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Abstract. In recent years, big data is widely mentioned worldwide, and its analysis technology 

has become one of the most popular research subjects. This paper adopts a practical case (movie 

datasets) to present big data development process. We propose a solution that combines Hadoop 

cluster and Spark cluster on Linux platform. The proposed idea lies on that Hadoop cluster 

stores data files and Spark cluster processes data files on Linux platform. In addition, deployed 

Linux platform can be used to process big data files in various different fields. What’s more, 

Scala in Spark cluster plays a vital role in big data analysis technology, and it can achieve data 

mining of important information. Finally, the feasibility of the scheme is verified by an actual 

case analysis.  
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1 Introduction 

Big data is not only a technical hot word, but also a social wave in the era of information explosion. Big 

data has already permeated through every aspect of the society, and the big data analysis technology has 

been playing an increasingly important role in our daily life. The big data is not only a large amount of 

data, but more important is the complexity of the data [1]. The complexity of big data is reflected in two 

aspects: rapid change and complex type. Sometimes, it is significant to note that the small data in big data 

should also be deserved attention [2]. The properties of big data are as follows: massive-scale data 

(petabyte level), fast data flow, a variety of data types, and low value density. Nowadays, big data is 

ubiquitous, and it is indispensable in every aspect of life. However, it also has some problems of data 

security and privacy [3-4] in reality operation, such as identity card number, phone number, home 

address and so on. Therefore, we should pay more attention to protect the privacy information of users in 

the actual big data analysis. 

There has been various big data analysis system that proposed in previous literature. Yi et al. [5] 

proposed a hybrid framework for data analysis under the background of big data. This method improves 

the speed and efficiency of data processing, but the data mining algorithm is too complicated for the 

application. Lin et al. [6] presented joint operation framework that combines R and Hadoop to solve the 

data analysis problems. The framework could greatly reduce the time of data calculation for data mining, 

but the R language is not one of the current popular computer programming languages, and it does not 

have been extensive popularization. Disha et al. [7] used Hadoop MapReduce framework to solve the 

data analysis problems, and this framework can reduce execution time of comparison performance graph. 

Besides, it also presented the way of protecting the privacy of users. What’s more, Naïve Bayes 

Classifier model is used to predict the movie review, but this model is too complicated in actual big data 

analysis. Gulzar et al. [8] used Spark cluster to help users to mine relevant important data in big data 

analysis system, and it can support interactive ad-hoc analytics. Yang et al. [9] presented a hypergraph 

partitioning algorithm for data analysis in the era of big data. The performance of the algorithm is better, 

and the quality of data processing is high. What’s more, this algorithm has a low communication cost, 
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and it can maintain a balanced workload across CPUs. However, the idea is still in the experimental stage 

and has not been applied to the actual application. Feller et al. [10] used Hadoop HDFS (Hadoop 

distributed file system) cloud for big data storage. By comparing with the traditional data storage 

methods, it is found that cloud environment can not only improve efficiency, but also save a lot of money 

cost. Ji [11] presented the big data analysis system in the medical industry, which proves the value of the 

data mining. Many healthcare industry problems can be solved by big data analysis technology. 

Therefore, the big data analysis technology is one of the trends in future development. 

Based on the above discussions, in order to solve big data analysis questions, this paper adopts 

solution that pseudo-distributed Hadoop cluster [12-14] should be configured on Linux platform, and 

then the Spark cluster [15-16] is deployed on Hadoop cluster. Finally, datasets of cloud storage in 

Hadoop HDFS use the Scala [17] in Spark cluster to achieve data mining. 

Compared with other researchers’ methods, the major contributions of this paper are as follows: to 

begin with, this paper adopts combination of Hadoop cluster and Spark cluster to process big data. The 

advantage of cluster combination is to effectively improve the efficiency and save big data processing 

time. Data files are stored in the Hadoop HDFS, and Spark cluster complete data files processing. It is 

rather than a single storing and processing data on Hadoop cluster in previous works. It is the future 

development trend of big data analysis that Hadoop cluster combines with the Spark cluster. Besides, 

deployed Linux platform has extensive applicability, and it can be used to process big data files in all 

kinds of fields, such as health care, business analysis, national security, food safety, and so on. What’s 

more, Scala in Spark cluster is used to realize data mining. Aiming at solving the same one question, 

Scala only uses 10 lines of code, while Java needs 200 lines of code. Generic paradigm, regular 

expression, and higher-order function are introduced into Scala to solve the code redundancy questions, 

and this language is one of the most popular languages to process big data. 
The rest of this paper is organized as follows. Section 2 starts with a brief review of related work, and then the 

proposed method is described. Linux platform’s deployment of Hadoop and Spark are designed in Section 3. Big 

data case analysis is presented in Section 4. Conclusions and remarks on possible further work are given finally in 

Section 5. 

