
Journal of Computers Vol. 31 No. 2, 2020, pp. 127-140

doi:10.3966/199115992020043102012

127

Big Data Analysis Based on Hadoop Cluster and Spark Cluster

on Linux Platform

Kangxu Liu, Guangming Li*

School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai 264209, China

liukangxu@mail.sdu.edu.cn, gmli@sdu.edu.cn

Received 26 June 2018; Revised 8 October 2018; Accepted 18 December 2018

Abstract. In recent years, big data is widely mentioned worldwide, and its analysis technology

has become one of the most popular research subjects. This paper adopts a practical case (movie

datasets) to present big data development process. We propose a solution that combines Hadoop

cluster and Spark cluster on Linux platform. The proposed idea lies on that Hadoop cluster

stores data files and Spark cluster processes data files on Linux platform. In addition, deployed

Linux platform can be used to process big data files in various different fields. What’s more,

Scala in Spark cluster plays a vital role in big data analysis technology, and it can achieve data

mining of important information. Finally, the feasibility of the scheme is verified by an actual

case analysis.

Keywords: big data analysis, data mining, Hadoop, Linux platform, Scala, Spark

1 Introduction

Big data is not only a technical hot word, but also a social wave in the era of information explosion. Big

data has already permeated through every aspect of the society, and the big data analysis technology has

been playing an increasingly important role in our daily life. The big data is not only a large amount of

data, but more important is the complexity of the data [1]. The complexity of big data is reflected in two

aspects: rapid change and complex type. Sometimes, it is significant to note that the small data in big data

should also be deserved attention [2]. The properties of big data are as follows: massive-scale data

(petabyte level), fast data flow, a variety of data types, and low value density. Nowadays, big data is

ubiquitous, and it is indispensable in every aspect of life. However, it also has some problems of data

security and privacy [3-4] in reality operation, such as identity card number, phone number, home

address and so on. Therefore, we should pay more attention to protect the privacy information of users in

the actual big data analysis.

There has been various big data analysis system that proposed in previous literature. Yi et al. [5]

proposed a hybrid framework for data analysis under the background of big data. This method improves

the speed and efficiency of data processing, but the data mining algorithm is too complicated for the

application. Lin et al. [6] presented joint operation framework that combines R and Hadoop to solve the

data analysis problems. The framework could greatly reduce the time of data calculation for data mining,

but the R language is not one of the current popular computer programming languages, and it does not

have been extensive popularization. Disha et al. [7] used Hadoop MapReduce framework to solve the

data analysis problems, and this framework can reduce execution time of comparison performance graph.

Besides, it also presented the way of protecting the privacy of users. What’s more, Naïve Bayes

Classifier model is used to predict the movie review, but this model is too complicated in actual big data

analysis. Gulzar et al. [8] used Spark cluster to help users to mine relevant important data in big data

analysis system, and it can support interactive ad-hoc analytics. Yang et al. [9] presented a hypergraph

partitioning algorithm for data analysis in the era of big data. The performance of the algorithm is better,

and the quality of data processing is high. What’s more, this algorithm has a low communication cost,

* Corresponding Author

Big Data Analysis Based on Hadoop Cluster and Spark Cluster on Linux Platform

128

and it can maintain a balanced workload across CPUs. However, the idea is still in the experimental stage

and has not been applied to the actual application. Feller et al. [10] used Hadoop HDFS (Hadoop

distributed file system) cloud for big data storage. By comparing with the traditional data storage

methods, it is found that cloud environment can not only improve efficiency, but also save a lot of money

cost. Ji [11] presented the big data analysis system in the medical industry, which proves the value of the

data mining. Many healthcare industry problems can be solved by big data analysis technology.

Therefore, the big data analysis technology is one of the trends in future development.

Based on the above discussions, in order to solve big data analysis questions, this paper adopts

solution that pseudo-distributed Hadoop cluster [12-14] should be configured on Linux platform, and

then the Spark cluster [15-16] is deployed on Hadoop cluster. Finally, datasets of cloud storage in

Hadoop HDFS use the Scala [17] in Spark cluster to achieve data mining.

