle of RF-AdaBoost  

Random forest is an extended variant of Bagging. As a parallel working method, random forest is based 
on decision tree-based classifier to, and further introduces random attribute selection in decision tree 
training process based on building Bagging integration with decision tree based classifier. AdaBoost is an 
adaptive Boosting algorithm that effectively copes with over-fitting, which is an algorithm suitable for 
various classification occasions. In this paper, M subsets were firstly randomly extracted from feature 
vector 1, which then were used to train RF-based classifier. Finally, the prediction results of these base 
classifiers were integrated by voting method, and the initial prediction result 1 was output. Then, the 
initial prediction result 2 was obtained by the same operation for feature vector 2. Then this paper used 
the AdaBoost algorithm to train the base classifiers with the obtained initial prediction result to obtain the 
prediction result, and weighted the classification error data to obtain a new training set to conduct a new 
round training for base classifiers. The step was cycled until a predetermined minimum error rate or 
maximum number of iterations was reached. Finally, the base classifier with good classification effect 
was increased in weight, and those with bad classification effect was decreased in weight, which were 
combined to a strong classifier. 

Training set

Training set 1

Training set 2

Training set M-1

Output result

Adjust

Adjust

Adjust...

Train

Train

Train

Train

Weak classifier 1

Weak classifier 2

Weak classifier 3
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result 1

forecast 

result 2

forecast 

result 3

forecast 
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Fig. 2. AdaBoost Mechanism 
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4.2.2 AdaBoost Algorithm 

The RF initial prediction results are combined into a training data set ( ) ( )1 1
, ,..., ,

N N
x y x y , where 

{ }1,0
i
y ∈ . 0 is a normal page, and 1 is WebShell. AdaBoost, which aims to learn a series of weak 

classifiers or basic classifiers from the training data, and then combine these weak classifiers into a 
strong classifier. The learning rate is 0.7. The algorithm of AdaBoost is shown in Table 1. 

Table 1. AdaBoost Process 
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(d) Update the weight distribution of training samples: 

 ( ) ( )( )
1

exp
t t i i

t

t

D i y H x
D

Z

α

+

−

=

 

(3) Strong classifier:  

 ( )( ) ( )
1

T

final t t

t

H sign f x sign H xα

=

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
∑  

 

4.3 Dynamic Classifier Construction 

Although the RF-AdaBoost model enhances the performance of the Random Forest classifier, it improves 

the detection rate of Webshell. However, in practical applications, due to the continuous development of 

escape technology, the detection effect of the RF-AdaBoost model is not good. Webshell is becoming 

more and more difficult to detect, and the traditional single classifier and mixed multiple classifier 

methods can't achieve good detection results. Therefore, this paper proposes a detection method that 

dynamically integrates multiple machine learning algorithms through Stacking technology, which not 

only enhances the performance of the detection model, but also improves the detection efficiency of 

Webshell. 

Stacking is usually used for the fusion of different types of model individuals, and the training results 

of different models are fused in some way. Because the non-linear factors of the data itself have been 

fully exploited, and the final prediction results are obtained by further fusion using the Decision Tree 

model. In this paper, we present an algorithm for Webshell detection through dynamic selection and 

integration of multiple machine learning algorithms. In the final stage of the model, the Stacking 

technique is used to fuse multiple models together, and the predicted probability values of the model are 

input as feature data. The labels of the initial samples are still used as sample markers, and the linear 

model is used to assign weights to each model reasonably. The prediction results of multiple classifiers 

are input into decision tree for final prediction and output. 
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4.4 Dynamic Classifier Selection 

For different features, the detection effects of machine learning algorithms are different. However, in the 

actual testing process, a model is needed to make each indicator the best. The model proposed in this 

paper can select the top three classifiers of each indicator according to different characteristics for fusion, 

so as to ensure that each detection index can achieve the best effect, so as to improve the accuracy of 

detecting Webshell. 