2 Related Work 

The related work mainly includes two parts: Linux platform’s deployment and big data case analysis, 

which will be detailed described in Section 3 and Section 4. 

Compared with Linux operation system, the windows operation system has disadvantage of lower 

compatibility. The Hadoop official only provides binary files for windows operation system, and some 

components need to be compiled by users. Therefore, most of the clusters are more appropriate to be 

deployed on Linux platform rather than windows platform. 

Aiming at platform deployment, pseudo-distributed Hadoop cluster should be configured on Linux 

platform, and then Spark cluster should be deployed on Hadoop cluster. The core of the Hadoop cluster is 

MapReduce and HDFS. MapReduce is a programming paradigm that can be used to process distributed 

data. MapReduce can be divided into three stages to process distributed data, the first stage is map (the 

same operation is applied to each target in the set), the second stage is shuffle (the same key of key-value 

pair is saved into the same set), and the third stage is reduce (the traversing set elements return a 

comprehensive result). Each stage has inputs and outputs of key-value pairs, and the example of 

processing distributed data using Hadoop MapReduce is shown in Fig. 1. The function of HDFS is to 

split a large file into a small data block for solving the data files storage problem. NameNode is primarily 

used to store metadata (address information), and DataNode is used to store data block. Master-slave 

structure of HDFS is shown in Fig. 2. 
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Fig. 1. Example of Hadoop MapReduce 

 

Fig. 2. Master-slave structure of HDFS 

However, the limitations of Hadoop MapReduce framework for processing data are as follows. Firstly, 

it only supports two operations: Map operation and Reduce operation. Secondly, iterative computation 

(machine learning and graph computing) has lower computational efficiency. Thirdly, it is not suitable 

for an interactive processing (data mining). Fourthly, MapReduce programming is not sufficiently 

flexible. Based on the above analysis, aiming at processing data, the Spark cluster is a good supplement 

to the Hadoop cluster. Spark is running programs up to 100 times faster than Hadoop MapReduce in 

memory, or 10 times faster than that on disk [18]. The reason why Spark speed is so fast is that it is based 

on memory calculation and DAG (directed acyclic graph) algorithm. Otherwise, the Spark provides 

extensive API (application programming interface) for development and perfectly integrates with 

Hadoop HDFS. Therefore, this paper adopts that Spark cluster completes the calculation work of data. 

The core ideas of big data are as follows: data are immobile, and calculation is mobile, and data are 

high-concurrency process. The solutions that data are processed by high-concurrency system architecture 

are as follows. Firstly, clusters (static resource clusters and application cluster) that multiple servers have 

the same functions mainly play the role of diversion. Secondly, different services will be placed on 

different servers for improving the processing speed of the data request, and processing one data request 

may requires multiple servers. 

The mainly languages of big data processing include R, Scala, Python, and Java. Compared with other 

computer programming languages, Scala is characterized by the following. Firstly, Scala runs in the JVM 

(Java virtual machine), and it is also a language that drives Spark and Kafka and succeeds in 

combinations of function paradigm and object-oriented paradigm. Secondly, Scala can randomly access 

the “Java ecosystem”, and it includes many useful programming functions (pattern matching and sample 
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case) that are considered to be more concise than standard Java. Thirdly, Scala also includes a convenient 

REPL (Read-Eval-Print-Loop) to achieve interactive development and analysis, like as R and Python. 

Therefore, Scala is chosen for big data processing in this case, and Scala is very suitable for using in 

Spark cluster that focus on data transformation and mapping. Finally, Scala in Spark cluster relies on the 

IDEA (IntelliJ IDEA) software to realize big data development. 

3 Linux Platform’s Deployment of Hadoop and Spark 

3.1 Hadoop Cluster Configuration 

Firstly, VMware Workstation 10 [19] should be installed Linux system (CentOS 6). Due to three Linux 

virtual machines needed totally, we construct one master node and two slave nodes, which are named as 

master, slave1, and slave2, respectively. Then, master and slave nodes are assigned the internet protocol 

address. Secondly, the files (/etc/hostname, /etc/host) need to be modified in three different Linux virtual 

machines. Besides, the three virtual machines should configure user permission authentication. Thirdly, 

three Linux virtual machines need to be installed JDK (Java development kit) and configure environment 

variables and files. Finally, SSH (secure shell) needs to be configured in three Linux virtual machines to 

realize non-password login between nodes. 