Compared with other researchers’ methods, the major contributions of this paper are as follows: to

begin with, this paper adopts combination of Hadoop cluster and Spark cluster to process big data. The

advantage of cluster combination is to effectively improve the efficiency and save big data processing

time. Data files are stored in the Hadoop HDFS, and Spark cluster complete data files processing. It is

rather than a single storing and processing data on Hadoop cluster in previous works. It is the future

development trend of big data analysis that Hadoop cluster combines with the Spark cluster. Besides,

deployed Linux platform has extensive applicability, and it can be used to process big data files in all

kinds of fields, such as health care, business analysis, national security, food safety, and so on. What’s

more, Scala in Spark cluster is used to realize data mining. Aiming at solving the same one question,

Scala only uses 10 lines of code, while Java needs 200 lines of code. Generic paradigm, regular

expression, and higher-order function are introduced into Scala to solve the code redundancy questions,

and this language is one of the most popular languages to process big data.
The rest of this paper is organized as follows. Section 2 starts with a brief review of related work, and then the

proposed method is described. Linux platform’s deployment of Hadoop and Spark are designed in Section 3. Big

data case analysis is presented in Section 4. Conclusions and remarks on possible further work are given finally in

Section 5.

2 Related Work

The related work mainly includes two parts: Linux platform’s deployment and big data case analysis,

which will be detailed described in Section 3 and Section 4.

Compared with Linux operation system, the windows operation system has disadvantage of lower

compatibility. The Hadoop official only provides binary files for windows operation system, and some

components need to be compiled by users. Therefore, most of the clusters are more appropriate to be

deployed on Linux platform rather than windows platform.

Aiming at platform deployment, pseudo-distributed Hadoop cluster should be configured on Linux

platform, and then Spark cluster should be deployed on Hadoop cluster. The core of the Hadoop cluster is

MapReduce and HDFS. MapReduce is a programming paradigm that can be used to process distributed

data. MapReduce can be divided into three stages to process distributed data, the first stage is map (the

same operation is applied to each target in the set), the second stage is shuffle (the same key of key-value

pair is saved into the same set), and the third stage is reduce (the traversing set elements return a

comprehensive result). Each stage has inputs and outputs of key-value pairs, and the example of

processing distributed data using Hadoop MapReduce is shown in Fig. 1. The function of HDFS is to

split a large file into a small data block for solving the data files storage problem. NameNode is primarily

used to store metadata (address information), and DataNode is used to store data block. Master-slave

structure of HDFS is shown in Fig. 2.

Journal of Computers Vol. 31 No. 2, 2020

129

Fig. 1. Example of Hadoop MapReduce

Fig. 2. Master-slave structure of HDFS

However, the limitations of Hadoop MapReduce framework for processing data are as follows. Firstly,

it only supports two operations: Map operation and Reduce operation. Secondly, iterative computation

(machine learning and graph computing) has lower computational efficiency. Thirdly, it is not suitable

for an interactive processing (data mining). Fourthly, MapReduce programming is not sufficiently

flexible. Based on the above analysis, aiming at processing data, the Spark cluster is a good supplement

to the Hadoop cluster. Spark is running programs up to 100 times faster than Hadoop MapReduce in

memory, or 10 times faster than that on disk [18]. The reason why Spark speed is so fast is that it is based

on memory calculation and DAG (directed acyclic graph) algorithm. Otherwise, the Spark provides

extensive API (application programming interface) for development and perfectly integrates with

Hadoop HDFS. Therefore, this paper adopts that Spark cluster completes the calculation work of data.

The core ideas of big data are as follows: data are immobile, and calculation is mobile, and data are

high-concurrency process. The solutions that data are processed by high-concurrency system architecture

are as follows. Firstly, clusters (static resource clusters and application cluster) that multiple servers have

the same functions mainly play the role of diversion. Secondly, different services will be placed on

different servers for improving the processing speed of the data request, and processing one data request

may requires multiple servers.