In the process of Webshell detection, the model firstly selects the better classifier as the primary 

classifier based on the input features. Then, the training data is split and the primary classifier is trained 

separately. And use the trained primary learning. To obtain the predicted result, the predicted result is 

used as the training set of the secondary learner, where in the predicted value of the first base model for 

the first training sample will be the first eigenvalue of the first sample in the new training set, and 

retained. The original target value; finally, the secondary learner is trained using the results predicted by 

the primary learner to obtain the final trained model. The algorithm is shown in Table 2. 

Table 2. Stacking Algorithm 

Input: Training Set ( ) ( ) ( ){ }1 1 2 2
, , , ,..., ,

m m
D x y x y x y= ; 
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1 2
, ,...,

T
δ δ δ ; 
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1.   for 1,2,...,t T=  do 

2.        ( )
t t
h Dδ= ; 

3.   end for 

4.   '

D = ∅ ; 

5.   for 1,2,...,i m=  do 

6.         for 1,2,...,t T=  do 

7.               ( )
it t i
z h x= ; 

8.         end for 

9.         ( )( )' '

1 2
, ,..., ,

i i iT i
D D z z z y= ∪ ; 

10.   end for 

11.   ( )' '
h Dδ= ; 
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1 2
, ,...,

T
H x h h x h x h x=  

 

5 Experiment and Analysis 

5.1 Data Sets 

The Web shell is a specific use program written in the Web scripting language that provides a way to 

communicate with server operations. It also can perform OS operations through a web language 

interpreter. Webshell writing requires expertise or use of specialized tools, such as WebSHArk 1.0 [20]. 

The sample Webshell used in the experiment comes from several open source Webshell projects in 

GitHub. The normal samples are from the mainstream CMS source code, as in Table 3. And the 

deduplication tool is used to delete duplicate samples. After the deduplication, the number of positive 

samples is 9939, and the number of negative samples is 3478. 
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Table 3. Statistics Of Collected Samples 

Sample Source 

https://github.com/xl7dev/WebShell 
Webshell 

https://github.com/tennc/webshell 

https://wordpress.org 

http://www.phpcms.cn/ 

https://www.phpMyAdmin.net/ 
CMS 

https://github.com/smarty-php/smarty 

 

5.2 Evaluation Indicators 

Table 4 shows a confusion matrix that is used to represent the information related to the actual and 

predicted classifications performed by a detection model. In the experiment, 1 means Webshell, 0 means 

normal page. 

Table 4. Classification Confusion Matrix 

Predicting Results True 

Class Positive Negative 

Positive TP (True Positive) FN (False Negative) 

Negative FP (FalsePositive) TN (True Negative) 

 

In Table 4, TP is the number of Webshells that are correctly detected; TN is the number of normal 

pages that are correctly identified; FP is the number of normal pages that are incorrectly classified as 

Webshells; FN is the number of Webshells that are incorrectly judged as normal pages. In this paper, the 

performance of Webshell detection models is evaluated by four widely used measures: Accuracy, 

Precision, Recall and F1-score. The calculations of these evaluation measures are defined as follows: 

 
TP TN

Accuracy
TP TN FP FN

+
=

+ + +

 (1) 

Accuracy is the proportion of the total sample that correctly predicts the number of samples. 

 
TP

Precision
TP FP

=

+

 (2) 

Precision is the correct prediction of the number of Webshells in the proportion of all Webshell in the 

forecasting sample. 

 
TP

Recall
TP FN

=

+

 (3) 

Recall is the correct prediction of the number of Webshells in all samples. 

 
2

1
Precision Recall

F
Precision Recall

× ×

=

×

 (4) 

F1-score is the harmonic mean of the precision and the recall. 

