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Abstract. In order to realize speed sensorless control of permanent magnet synchronous linear 

motors (PMLSMs) in the whole speed range, a model reference adaptive system (MRAS) speed 

observer based on radial basis function neural network (RBFNN) is proposed to observe the 

speed information of PMLSMs in this paper. The speed observer uses a RBFNN as its adaptive 

mechanism and achieves the speed accurate estimation by taking advantage of strong nonlinear 

approximation ability of the RBFNN. In addition, a RBFNN identifier is designed to provide 

gradient information for the RBFNN in the speed observer. Simulation and experiment indicate 

that the speed observer can accurately observe the speed in the whole speed range for PMLSMs 

and has good dynamic response characteristics. 

Keywords:  model reference adaptive system, permanent magnet linear synchronous motor, 

radial basis function neural network, speed sensorless control 

1 Introduction 

With the advantages of high power density, precision and efficiency, PMLSMs are widely used in 

industrial, aerospace, military and other fields. For the PMLSM control system, the installation of the 

mechanical sensor increases the system cost and volume, which impedes the high precision development 

of the PMLSM. Therefore, speed sensorless control technology has become a research hotspot in recent 

years [1-4]. 

Compared to rotary motors, the linear motors have the characteristics of frequent changing directions 

and larger speed range. Thus, the study of the speed sensorless control for linear motors is relatively 

complicated. It is hard for using single traditional methods to reach accurate estimation of the speed in 

the whole speed range. A composite combination algorithm that adopted the high-frequency voltage 

signal injection method at the low speed and the state augmented extended Kalman filtering method at 

high speed can realize the position sensorless control of the motor in a wide speed range, while this 

algorithm is relatively complex and has a large amount of computation [5]. Ref [6] combines the 

advantages of the sliding mode control and neural network, and proposes a sliding mode controller based 

on the neural network. This sliding mode controller can effectively reduce the chattering phenomenon, 

but at low speed, the speed estimation ability is not ideal. Expanded state observer (ESO) can also be 

used to identify the speed. It can effectively improve the anti-interference ability, while the adjustment 

time of the system is too long and can not realize the real-time estimation of the speed [7]. 

The Radial Basis Function (RBF) neural network has strong adaptive and nonlinear approximation 

abilities and can approximate any nonlinear function with arbitrary precision, which is more suitable for 

solving the control problems of nonlinear and uncertain systems. Therefore, this paper proposes a MRAS 

speed observer based on RBF neural networks to realize the speed estimation of PMLSM in whole speed 
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range. 

2 Speed Sensorless Control System of PMLSM 

The Akribis’s PMLSM named AUM2-S1 is used for research in this paper. The parameters of this motor 

are shown in Table 1. The stator of the motor installed an incremental encoder with model Mercury II 

1600.The encoder does not participate in motor control, and the motor speed measured by the encoder is 

only used for comparative test with the estimated speed. The experimental platform is shown in Fig. 1. 

The experimental platform includes the self-designed driver with TMS320F28335 as the core controller. 

It can be used to verify the speed sensorless control method proposed in this paper. 

Table 1. AUM2-S1 linear motor parameters 

Parameters Value 

Rated current 
R
I (A) 2 

Peak current pkI (A) 8 

Continuous power 
R
P (w) 13 

Stator phase resistance ( )
s

R Ω  1.625 

d、q axis inductance 
,d qL (mH) 0.375 

Back EMF constant 
e

K (V/m/s) 6.4 

Motor pole distance 
p

τ (mm) 15 

Continuous force 
N

F (N) 11 

Molar mass 
r

m (kg) 1.35 

 

 