The mainly languages of big data processing include R, Scala, Python, and Java. Compared with other

computer programming languages, Scala is characterized by the following. Firstly, Scala runs in the JVM

(Java virtual machine), and it is also a language that drives Spark and Kafka and succeeds in

combinations of function paradigm and object-oriented paradigm. Secondly, Scala can randomly access

the “Java ecosystem”, and it includes many useful programming functions (pattern matching and sample

Big Data Analysis Based on Hadoop Cluster and Spark Cluster on Linux Platform

130

case) that are considered to be more concise than standard Java. Thirdly, Scala also includes a convenient

REPL (Read-Eval-Print-Loop) to achieve interactive development and analysis, like as R and Python.

Therefore, Scala is chosen for big data processing in this case, and Scala is very suitable for using in

Spark cluster that focus on data transformation and mapping. Finally, Scala in Spark cluster relies on the

IDEA (IntelliJ IDEA) software to realize big data development.

3 Linux Platform’s Deployment of Hadoop and Spark

3.1 Hadoop Cluster Configuration

Firstly, VMware Workstation 10 [19] should be installed Linux system (CentOS 6). Due to three Linux

virtual machines needed totally, we construct one master node and two slave nodes, which are named as

master, slave1, and slave2, respectively. Then, master and slave nodes are assigned the internet protocol

address. Secondly, the files (/etc/hostname, /etc/host) need to be modified in three different Linux virtual

machines. Besides, the three virtual machines should configure user permission authentication. Thirdly,

three Linux virtual machines need to be installed JDK (Java development kit) and configure environment

variables and files. Finally, SSH (secure shell) needs to be configured in three Linux virtual machines to

realize non-password login between nodes.

After the above basic configuration of Linux platform, Hadoop needs to be installed for master node

by the Linux command (tar -zxvf hadoop-2.7.1.tar.gz). Besides, the corresponding configuration files

(hadoop-env.sh, yarn-env.sh, slaves, core-site.xml, hdfs-site.xml, and mapred-site.xml) need to be

modified by system requirements. Afterwards, configuration successful Hadoop in master node is copied

to slave nodes by the Linux command of scp (secure copy). Finally, Hadoop cluster in master node can

be started by the Linux command (sbin/start-all.sh). If Hadoop cluster is successful start-up, NameNode

can be seen in master node by the Linux command of jps (Java virtual machine process status tool).

DataNode also can be seen in slave nodes by the Linux command of jps.

3.2 Spark Cluster Configuration

When Hadoop cluster is successfully configured on Linux platform, the Spark cluster should be deployed

on Hadoop cluster. Firstly, Spark needs to be unzipped and installed by the Linux command (tar-zxvf

Spark-1.2.0-bin-hadoop2.4.tgz). Secondly, Spark needs to be configured with the environment variable

files (Hadoop_Conf_Dir, Yarn_Conf_Dir, and HDFS_Conf_Dir). Finally, Spark cluster in master node

can be started by the Linux command (sbin/start-all.sh). If the Spark cluster is properly installed, the

work information of the slave nodes can be seen in master node by the browser (URL: http://master:

8080), as shown in Fig. 3.

Fig. 3. Information of Spark cluster

Journal of Computers Vol. 31 No. 2, 2020

131

Operation modes of Spark cluster include: Local mode, Standalone mode, Yarn mode, and Mesos

mode. Firstly, Local mode is generally applied to the system test phase. Secondly, Standalone mode is

default operation mode of Spark cluster, and it is a classic Master-Slave mode. Besides, one key factor is

that standalone mode only needs to start the HDFS, and it not needs other clusters to manage entire

cluster resources. Thirdly, Yarn mode or Mesos mode needs additional Hadoop clusters to manage entire

cluster resources, and Mesos mode has been seldom used in domestic. Therefore, this paper adopts

Standalone mode of Spark cluster to perform data processing.