After the above basic configuration of Linux platform, Hadoop needs to be installed for master node 

by the Linux command (tar -zxvf hadoop-2.7.1.tar.gz). Besides, the corresponding configuration files 

(hadoop-env.sh, yarn-env.sh, slaves, core-site.xml, hdfs-site.xml, and mapred-site.xml) need to be 

modified by system requirements. Afterwards, configuration successful Hadoop in master node is copied 

to slave nodes by the Linux command of scp (secure copy). Finally, Hadoop cluster in master node can 

be started by the Linux command (sbin/start-all.sh). If Hadoop cluster is successful start-up, NameNode 

can be seen in master node by the Linux command of jps (Java virtual machine process status tool). 

DataNode also can be seen in slave nodes by the Linux command of jps. 

3.2 Spark Cluster Configuration 

When Hadoop cluster is successfully configured on Linux platform, the Spark cluster should be deployed 

on Hadoop cluster. Firstly, Spark needs to be unzipped and installed by the Linux command (tar-zxvf 

Spark-1.2.0-bin-hadoop2.4.tgz). Secondly, Spark needs to be configured with the environment variable 

files (Hadoop_Conf_Dir, Yarn_Conf_Dir, and HDFS_Conf_Dir). Finally, Spark cluster in master node 

can be started by the Linux command (sbin/start-all.sh). If the Spark cluster is properly installed, the 

work information of the slave nodes can be seen in master node by the browser (URL: http://master: 

8080), as shown in Fig. 3. 

 

Fig. 3. Information of Spark cluster 
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Operation modes of Spark cluster include: Local mode, Standalone mode, Yarn mode, and Mesos 

mode. Firstly, Local mode is generally applied to the system test phase. Secondly, Standalone mode is 

default operation mode of Spark cluster, and it is a classic Master-Slave mode. Besides, one key factor is 

that standalone mode only needs to start the HDFS, and it not needs other clusters to manage entire 

cluster resources. Thirdly, Yarn mode or Mesos mode needs additional Hadoop clusters to manage entire 

cluster resources, and Mesos mode has been seldom used in domestic. Therefore, this paper adopts 

Standalone mode of Spark cluster to perform data processing. 

The flow chart of big data processing by Spark cluster in Standalone mode is shown in Fig. 4. The 

components of Spark cluster include Driver (including Main, SparkConf, SparkContext, and RDD), 

Master (running in the master node), Worker (running in the slave node), Executor (specific task), and 

task. The first four are process, and the last one is thread. When Spark cluster detects the big data need to 

be processed, TaskScheduler (task allocation algorithm) is informed to prepare start-up by 

DAGScheduler (stage partitioning algorithm), and then TaskScheduler needs to be registered from 

master node. The purpose of registration to master node is that an application needs to be executed and 

needs to be allocated resources. After the master node receives the registration information, it 

communicates with worker node, and it requires worker node to start-up the corresponding Executor. 

Finally, when Executor is start-up, it needs to be un-registered with TaskScheduler, and TaskScheduler is 

informed that the current application is executed by which Executor. The purpose of reverse registration 

is that TaskScheduler can process specific tasks in Executor. 

 

Fig. 4. Flow chart of big data processing 

4 Big Data Case Analysis 

When Linux platform is successfully deployed, a specific case (movies datasets) is chosen to realize the 

big data analysis. The experimental design mainly includes two steps: preparation of experimental data 

and preparation of experimental questions. The source of experimental data gets from the open source 

datasets of MovieLens system [20]. The setting of experimental questions is based on user actual 

requirements. The purpose of the experiments verifies that deployed Linux platform can be widely used 

in big data processing in various scenarios. 