Fig. 1. Experimental platform 

2.1 Mathematical Model of PMLSM 

The MRAS system needs to select the mathematical model of the motor as the adjustable model. The 

mathematical model of PMLSM in synchronous rotating coordinate system is as follows: 
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Where 
d

u , 
q

u , 
d
i , 

q
i , 

d
L , 

q
L  are the voltage, current, inductance of the d/q winding of the stator 

respectively. 
m

ψ  is the flux linkage produced by the permanent magnets. 
e

ω  is synchronous rotational 

electrical angular velocity, and 
s

R  is the phase resistance of the stator winding.  
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2.2 Speed Sensorless Control Strategy of PMLSM 

As shown in Fig. 2, 0
d
i =  vector control mode and speed-current loop dual loop control strategy is 

applied in the PMLSM speed sensorless control system. The MRAS based on RBFNN (RBFNN MRAS) 

speed observer proposed in this paper replaces the mechanical sensor and provides speed and phase 

information for the motor system. The work principle of the speed sensorless control system is: the speed 

observer obtains the angular velocity estimation ˆ
e

ω  and phase estimation ˆ
e

θ  by collecting and processing 

the signals of q-axis current 
d
i  and d/q-axis voltage 

d
u  and 

q
u . The angular velocity ˆ

e
ω  is linearly 

transformed to obtain the linear velocity ˆV , which is fed back to the velocity loop as a velocity feedback 

value, and the phase estimation ˆ

e
θ  is used for the coordinate transformation of the system, thereby 

realizing the speed sensorless control of the PMLSM. 

 

Fig. 2. Speed sensorless control system diagram of the PMLSM 

3 The Design of RBFNN MRAS Speed Observer 

3.1 RBF Neural Network 

RBF neural network is a feedforward local approximation neural network and the structure is shown in 

Fig. 3. The structure of RBF neural network consists of three layers. The first layer is the input layer, 

which plays the role of direct signal transmission; the second one is the hidden layer, in which the 

activation function of the neuron is a radial basis function (usually using a Gaussian radial basis function); 

the third one is the output layer, whose neuron activation function is a linear function, and its output is 

the result of linearly weighted summation of the output of each unit node of the hidden layer. 

 

Fig. 3. The structure of RBF neural network 

The RBF neural network maps the low-dimensional input signals of the input layer into the high-

dimensional space through the hidden layer through a simple three-layer structure, which makes the 

indivisibility problem of low-dimensional linear is linearly separable in the high-dimensional space, and 

at the same time, the learning of weights can also adopt a faster linear optimization strategy. Therefore, 

the RBF neural network has the characteristics of simple structure, fast learning convergence, and ability 
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to approximate any nonlinear function. This is the reason why RBF neural networks are increasingly used 

in adaptive control [8-12]. 

Suppose the number of neurons in the input layer is n, the number of neurons in the hidden layer is m, 

and the number of output layers is 1, 
1

[ , , ]
T

n
x x x= … , which is the input vector of the network. When the 

radial basis function in the RBF neural network adopts a Gaussian function, the output of jth hidden layer 

nodes is: 

 ( )

2

j 2
exp 1

2

j

j

x c
h j m

b

⎛ ⎞−
⎜ ⎟= − ≤ ≤
⎜ ⎟⎜ ⎟
⎝ ⎠

. (2) 

In formula (2), || ||x  is the Euclidean distance; 
j

b  is the width of the jth Gaussian basis function of the 

network; 
j

c  is the central position vector of the jth hidden layer node of the network, and 
1

[ , , ]
j nj

c c c= … ; 

1
[ , , ]

T

m
w w w= …  is the weight vector between the hidden layer and the output layer. At this time the 

output of RBF network is:  

 
1 1 j j m m

y hw h w h w= +⋅⋅⋅+ +⋅⋅⋅+ . (3) 

3.2 RBFNN MRAS Speed Observer 

The block diagram of RBFNN MRAS speed observer for PMLSM is shown in Fig. 4. The reference 

model is the PMLSM control system, and the plant model is the mathematical model of the PMLSM, as 

shown in formula (1). This RBFNN MRAS speed observer includes a RBF neural network controller 