5.3 Experimental Results and Analysis 

We resorted to the 10-fold cross validation which is a useful method to evaluate the effectiveness of a 

classifier. It divides the data set into 10 parts to make 10 rounds of evaluation. In each round, each part 

will be the testing set and the rest parts will be the training set. Furthermore, based on the 10 rounds of 

evaluation, we made assessment by drawing ROC (Receiver Operating Characteristic) Curve in our 

experiment. 
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A Receiver Operating Characteristic (ROC) curve is normally used to measure effectiveness of the 

detection method. It indicates how the detection rate changes, as the internal threshold is varied to 

generate more or fewer false alarms. It plots detection accuracy against false positive probability. Fig. 3 

depicts the ROC curve for our approaches.  

              
 

Fig. 3. The ROC curve - false positive rate vs. true positive rate 

ROC curves signify the trade off between false positive rate (FPR) and true positive rate (TPR), which 

means that any increase in the TPR is accompanied by a decrease in the FPR. Then, as shown by the 

ROC curves, lines in the diagram is the closest to the left-hand border and the top border compared to 

other diagrams, indicated that it offers the finest result among the other methods. The experimental result 

in Fig. 3 shows that method based on dynamic model performed the best result.  

In this paper, we use different machine learning algorithms to compare different features. They have 

achieved good accuracy and have very low false positive rates, as in Table 5. This method has some 

advantages in all aspects of Webshell detection. Our method uses the best performing machine learning 

algorithm of the two features for integrated learning. The accuracy of ten-fold cross-validation reaches 

98.447% with precision of 99.227%, far exceeding most machine learning. 

Table 5. Comparison of different machine learning algorithms for different features 

Feature Algorithm Accuracy Precision recall F1-score 
ten-fold 

Cross validation 

Random forest 0.95816 0.89104 0.95367 0.92130 0.93419 

GDBT 0.95816 0.89458 0.94888 0.92093 0.92960 

Xgboost 0.95324 0.88323 0.94249 0.91190 0.93239 
TF-IDF vector2 

Adaboost 0.95119 0.87334 0.94728 0.90881 0.94454 

Random forest 0.95309 0.89367 0.96107 0.92614 0.92716 
TF-IDF vector1 

GDBT 0.94267 0.87126 0.94750 0.90778 0.90526 

TF-IDF vector1 & 

TF-IDF vector2 
This Method 0.98447 0.99227 0.98972 0.99099 - 

 

In order to compare our model with other systems, we downloaded several popular mainstream 

webshell detectors from the Internet, including 360, Avast, Webshellkiller, D shield, FindWebshell and 

so on. The results showed that some detectors had fine performance on the rate of recall, such as D 

Shield and AVAST, but most of them could not reach high accuracy. The method we proposed in this 

paper could achieve the optimal effect in each indicator. (compare results in Fig. 4 were scanned on 

November 12, 2018) 
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Fig. 4. Results of our method and current detection tools 

From the comparison results of Fig. 4 and other detection software, it can be seen that most tools can 

not detect Webshell well according to the information of the PHP document, and the method proposed in 

this paper can achieve the accuracy of 98.447%. Therefore, the method proposed in this paper could 

detect unknown Webshell without the script source code (ie black box detection). The method can 

achieve the effect of white detection of other detection software. 

6 Conclusion 

This paper proposes a dynamic detection method based on Stacking model to detect Webshell. This 

method not only has high detection precision and accuracy, but also has certain independence. This paper 

uses a combination of multiple detection methods to detect Webshell, which overcomes the shortcomings 

of traditional detection methods. The experimental results demonstrated that the proposed method has 

great advantages compared with existing detection products. This method reduces the false positive rate 

and false negative rate, and greatly improves the current situation of false positive rate, high false 

negative rate and low detection precision. With the escape of Webshell technology has become 

increasingly complex, and the transmission of data flow is more complicated which is quite different 

from the complexity of normal programs. This provides new ideas for detection technology. At the same 

time, we can use the technology of honeypot technology, social engineering, fingerprint tracking and 

other technologies to achieve Webshell trace-ability in passive detection. And the machine learning based 

method will be more applied to the detection field. 
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