The flow chart of big data analysis system is shown in Fig. 5. Flume1 and Flume2 are used to collect 

data information. Flume3 is used to integrate collected data information from the web servers. If data 

does not need real-time processing, it can be solved by off-line batch processing. Data mining is 

completed by data processing at minute level. Otherwise, the Kafka is adopted to complete data cache, 

and data are processed by SparkStreaming/Strom for real-time processing. Data mining is completed by 

data processing at millisecond level. Finally, the useful big data information will be saved into the 

database (Redis, Hbase, and MySQL) and displayed to the users by Java-Web technology. In this paper, 

it adopts the way of real-time processing for realizing data mining of movies datasets. 
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Fig. 5. Flow chart of big data analysis system 

Aiming at the real-time data processing of the same magnitude, task execution time of single cluster 

(Hadoop cluster or Spark cluster) system approximately is 8-10s in previous research work. However, 

task execution time of combination cluster (Hadoop cluster and Spark cluster) system approximately is 1-

2s in this paper. Compared with the traditional deployed platform, the task execution time shortens 

87.5%, and the accuracy rate of task execution can reach 99.9%. Otherwise, this paper designs five 

experiments from different angles, such as task complexity, integration and extraction of key information, 

and different combinations of key value pairs. The experimental results further verify the superiority and 

feasibility of this system. 

4.1 Data Structure 

The three data files respectively are users.dat, movies.dat, and ratings.dat. These files contain 1,000,209 

anonymous ratings of approximately 3,900 movies made by 6,040 MovieLens users who joined 

MovieLens. The data structure of users.dat is as follows: UserID::Gender::Age::Occupation:: Zip-code, 

and it should be noted that the double colon (::) is used to split the different types of data information. 

Gender is denoted by “M” for male and “F” for female. Age is chosen from the following ranges: 1: 

“Under 18”, 18: “18-24”, 25: “25-34”, 35: “35-44”, 45: “45-49”, 50: “50-55”, 56: “56+”. Occupation is 

chosen from the following choices: 0: “other” or not specified, 1: “academic/educator”, 2: “artist”, 3: 

“clerical/admin”, 4: “college/grad student”, 5: “customer service”, 6: “doctor/health care”, 7: “executive/ 

managerial”, 8: “farmer”, 9: “homemaker”, 10: “K-12 student”, 11: “lawyer”, 12: “programmer”, 13: 

“retired”, 14: “sales/marketing”, 15: “scientist”, 16: “self-employed”, 17: “technician/ engineer”, 18: 

“tradesman/craftsman”, 19: “unemployed”, 20: “writer”. Partial data information of users.dat is shown in 

Fig. 6, and it totally contains 6,040 pieces of data. The data structure of movies.dat is as follows: 

MovieID::Title::Genres. Genres are pipe-separated and are selected from the following genres: Action, 

Adventure, Animation, Children’s, Comedy, Crime, Documentary, Drama, Fantasy, Film-Noir, Horror, 

Musical, Mystery, Romance, Sci-Fi, Thriller, War, and Western. Partial data information of movies.dat is 

shown in Fig. 7, and it totally contains 3,952 pieces of data. The data structure of ratings.dat is as follows: 

UserID::MovieID:: Rating::Timestamp. UserIDs range between 1 and 6,064, and MovieIDs range 

between 1 and 3,952. Ratings are made on a 5-star scale, and each user has at least 20 ratings. Timestamp 

is represented in seconds since the epoch as returned by time (2). Partial data information of ratings.dat is 

shown in Fig. 8, and it totally contains 1,000,208 pieces of data. 

 

Fig. 6. Partial data information of users.dat 



Journal of Computers Vol. 31 No. 2, 2020 

133 

 

Fig. 7. Partial data information of movies.dat 

 

Fig. 8. Partial data information of ratings.dat 

Finally, datasets are saved in Hadoop HDFS cloud by the Linux command (Hadoop fs –put users.dat 

/input/movies, Hadoop fs –put movies.dat /input/movies, and Hadoop fs –put ratings.dat /input/movies) 

on Linux platform, and datasets can be loaded from Hadoop HDFS cloud by the Linux command (hdfs: 

//master:9000/input/movies/xxx.dat) in Spark cluster. The specific work of data mining on selected 

datasets will be presented in the following subsections. 

4.2 Quantity Distribution Analysis 

Experiment 1: What are the viewers who have seen the movie of “Lord of the Rings, The (1978)” 

quantity distribution of age and gender? 