(RBFNNC), which is used as the adaptive mechanism of the MRAS system. The input signals are the q-

axis estimated current ˆ
q
i  from the plant model and the q-axis actual current 

q
i  from the reference model 

and the difference e  between ˆ
q
i  and 

q
i . The output is the angular velocity estimation ˆ

e
ω . The RBFNNC 

utilizes the nonlinear function approximation ability of the RBF neural network to compensate the non-

modeling factor of the system. The learning process of the RBFNNC is the process of speed estimation 

by RBFNN MRAS speed observer. In addition, a RBF Neural Network Identifier (RBFNNI) for 

parameter identification is designed in this speed observer to provide gradient information for the 

RBFNNC. The input of the RBFNNI is angular velocity estimation ˆ
e

ω  and the q-axis estimated current 

ˆ

q
i . *

e  is the difference between ˆ
q
i  and the output of the RBFNNI ˆ

q
i . The correction rule of the RBFNNI 

is to make the error *

e  as small as possible (the theoretical value is zero). 

 

Fig. 4. The structure of RBFNN MRAS speed observer 

3.3 Off-Line Training 

The center and width of the radial basis function, as well as the connection weights, are three important 

parameters of the RBF neural network. The setting of these parameters is completed by training the 
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neural network. The training of the neural network is mainly divided into two steps: off-line training and 

on-line training. 

In this paper, self-organizing center selection method is used to select the center of the basis function 

in off-line training session. After analyzing the sample data extracted from the full speed range of 

PMLSM, selected the ones with representative distribution as the center. In this case, the width b of the 

Gaussian function can be set to: 

 
2

m
d

b
m

= . (4) 

Where m is the number of hidden layer nodes; 
m

d  is the maximum distance between the selected centers. 

This method for selecting the width b can make the mapping range of the Gaussian function suitable. 

Then, the weight w can be calculated by the following formula: 

 1
w N Y

−

= . (5) 

Where Y is the expected response, 1
N

−  is the pseudo-inverse of matrix N, { }
j

N h= , and 
j

h  is the output 

of the Gaussian function. 

While adjusting the three parameters above, it is also necessary to adjust the number of hidden layer 

nodes according to the training effect to build a simple and compact neural network structure. This is an 

effective way to avoid the neural network calculation occupying too much mechanical period on the 

serial computing DSP28335 controller. At the beginning of training, the initial number of hidden layers 

used in this paper is equal to the number of input signals of RBF neural network, that is, three. In the 

training process, add or delete the hidden layer nodes on the basis of the “novelty” according to the 

adaptive algorithm from Ref [13]. 

The specific algorithm is shown in Fig. 5: 

 

Fig. 5. Procedure for adjusting the number of hidden layer nodes in off-line training 



MRAS Speed Observer for Permanent Magnet Linear Synchronous Motor Based on RBF Neural Networks 

6 

After offline training, this paper designed the structure of RBFNNC and RBFNNI. As shown in Fig. 6, 

the structure of the RBFNNC is 3-9-1, the RBFNNI is a structure of 2-7-1. 

 

Fig. 6. The neural network structure of RBFNNC and RBFNNI 

3.4 On-Line Training 

The learning algorithm uses the gradient descent method, and corrects the center 
j

c  and width b of the 

Gaussian function and the weight w that between the hidden layer and the output layer according to the 

negative gradient direction of the error function, and increases a momentum term at the same time to 

improve the network learning efficiency. The specific method is as follows: 

For the RBFNNC, the tracking error is defined as: 

 ( ) ( ) ( )ˆ

q q
e k i k i k= − . (6) 

The objective function of the Network parameter learning error is: 

 ( ) ( )
21

2
E k e k=

. (7) 

The modified parameters are obtained by gradient descent method: 
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 (8) 

Then update the parameters: 

 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

1 1 2 .

1 1 2 .

