
Journal of Computers Vol. 31 No. 2, 2020, pp. 180-196

doi:10.3966/199115992020043102016

180

An Efficient Task Scheduling Algorithm Based on

Particle Swarm Optimization with Self-Learning Strategy and

Neighbor Heuristic Mechanism on the Cloud

Lili Fan1, Minggang Dong1,2
∗

, Chao Jing1,2

1 College of Information Science and Engineering, Guilin University of Technology, Guilin, 541004, China

Fanlily913@qq.com, d2015mg@qq.com, jingchao@glut.edu.cn

2 Guangxi Key Laboratory of Embedded Technology and Intelligent System, Guilin University of

Technology, Guilin, 541004, China

Received 22 July 2018; Revised 12 December 2018; Accepted 9 February 2019

Abstract. Task scheduling plays an important role for improving the efficiency of cloud.

However, due to the features and complex scenarios of the cloud, traditional scheduling

approaches face with three challenges: robust model, local optima and slow convergence.

Therefore, in this paper, we firstly established a robust cloud task scheduling model, which takes

heterogeneity, deadline, overheads of transmission and the cost into account. Then, we proposed

a particle swarm optimization scheduling algorithm with the self-learning strategy and the

neighbor heuristic mechanism. The self-learning strategy is adopted to improve the diversity of

population and the neighbor heuristic mechanism can accelerate the convergence speed. In

addition, a greedy policy was designed and applied to quickly improve the quality of the initial

solutions. In this way, the proposed algorithm has a fast speed of convergence and can avoid

trapping into the local optimum. Lastly, we conducted simulations on CloudSim platform. Both

on small-scale and large-scale scheduling problems, the proposed scheduling approach

outperforms other well-known representative scheduling algorithms in terms of makespan,

users’ expense and waiting time.

Keywords: cloud computing, neighbor heuristic, particle swarm optimization, self-learning, task

scheduling

1 Introduction

Cloud computing is a recent computing paradigm that utilizes remote cloud resources to achieve a high-

performance computation. It provides infrastructure platform and software as different on-demand

services [1]. Since the cloud must process numerous tasks required by various users, and the cloud

resources (computing nodes and bandwidth) are severely limited. It is crucial to properly utilize these

resources to improve the efficiency of cloud systems. The task scheduling technique is one of the most

effective approaches to address such problem. But due to the features and complex scenarios on the cloud,

current works have limitations on optimizing the efficiency of the cloud [2-3]. Therefore, it is crucial to

design and implement task scheduling with high efficiency, which is used for meeting the constraints

based on the feature cloud systems.

There are plenty of works are focusing on using the techniques of task scheduling, which is applied to

improve the performance and energy efficiency in the cloud. The work in [4] has been proposed to

improve Quality of Service (QoS) to satisfy user's needs. To prevent huge energy consumption and

overload, the authors in [5] have presented an efficient approach for resource allocation based on the

skewness measure, which measures the irregularity in the practice of resources. The work in [6] has

employed the distribution and scalability characteristics in the cloud to develop the high efficiency task

∗ Corresponding Author

Journal of Computers Vol. 31 No. 2, 2020

181

scheduling. Meanwhile, due to the importance of resource allocation, the works in [7-8] have been

proposed to improve the efficiency of resource allocation. And the work of [9] is dedicated to minimizing

unreasonable task allocation during the stages of hosts to virtual machines and tasks to virtual machines.

The work in [10-12] are paying considerable attention to devise the task scheduling algorithm to optimize

the expense cost on the cloud. Also, the researchers in [13-14] have proposed to task scheduling

algorithm to find a tradeoff between time and expense cost. Those methods have addressed the problem

of improving efficiency in the cloud, however, as the increasing scale of tasks, the methods become

inefficient with a longer time consumption.

In comparison, Evolutionary Algorithm (EA) can find a better solution within a reasonable time

consumption. Due to the advantages of EA, it has been adopted into approaches of task scheduling that

optimizes the efficiency of cloud systems. Genetic algorithm (GA) [15-16] and modified genetic

algorithm [14, 17], ant colony optimization (ACO) algorithm [18], particle swarm optimization (PSO)

algorithm [19], a simplified particle swarm optimization (SPSO) algorithm [20] and the improved

linearly decreasing weight-particle swarm optimization (LDW-PSO) algorithm [21] are the well-known

approaches of task scheduling in EA. Among these algorithms, the PSO [22] has a better performance

than that of GA [23], [24-26]. Moreover, task scheduling problem is a typical combinatorial optimization

problem, and PSO algorithm is widely used in this area. The improved PSO in [27-28] has been proposed

to reduce the makespan and the expense cost by users. The works in [29] is to balance the system

workload while shortening the task completion time. They have been used for optimizing tasks

scheduling with the objective of shortening the total tasks’ execution time in distributed systems.

However, for the situation of the cloud, the resources are heterogeneous and tasks with various QoS, so

we cannot directly use the EA algorithms to improve the task scheduling efficiency in the cloud.

Overall, above proposed algorithms have improved the performance of task scheduling to some extent.

However, because some important factors have been neglected, the task scheduling model become

infeasible. In the actual cloud system, task scheduling model is a significant factor to improve the system

performance. There are several issues need to be considered in the design of the task scheduling model.