The flow chart of big data processing by Spark cluster in Standalone mode is shown in Fig. 4. The

components of Spark cluster include Driver (including Main, SparkConf, SparkContext, and RDD),

Master (running in the master node), Worker (running in the slave node), Executor (specific task), and

task. The first four are process, and the last one is thread. When Spark cluster detects the big data need to

be processed, TaskScheduler (task allocation algorithm) is informed to prepare start-up by

DAGScheduler (stage partitioning algorithm), and then TaskScheduler needs to be registered from

master node. The purpose of registration to master node is that an application needs to be executed and

needs to be allocated resources. After the master node receives the registration information, it

communicates with worker node, and it requires worker node to start-up the corresponding Executor.

Finally, when Executor is start-up, it needs to be un-registered with TaskScheduler, and TaskScheduler is

informed that the current application is executed by which Executor. The purpose of reverse registration

is that TaskScheduler can process specific tasks in Executor.

Fig. 4. Flow chart of big data processing

4 Big Data Case Analysis

When Linux platform is successfully deployed, a specific case (movies datasets) is chosen to realize the

big data analysis. The experimental design mainly includes two steps: preparation of experimental data

and preparation of experimental questions. The source of experimental data gets from the open source

datasets of MovieLens system [20]. The setting of experimental questions is based on user actual

requirements. The purpose of the experiments verifies that deployed Linux platform can be widely used

in big data processing in various scenarios.

The flow chart of big data analysis system is shown in Fig. 5. Flume1 and Flume2 are used to collect

data information. Flume3 is used to integrate collected data information from the web servers. If data

does not need real-time processing, it can be solved by off-line batch processing. Data mining is

completed by data processing at minute level. Otherwise, the Kafka is adopted to complete data cache,

and data are processed by SparkStreaming/Strom for real-time processing. Data mining is completed by

data processing at millisecond level. Finally, the useful big data information will be saved into the

database (Redis, Hbase, and MySQL) and displayed to the users by Java-Web technology. In this paper,

it adopts the way of real-time processing for realizing data mining of movies datasets.

Big Data Analysis Based on Hadoop Cluster and Spark Cluster on Linux Platform

132

Fig. 5. Flow chart of big data analysis system

Aiming at the real-time data processing of the same magnitude, task execution time of single cluster

(Hadoop cluster or Spark cluster) system approximately is 8-10s in previous research work. However,

task execution time of combination cluster (Hadoop cluster and Spark cluster) system approximately is 1-

2s in this paper. Compared with the traditional deployed platform, the task execution time shortens

87.5%, and the accuracy rate of task execution can reach 99.9%. Otherwise, this paper designs five

experiments from different angles, such as task complexity, integration and extraction of key information,

and different combinations of key value pairs. The experimental results further verify the superiority and

feasibility of this system.

4.1 Data Structure

The three data files respectively are users.dat, movies.dat, and ratings.dat. These files contain 1,000,209

anonymous ratings of approximately 3,900 movies made by 6,040 MovieLens users who joined

MovieLens. The data structure of users.dat is as follows: UserID::Gender::Age::Occupation:: Zip-code,

and it should be noted that the double colon (::) is used to split the different types of data information.

Gender is denoted by “M” for male and “F” for female. Age is chosen from the following ranges: 1:

“Under 18”, 18: “18-24”, 25: “25-34”, 35: “35-44”, 45: “45-49”, 50: “50-55”, 56: “56+”. Occupation is

chosen from the following choices: 0: “other” or not specified, 1: “academic/educator”, 2: “artist”, 3:

“clerical/admin”, 4: “college/grad student”, 5: “customer service”, 6: “doctor/health care”, 7: “executive/

managerial”, 8: “farmer”, 9: “homemaker”, 10: “K-12 student”, 11: “lawyer”, 12: “programmer”, 13:

“retired”, 14: “sales/marketing”, 15: “scientist”, 16: “self-employed”, 17: “technician/ engineer”, 18:

“tradesman/craftsman”, 19: “unemployed”, 20: “writer”. Partial data information of users.dat is shown in