1 1 2 .

j j j j j

j j j j j

j j j j j

w k w k w k w k w k

b k b k b k b k b k

c k c k c k c k c k

α

α

α

⎧ = − + Δ + − − −
⎪⎪

= − + Δ + − − −⎨
⎪

= − + Δ + − − −⎪⎩

  (9) 

Where η  is the learning rate, [0,1]η∈ ; α  is a momentum factor, [0,1]α ∈ ; and k represents the kth 

moment; In the formula (8), 
( )

ˆ ( )

q

e

i k

kω

∂

∂
 is the Jacobian matrix, also called the gradient information. 

However, this value cannot be obtained directly, so this paper uses the RBFNNI to provide gradient 

information for the RBFNNC. For the RBFNNI, the tracking error is defined as: 

 ( ) ( )*
ˆ

q q
e k i I k= − . (10) 

The objective function of the Network parameter learning error is: 

 ( ) ( )
2* *1

2
E k e k=

. (11) 
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In order to distinguish the network parameters of RBFNNC, the center, width and weight of RBFNNI are named 

as ( )
j

c k , ( )
j

B k  and ( )
j

W k  respectively. The output of the hidden layer neuron is 
j

H , and the modified 

equation for each parameter can be obtained according to the gradient descent method as follows: 

 
( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

1 1 2 .

1 1 2 .

1 1 2 .

j j j j j

j j j j j

j j j j j

W k W k W k W k W k

B k B k B k B k B k

C k C k C k C k C k

α

α

α

⎧ = − + Δ + − − −
⎪

= − + Δ + − − −⎨
⎪ = − + Δ + − − −⎩

 (12) 

The RBFNNI network recognizer output is: 

 ( ) 1 1 7 7

ˆ

q j j
I k H W H W H W= + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ + . (13) 

Then, the gradient information of the RBFNNC can be calculated by the RBFNNI: 

 ( )

( )

( )

( )

( )
7

1 2

ˆ
ˆ

ˆ ˆ

q q ij e

j j j

e e j

i k I k c k
W H

k k B

ω

ω ω
=

∂ ∂ −
≈ = Σ

∂ ∂

. (14) 

4 Simulation and Experiment 

4.1 Simulation Results 

In order to verify the effectiveness of the method, this paper uses MATLAB/Simulink simulation 

software to build simulation model. The motor parameters of the simulation model are shown in Table 1. 

In order to verify the control performance of the speed sensorless control method in various speed ranges, 

a simulation experiment under the condition of acceleration and deceleration, sudden load and round-trip 

movement at medium and high speeds is performed, and simulation experiments on sudden load and 

round-trip movement at low speed is performed.  

Fig. 7 to Fig. 9 show the simulation results of the linear motor under medium and high speeds. In the 

experiment, the motor starts at a speed of 0.5m/s at zero time, increases to 1m/s at 0.5s, then sudden load 

10kg at 0.8s, and finally runs in reverse direction at a speed of 0.2m/s at 1s.The waveform of actual speed, 

estimated speed and speed error are shown in Fig. 7. The figure shows that the estimated speed can 

follow the actual speed very well throughout the all process, and the error is very small and tends to 0 

when the motor is running in steady state, and the instantaneous error is slightly larger with the maximum 

value of nearly 7% in the speed change and commutation interval range. Adding a load at 0.8s, a slight 

disturbance is produced with a speed error of approximately 4%.  

  

(a) (b) 

Fig. 7. Two kinds of speeds and their error waveforms at medium and high speeds 
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Fig. 8 shows the waveforms of the q-axis current actual value 
q
i  and the estimated value ˆ

q
i  and their 

errors. From Fig. 8(a), it can be seen that the waveform of the estimated value ˆ
q
i  was basically identical 

with the actual value 
q
i , and the slightly larger error occurs only when sudden load and the speed is 

changed, and the maximum value of the error nearly 18%. The error waveform is shown in Fig. 8(b). 