Firstly, datasets should be loaded from Hadoop HDFS cloud. Then, the movieId of “Lord of the Rings, 

The (1978)” should be obtained from the movies.dat. Besides, all user information (userId, (gender, age)) 

can be obtained from users.dat. Secondly, movieId should be matched userId from ratings.dat. Thirdly, 

the information (userId, (movieId, (gender, age)) can be obtained by join operation from users.dat and 

ratings.dat. Finally, it can get experimental results of quantity distribution of age and gender. Task 

execution time of data mining is 1.298597s, as shown in Fig. 9. 
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Fig. 9. Results and task execution time of experiment 1 

From the above experimental results, as shown in Fig. 10, we can draw following conclusions. For 

male viewers, people who have seen the film at age group between 25 and 34 have the largest percentage 

with 45% of the total of males. It reaches up to 169 people. People who have seen the film at age group 

over 56 have the minimum percentage with 2% of the total of males. It has only 8 people, as shown in 

Fig. 10(a). For female viewers, people who have seen the film at age group between 25 and 34 have the 

largest percentage with 45% of the total of females. It reaches 28 people. People who have seen the film 

at age group over 56 have the minimum percentage with 3% of the total of females. It has only 2 people, 

as shown in Fig. 10(b). In sum up, whether it is a male or a female viewer, the largest percentage are 

distributed at age group between 25 and 34, and the minimum percentage are distributed at age group 

over 65. The number of male viewers (376) is far beyond the female viewers (62) in the movie of “Lord 

of the Rings, The (1978)”. 

  

(a) male quantity distribution and  (b) female quantity distribution 

Fig. 10. Quantity distribution 

Experiment 2: What are the viewers who have seen the top three most popular movies in 1995 

quantity distribution of age and gender? 

Firstly, datasets should be loaded from Hadoop HDFS cloud. Secondly, moiveId of 1995 films should 

be obtained from movies.dat. What’s more, the information (userId, movieId, ratings) in 1995 movies 

should be filtered from ratings.dat, and average rating should be calculated for getting the top three most 

popular movies in 1995. Based on the above algorithm analysis, the top three most popular movies in 

1995 are “Mr. Holland’s Opus (1995)”, “Leaving Las Vegas (1995)”, and “Ghost in the Shell (Kokaku 

kidotai) (1995)”, respectively. Thirdly, the information (userId, (movieId, (gender, age)) of the top three 

most popular movies in 1995 can be obtained by join operation from users.dat and ratings.dat. Finally, it 

can get experimental results of quantity distribution of age and gender. Task execution time of data 

mining is 1.114402s, as shown in Fig. 11. 
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Fig. 11. Results and task execution time of experiment 2 

Aiming at the movie of “Mr. Holland’s Opus (1995)”, the number of male viewers (139) is beyond the 

female viewers (90). The gap approximately is 50 people, as shown in Fig. 12. Aiming at the movie of 

“Leaving Las Vegas (1995)”, the number of male viewers (1103) who have seen the film at four age 

groups is far more than the female viewers (187) who have seen the film at two age groups, as shown in 

Fig. 13. Aiming at the movie of “Ghost in the Shell (Kokaku kidotai) (1995)”, however, male viewers 

who have seen the movie are only at age group between 45 and 55. It has only 81 people, as shown in Fig. 

14. The number of female viewers (235) is far beyond the male viewers (81) who have seen the movies. 

 

Fig. 12. Analysis of “Mr. Holland’s Opus (1995)” 

 

Fig. 13. Analysis of “Leaving Las Vegas (1995)” 
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Fig. 14. Analysis of “Ghost in the Shell (Kokaku kidotai) (1995)” 

Based on the above figures, we can draw conclusions that the first two movies are more popular with 

male viewers. However, the last one movie is more popular with female viewers. 

4.3 Preference Analysis 

Experiment 3: What are the top ten favorite movies of male viewers at age group between 18 and 

24? 

Firstly, datasets should be loaded from Hadoop HDFS cloud. Secondly, a broadcast variable should be 

created and saved the userId of male viewers at age group between 18 and 24 from users.dat. Secondly, 

the average rating should be calculated for getting top ten favorite movies of male viewers. Thirdly, the 

information (movieId, (title, avg)) of all movies can be obtained from movies.dat. Finally, it can get 

experimental results of the top ten favorite movies of male viewers at age group between 18 and 24. Task 

execution time of data mining is 0.040943s, as shown in Fig. 15. 

 

Fig. 15. Results and task execution time of experiment 3 

The top ten favorite movies of male viewers at age group between 18 and 24 are as follows: “42 Up 

(1998)”, “Arguing the World (1996)”, “Night Mother (1986)”, “Black Sunday (La Maschera Del 

Demonio) (1960)”, “Actor’s Revenge, An (Yukinojo Henge) (1963)”, “Young Doctors in Love (1982)”, 

“I Am Cuba (Soy Cuba/Ya Kuba) (1964)”, “Sanjuro (1962)”, “Nobody Loves Me (Keiner liebt mich) 

(1994)”, and “Modulations (1998)”. 