Fig. 6, and it totally contains 6,040 pieces of data. The data structure of movies.dat is as follows:

MovieID::Title::Genres. Genres are pipe-separated and are selected from the following genres: Action,

Adventure, Animation, Children’s, Comedy, Crime, Documentary, Drama, Fantasy, Film-Noir, Horror,

Musical, Mystery, Romance, Sci-Fi, Thriller, War, and Western. Partial data information of movies.dat is

shown in Fig. 7, and it totally contains 3,952 pieces of data. The data structure of ratings.dat is as follows:

UserID::MovieID:: Rating::Timestamp. UserIDs range between 1 and 6,064, and MovieIDs range

between 1 and 3,952. Ratings are made on a 5-star scale, and each user has at least 20 ratings. Timestamp

is represented in seconds since the epoch as returned by time (2). Partial data information of ratings.dat is

shown in Fig. 8, and it totally contains 1,000,208 pieces of data.

Fig. 6. Partial data information of users.dat

Journal of Computers Vol. 31 No. 2, 2020

133

Fig. 7. Partial data information of movies.dat

Fig. 8. Partial data information of ratings.dat

Finally, datasets are saved in Hadoop HDFS cloud by the Linux command (Hadoop fs –put users.dat

/input/movies, Hadoop fs –put movies.dat /input/movies, and Hadoop fs –put ratings.dat /input/movies)

on Linux platform, and datasets can be loaded from Hadoop HDFS cloud by the Linux command (hdfs:

//master:9000/input/movies/xxx.dat) in Spark cluster. The specific work of data mining on selected

datasets will be presented in the following subsections.

4.2 Quantity Distribution Analysis

Experiment 1: What are the viewers who have seen the movie of “Lord of the Rings, The (1978)”

quantity distribution of age and gender?

Firstly, datasets should be loaded from Hadoop HDFS cloud. Then, the movieId of “Lord of the Rings,

The (1978)” should be obtained from the movies.dat. Besides, all user information (userId, (gender, age))

can be obtained from users.dat. Secondly, movieId should be matched userId from ratings.dat. Thirdly,

the information (userId, (movieId, (gender, age)) can be obtained by join operation from users.dat and

ratings.dat. Finally, it can get experimental results of quantity distribution of age and gender. Task

execution time of data mining is 1.298597s, as shown in Fig. 9.

Big Data Analysis Based on Hadoop Cluster and Spark Cluster on Linux Platform

134

Fig. 9. Results and task execution time of experiment 1

From the above experimental results, as shown in Fig. 10, we can draw following conclusions. For

male viewers, people who have seen the film at age group between 25 and 34 have the largest percentage

with 45% of the total of males. It reaches up to 169 people. People who have seen the film at age group

over 56 have the minimum percentage with 2% of the total of males. It has only 8 people, as shown in

Fig. 10(a). For female viewers, people who have seen the film at age group between 25 and 34 have the

largest percentage with 45% of the total of females. It reaches 28 people. People who have seen the film

at age group over 56 have the minimum percentage with 3% of the total of females. It has only 2 people,

as shown in Fig. 10(b). In sum up, whether it is a male or a female viewer, the largest percentage are

distributed at age group between 25 and 34, and the minimum percentage are distributed at age group

over 65. The number of male viewers (376) is far beyond the female viewers (62) in the movie of “Lord

of the Rings, The (1978)”.

(a) male quantity distribution and (b) female quantity distribution

Fig. 10. Quantity distribution

Experiment 2: What are the viewers who have seen the top three most popular movies in 1995

quantity distribution of age and gender?

Firstly, datasets should be loaded from Hadoop HDFS cloud. Secondly, moiveId of 1995 films should

be obtained from movies.dat. What’s more, the information (userId, movieId, ratings) in 1995 movies

should be filtered from ratings.dat, and average rating should be calculated for getting the top three most

popular movies in 1995. Based on the above algorithm analysis, the top three most popular movies in

1995 are “Mr. Holland’s Opus (1995)”, “Leaving Las Vegas (1995)”, and “Ghost in the Shell (Kokaku

kidotai) (1995)”, respectively. Thirdly, the information (userId, (movieId, (gender, age)) of the top three

most popular movies in 1995 can be obtained by join operation from users.dat and ratings.dat. Finally, it

can get experimental results of quantity distribution of age and gender. Task execution time of data

mining is 1.114402s, as shown in Fig. 11.