 

(a) (b) 

Fig. 8. Two kinds of Q-axis currents and their error waveforms at medium and high speeds 

Fig. 9 shows the waveforms of the actual phase, estimated phase and their errors. In Fig. 9, there is a 

larger error between the phase estimation value and the actual phase value when the motor starts up. The 

error gradually decrease after start-up and the errors slightly increase when the motor is in reverse 

operation.  

 

(a) (b) 

Fig. 9. Two kinds of phase positions and their error waveforms at medium and high speeds 

Fig. 10 to Fig. 12 show the simulation results at low speed. In the simulation experiment, the speed is 

given to 0.5 m/s, and make the motor do round trip motion at low speed, then 5kg load is added at 0.8s. 

From the Fig. 10, it can be seen that the estimated speed can follow the actual speed well. At startup, 

commutation and load, a slightly larger instantaneous error occurs with a maximum error of 40%.  
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(a) (b) 

Fig. 10. Two kinds of speeds and their error waveforms at low speed 

From the Fig. 11, it can be seen that the estimated Q-axis current can follow the actual Q-axis current 

well. When the motor starts, switches direction and sudden load, a slightly larger error occurs with a 

maximum error of 6%. 

  

(a) (b) 

Fig. 11. Two kinds of Q-axis currents and their error waveforms at low speed 

In Fig. 12, there are waveforms of actual phase, estimated phase and their error, it can be seen that the 

waveform of the estimated phase was basically identical with the actual phase, and there is a slighter 

large error when switching direction. 

  

(a) (b) 

Fig. 12. Two kinds of phase positions and their error waveforms at low speed 



MRAS Speed Observer for Permanent Magnet Linear Synchronous Motor Based on RBF Neural Networks 

10 

4.2 Experiment Results 

Due to the PMLSM used in the experiment has a short stroke and is unable to do the speed sensorless 

control experiment at high speed, this experiment make the PMLSM do round-trip motion at a speed of 

0.05m/s, the same as the simulation experiment at low speed. In the experiment, taking the counting 

value of the encoder as the actual speed, which is not performed in motor control and is only used to 

compare with the speed estimation. Fig. 13(a) shows the curve of the actual speed and estimated speed. 

From the figure, it can be seen that the waveform of estimated value is basically consistent with the 

waveform of the actual speed, but the error is relatively large and the maximum error occurs in the 

commutation, the maximum error reaches 40%. The error waveform is as shown in Fig. 13(b).  

 

(a) (b) 

Fig. 13. Two kinds of speeds and their error waveforms at low speed 

Compared with the simulation results, the experimental result is not good enough. There are three 

main reasons for this result. Firstly, the DSP28335 controller used in the experiment is a serial computing 

controller, which can not realize the parallel calculation of the neural network. Secondly, the interrupt 

frequency of the DSP28335 controller is only 5kHz, which is relatively low, so the control signal of the 

neural network has low timeliness. Thirdly, input signals of the neural network at low speed have large 

noise, and will change in a wide range when the motor changes direction, at this time, the neural network 

generates large-value updates and corrections, causing the estimated speed to deviate from the actual 

speed. 

5 Conclusion and Future Work 

RBF neural network has strong nonlinear function approximation ability. MRAC speed observer based 

on RBF neural network can accurately observe the motor speed in the whole speed range, so as to realize 

speed sensorless control of PMLSM. Simulation results show that the RFFNN MRAS speed observer can 

provide accurate speed information for the motor under the conditions of acceleration and deceleration, 

sudden load, round-trip movement in the whole speed range. The low-speed experiment also proves that 

the method can basically complete the speed estimation at low speed, but the experimental results are not 

good enough due to the limitations of the experimental platform. 

In the future research, the linear motor with long stroke will be replaced to complete the performance 

test under high-middle speed operation, and the FPGA control chip with parallel computing capability 

will be selected to complete the calculation of RBF neural network to improve the calculation accuracy 

and experiment performance. 
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