From the above analysis, we can get an apparent conclusion that the male viewers prefer to view the 

documentary, drama, and comedy films at age group between 18 and 24. 

4.4 Rating Analysis 

Experiment 4: What are the top ten movies with the highest rating (5.0) for male and female 

viewers? 

Firstly, datasets should be loaded from Hadoop HDFS cloud. Secondly, average rating of all movies 

should be calculated from ratings.dat. Thirdly, movieId of top ten rating movies should be filtered from 
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movies.dat, and then the movieId should be matched title from movies.dat. Finally, it can get 

experimental results of top ten movies with the highest rating (5.0) for male and female viewers. Task 

execution time of data mining is 0.054050s, as shown in Fig. 16. 

 

Fig. 16. Results and task execution time of experiment 4 

The top ten movies with the highest rating (5.0) for male and female viewers are as follows: “Gate of 

Heavenly Peace, The (1995)”, “Schlafes Bruder (Brother of Sleep) (1995)”, “Follow the Bitch (1998)”, 

“Ulysses (Ulisse) (1954)”, “Smashing Time (1967)”, “Baby, The (1973)”, “Song of Freedom (1936)”, 

“One Little Indian (1973)”, “Lured (1947)”, and “Bittersweet Motel (2000)”. 

Therefore, whether it is a male or a female viewer, we can recommend them to these top ten films with 

the highest rating (5.0) when they do not know what they want to view. 

4.5 Viewing Frequency Analysis 

Experiment 5: What are the top ten movies that female viewers who have seen the most? 

Firstly, datasets should be loaded from Hadoop HDFS cloud. Secondly, userId of female viewers 

should be filtered from users.dat. Besides, userId should be matched movieId from ratings.dat. Thirdly, 

the top ten movies frequency that female viewers have seen the movies should be calculated, and then, 

the information (movieId, (title, frequency)) can be obtained from movies.dat. Finally, it can get 

experimental results of top ten movies that have seen most with female viewers by join operation. Task 

execution time of data mining is 0.206953s, as shown in Fig. 17. 

 

Fig. 17. Results and task execution time of experiment 5 
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From the above experimental results, we can draw a conclusion that the most popular movie for female 

viewers is “American Beauty (1999)”, and the viewing frequency reaches 946. The genre of this film is 

Comedy movie. All of the top ten movies viewing frequency have been more than 600, as shown in Fig. 

18. 

 

Fig. 18. Analysis of viewing frequency 

5 Conclusions and Remarks on Possible Further Work 

In brief, this paper adopts the way of storing data by Hadoop cluster and processing data by Spark cluster 

on Linux platform to solve big data analysis questions. Hadoop cluster provides features that Spark 

cluster does not have, such as distributed file system, but Spark cluster provides real-time memory 

processing for those datasets. Compared with traditional single Hadoop cluster deployment, the cluster 

combination deployment is suitable for big data applications. This combination becomes an extremely 

powerful solution for big data analysis. Based on the big data case (movie datasets) analysis, it can be 

verified that deployed Linux platform has stronger reliability, applicability, and generality. Therefore, the 

combination Hadoop cluster and Spark cluster on Linux platform can be widely used in big data analysis 

system. 

The main contribution of this paper is combination of Hadoop cluster and Spark cluster on Linux 

platform and Scala in Spark cluster in order to mine data. What’s more, the advantages of using Scala in 

Spark cluster are as follows: code conciseness, high speed, high efficiency, and results accurate and 

clarity. According to the differences of cluster deployment mode, complexity of data and sample size, the 

data processing time-consumed is different. Based on the above five experimental results in movies 

datasets (size: 1,010,200 pieces of data), compared with traditional cluster deployment, the average time 

of task execution for data mining by combination way approximately is one second. Therefore, it can be 

verified that the proposed method can effectively improve the efficiency and save big data processing 

time. 

However, the side effects of combination are as follows: Linux platform’s deployment is relatively 

complicated, the clusters need to be set more configuration files, and task scheduling and fault tolerance 

are not perfect. Therefore, we will moderate the side effects in the subsequent research work. On the one 

hand, we will do more work on the diversity of presentation for showing big data analysis results. For 

example, it is not only just by a simple program screenshots to show, but also can be graphically 

presented to users by Java-Web technology. On the other hand, it also can be verified the relationship 

between occupation and movie viewing genres, or the relationship between region and movie viewing 

genres in the future experiments. 
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