Journal of Computers Vol. 31 No. 2, 2020

135

Fig. 11. Results and task execution time of experiment 2

Aiming at the movie of “Mr. Holland’s Opus (1995)”, the number of male viewers (139) is beyond the

female viewers (90). The gap approximately is 50 people, as shown in Fig. 12. Aiming at the movie of

“Leaving Las Vegas (1995)”, the number of male viewers (1103) who have seen the film at four age

groups is far more than the female viewers (187) who have seen the film at two age groups, as shown in

Fig. 13. Aiming at the movie of “Ghost in the Shell (Kokaku kidotai) (1995)”, however, male viewers

who have seen the movie are only at age group between 45 and 55. It has only 81 people, as shown in Fig.

14. The number of female viewers (235) is far beyond the male viewers (81) who have seen the movies.

Fig. 12. Analysis of “Mr. Holland’s Opus (1995)”

Fig. 13. Analysis of “Leaving Las Vegas (1995)”

Big Data Analysis Based on Hadoop Cluster and Spark Cluster on Linux Platform

136

Fig. 14. Analysis of “Ghost in the Shell (Kokaku kidotai) (1995)”

Based on the above figures, we can draw conclusions that the first two movies are more popular with

male viewers. However, the last one movie is more popular with female viewers.

4.3 Preference Analysis

Experiment 3: What are the top ten favorite movies of male viewers at age group between 18 and

24?

Firstly, datasets should be loaded from Hadoop HDFS cloud. Secondly, a broadcast variable should be

created and saved the userId of male viewers at age group between 18 and 24 from users.dat. Secondly,

the average rating should be calculated for getting top ten favorite movies of male viewers. Thirdly, the

information (movieId, (title, avg)) of all movies can be obtained from movies.dat. Finally, it can get

experimental results of the top ten favorite movies of male viewers at age group between 18 and 24. Task

execution time of data mining is 0.040943s, as shown in Fig. 15.

Fig. 15. Results and task execution time of experiment 3

The top ten favorite movies of male viewers at age group between 18 and 24 are as follows: “42 Up

(1998)”, “Arguing the World (1996)”, “Night Mother (1986)”, “Black Sunday (La Maschera Del

Demonio) (1960)”, “Actor’s Revenge, An (Yukinojo Henge) (1963)”, “Young Doctors in Love (1982)”,

“I Am Cuba (Soy Cuba/Ya Kuba) (1964)”, “Sanjuro (1962)”, “Nobody Loves Me (Keiner liebt mich)

(1994)”, and “Modulations (1998)”.

From the above analysis, we can get an apparent conclusion that the male viewers prefer to view the

documentary, drama, and comedy films at age group between 18 and 24.

4.4 Rating Analysis

Experiment 4: What are the top ten movies with the highest rating (5.0) for male and female

viewers?

Firstly, datasets should be loaded from Hadoop HDFS cloud. Secondly, average rating of all movies

should be calculated from ratings.dat. Thirdly, movieId of top ten rating movies should be filtered from

Journal of Computers Vol. 31 No. 2, 2020

137

movies.dat, and then the movieId should be matched title from movies.dat. Finally, it can get

experimental results of top ten movies with the highest rating (5.0) for male and female viewers. Task

execution time of data mining is 0.054050s, as shown in Fig. 16.

Fig. 16. Results and task execution time of experiment 4

The top ten movies with the highest rating (5.0) for male and female viewers are as follows: “Gate of

Heavenly Peace, The (1995)”, “Schlafes Bruder (Brother of Sleep) (1995)”, “Follow the Bitch (1998)”,

“Ulysses (Ulisse) (1954)”, “Smashing Time (1967)”, “Baby, The (1973)”, “Song of Freedom (1936)”,

“One Little Indian (1973)”, “Lured (1947)”, and “Bittersweet Motel (2000)”.

Therefore, whether it is a male or a female viewer, we can recommend them to these top ten films with

the highest rating (5.0) when they do not know what they want to view.

4.5 Viewing Frequency Analysis

Experiment 5: What are the top ten movies that female viewers who have seen the most?

Firstly, datasets should be loaded from Hadoop HDFS cloud. Secondly, userId of female viewers

should be filtered from users.dat. Besides, userId should be matched movieId from ratings.dat. Thirdly,

the top ten movies frequency that female viewers have seen the movies should be calculated, and then,

the information (movieId, (title, frequency)) can be obtained from movies.dat. Finally, it can get

experimental results of top ten movies that have seen most with female viewers by join operation. Task

execution time of data mining is 0.206953s, as shown in Fig. 17.

Fig. 17. Results and task execution time of experiment 5

Big Data Analysis Based on Hadoop Cluster and Spark Cluster on Linux Platform

138

From the above experimental results, we can draw a conclusion that the most popular movie for female

viewers is “American Beauty (1999)”, and the viewing frequency reaches 946. The genre of this film is

Comedy movie. All of the top ten movies viewing frequency have been more than 600, as shown in Fig.

18.

Fig. 18. Analysis of viewing frequency

5 Conclusions and Remarks on Possible Further Work

In brief, this paper adopts the way of storing data by Hadoop cluster and processing data by Spark cluster

on Linux platform to solve big data analysis questions. Hadoop cluster provides features that Spark

cluster does not have, such as distributed file system, but Spark cluster provides real-time memory

processing for those datasets. Compared with traditional single Hadoop cluster deployment, the cluster

combination deployment is suitable for big data applications. This combination becomes an extremely

powerful solution for big data analysis. Based on the big data case (movie datasets) analysis, it can be

verified that deployed Linux platform has stronger reliability, applicability, and generality. Therefore, the

combination Hadoop cluster and Spark cluster on Linux platform can be widely used in big data analysis

system.

The main contribution of this paper is combination of Hadoop cluster and Spark cluster on Linux

platform and Scala in Spark cluster in order to mine data. What’s more, the advantages of using Scala in

Spark cluster are as follows: code conciseness, high speed, high efficiency, and results accurate and

clarity. According to the differences of cluster deployment mode, complexity of data and sample size, the

data processing time-consumed is different. Based on the above five experimental results in movies

datasets (size: 1,010,200 pieces of data), compared with traditional cluster deployment, the average time

of task execution for data mining by combination way approximately is one second. Therefore, it can be

verified that the proposed method can effectively improve the efficiency and save big data processing

time.

However, the side effects of combination are as follows: Linux platform’s deployment is relatively

complicated, the clusters need to be set more configuration files, and task scheduling and fault tolerance

are not perfect. Therefore, we will moderate the side effects in the subsequent research work. On the one

hand, we will do more work on the diversity of presentation for showing big data analysis results. For

example, it is not only just by a simple program screenshots to show, but also can be graphically

presented to users by Java-Web technology. On the other hand, it also can be verified the relationship

between occupation and movie viewing genres, or the relationship between region and movie viewing

genres in the future experiments.

Acknowledgements

This research was supported by the Key Research and Development Plan of Shandong Province under

Grant No. 2015GSF120003, and Weihai Science and Technology Development Plan in 2017. The

Journal of Computers Vol. 31 No. 2, 2020

139

authors would like to thank the GroupLens research group in the department of computer science and

engineering at the University of Minnesota for providing open source datasets to researchers. The authors

would like to thank Dr. Chengyou Wang for his help and valuable suggestions. The authors also thank

the anonymous reviewers and the editor for their valuable comments to improve the presentation of the

paper.

References

[1] Y. Sakurai, Y. Matsubara, C. Faloutsos, Mining and forecasting of big time-series data, in: Proc. 2015 ACM SIGMOD

International Conference on Management of Data, 2015.

[2] Y.-P. Chen, S. Alspaugh, R. Katz, Interactive analytical processing in big data systems: a crossindustry study of

MapReduce workloads, Proceedings of the VLDB Endowment 5(12)(2012) 1802-1813.

[3] J. Moreno, M.-A. Serrano, M.-E. Fernández, Main issues in big data security, Future Internet 8(3)(2016) 1-16.

[4] E. Damiani, Toward big data risk analysis, in: Proc. 2015 IEEE International Conference on Big Data, 2015.

[5] W.-Q. Yi, F. Teng, J.-F. Xu, Noval stream data mining framework under the background of big data, Cybernetics and

Information Technologies 16(5)(2016) 69-77.

[6] C.-H. Lin, J.-C. Liu, T.-C. Peng, Performance evaluation of cluster algorithms for big data analysis on cloud, in: Proc. 2017

International Conference on Applied System Innovation: Applied System Innovation for Modern Technology, 2017.

[7] D.-N. Disha, B.-J. Sowmya, Chetan, S. Seema, An efficient framework of data mining and its analytics on massive streams

of big data repositories, in: Proc. 2016 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits

and Robotics, 2016.

[8] M.-A. Gulzar, M. Interlandi, T. Condie, M. Kim, Debugging big data analytics in Spark with BIGDEBUG, in: Proc. 2017

ACM SIGMOD International Conference on Management of Data, 2017.

[9] W.-Y. Yang, G.-J. Wang, K.-K.-R. Choo, S.-H. Chen, HEPart: A balanced hypergraph partitioning algorithm for big data

applications, Future Generation Computer Systems 83(4)(2018) 250-268.

[10] E. Feller, L. Ramakrishnan, C. Morin, Performance and energy efficiency of big data applications in cloud environments: a

Hadoop case study, Parallel and Distributed Computing 79(80)(2015) 80-89.

[11] Z.-D. Ji, Applications analysis of big data analysis in the medical industry, Database Theory and Application 8(4)(2015)

107-116.

[12] T. Milo, E. Altshuler, An efficient MapReduce cube algorithm for varied data distributions, in: Proc. 2016 ACM SIGMOD

International Conference on Management of Data, 2016.

[13] D.-P. Dong, J. Herbert, Content-aware partial compression for textual big data analysis in Hadoop, IEEE Transactions on

Big Data 1(9)(2017) 1-14.

[14] H.-Q. Xu, Z. Li, S.-M. Guo, K.-K. Chen, CloudVista: interactive and economical visual cluster analysis for big data in the

cloud, Proceedings of the VLDB Endowment 5(12)(2012) 1886-1889.

[15] Y. Huai, A. Chauhan, A. Gates, G. Hagleitner, E.-N. Hanson, O.-O. Malley, J. Pandey, Y. Yuan, R. Lee, X.-D. Zhang,

Major technical advancements in Apache Hive, in: Proc. 2014 ACM SIGMOD International Conference on Management

of Data, 2014.

[16] B.-D. Li, Y.-L. Diao, P. Shenoy, Supporting scalable analytics with latency constraint, Proceedings of the VLDB

Endowment 8(11)(2015) 1166-1177.

Big Data Analysis Based on Hadoop Cluster and Spark Cluster on Linux Platform

140

[17] K. Havelund, Data automata in Scala, in: Proc. 2014 International Symposium on Theoretical Aspects of Software

Engineering, 2014.

[18] Apache SparkTM Lightning-fast Unified Analytics Engine. <http://spark.apache.org/>.

[19] R.-J. Barnett, B. Irwin, Performance effects of concurrent virtual machine execution in VMware workstation 6, Advanced

Techniques in Computing Sciences and Software Engineering 2(3)(2010) 329-333.

[20] F.-M. Harper, J.-A. Konstan, The movieLens datasets: history and context, ACM Transactions on Interactive Intelligent

Systems 5(4)(2015) 1-19.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