First, the heterogeneity of cloud resources (e.g., servers) contain various capacity, so that generating

different number of virtual machines (VMs). Then, according to the various users’ demands, the task

must be completed within the deadline constraints. Meanwhile, because of the limitation of the

bandwidth, the high overheads of task transmission cannot be ignored. Last, when users are renting the

virtual machines and transferring data, the total users’ expense must be accounted without missing the

tasks deadline constraint. In this paper, we proposed a complex task scheduling model to improve the

performance. And we consider the heterogeneity of cloud resources and tasks, total task completion time

and the user’s expense in the design of the task scheduling model. Moreover, task scheduling is a NP-

hard problem, general algorithms are not efficient in the cloud system. Many traditional approaches

based on the cloud computing environment are easily fall into a local optimum and slow convergence. In

this paper, we proposed a novel PSO algorithm with the self-learning strategy and the neighbor heuristic

mechanism (SLNPSO) to reduce the task completion time and users’ expense, simultaneously.

The main contributions of this paper can be summarized as follows:

‧ First, we setup the model of the task scheduling for complex scenarios on the cloud systems. In this

model, heterogeneity of cloud resource, task scheduling with the deadline, overheads of the task

transmission and the total users’ expense are taken into account. Thus the proposed model is robust for

application in real life.

‧ Second, we have proposed an efficient task scheduling algorithm based on the PSO with a self-

learning strategy and neighbor heuristic mechanism. The self-learning strategy (SLS) is utilized to

improve the diversity of population and the neighbor heuristic mechanism (NHM) can accelerate the

convergence speed. Thus the proposed algorithm has advantages of ability of global search and fast

convergence. In addition, a greedy policy (GP) has been introduced to the proposed algorithm that

improves the quality of the initial solution.

‧ Last, we have conducted the experiment on Cloudsim [30] platform to verify the performance and

feasibility of the proposed algorithm. The results have demonstrated that the proposed algorithm

outperforms the state-of-the-art algorithms [14, 20, 22, 29] on both small-scale and large-scale tasksets.

The remainder of this paper is organized as follows. Section 2 presents the scheduling model and the

problem formulation. The design details of our proposed SLNPSO algorithm in Section 3. Section 4

conducts experiments to evaluate the performance of our algorithm. Section 5 concludes the paper with

An Efficient Task Scheduling Algorithm Based on Particle Swarm Optimization with Self-Learning Strategy and Neighbor Heuristic Mechanism on the Cloud

182

the summary and future work.

2 Problem Formulation

In this section, we are going to give the problem formulation includes: the system model, cloud task

scheduling and problem description.

2.1 System Model

For the scheduler in the cloud system, it normally experiences two stages. Initially, the tasks are

scheduled to the virtual machines. The second stage is from virtual machines to physical hosts. In this

paper, we are focusing on the task scheduling algorithm from tasks to virtual resources. The cloud system

extracts heterogeneous physical resources into resource pools through virtualization technology.

Different users submit the tasks to the system, and tasks are buffered in the waiting queue for later

assigning to the proper virtual machines visa the scheduler. The system model of task scheduling has

been shown in Fig. 1.

Fig. 1. Illustration of the system model for task scheduling on the Cloud

As it can be seen in Fig. 1, we can see that the basic mission of the scheduler is to assign n tasks to m

heterogeneous virtual resources, and these tasks have to meet the objective of minimizing the total

completion time. The objective of our work is not only reducing the completion time, but also account

for users’ expense, overhead of task transmission and different QoS submitted by users.

2.2 Task Scheduling Model in Cloud

In this subsection, we will give the detail formulation of the task scheduling model in basic and complex

situations.

Basic scheduling model. A basic scheduling problem can be defined as follows: to find an optimal

solution, a set of independent user tasks T={T1,T2,…,Tn} is given, the goal is to minimize the completion

time while mapping those tasks on a set of heterogeneous virtual machines VMs = {VM1,VM2,…,VMm}.

The makespan is a maximum completion time (CT) on each virtual machine after all tasks finished. The

task execution time (ET) on each virtual machine (VM) can be calculated by Eq (1), so the makspan (MK)

can be derived from the maximum completion time of all tasks on each VM, which can be gained by Eq

(2),

*

.

j j

i

ij

L_Task
ET

VMips Penum
= (1)

 max{ } , j [1, m] .
j

MK CT= ∈ (2)

where Eq (1) is j task execution time on VMj, L_Taski is the data size of i task, VMipsj denotes the

processing speed of virtual machine j and Penumj is the number of processors used by virtual machine j.

Eq (2) is the makespan, CTj represents the completion time on j VM after all tasks finished.

Journal of Computers Vol. 31 No. 2, 2020

183

Complex scheduling model. There are n number of independent tasks submitted by users

T={T1,T2,…,Tn}. Each task contains L_Taski size of data. And VM = {VM1,VM2,…,VMm} is given set of

heterogeneous virtual machines. The process speed of VM is dependent on two factors: VMipsj

processing speed and Penumj assigned processors.

Different from the basic scheduling model, we take the average bandwidth (BWij for task i transfers to

VMj via link Lij) into account because of severely limited bandwidth and large size of each task

transferring in the cloud. Also, we suppose that the expense cost on each VM is proportional to the

process speed, meanwhile, there is a transmission expense which is the transmission overhead for

transferring task to VM. Therefore, the users’ expense is the sum of task processing cost Cprocij and

transmission overhead Ctransij as Eq (3),

1 i n 1 m

n m

ij ij

j

TUE Cproc Ctrans .
≤ ≤ ≤ ≤

= +∑ ∑ (3)

We assume that Cprocij is proportional to the cj and ETij, where cj is the expense cost for processing

cost per unit time by VMj, it linearly increases with the processing speed on that VMj. ETij is the execution

time of task on VMj. By doing so, the expense of task i processing cost on VMj can be calculated as

follows in Eq (4),

 * .ij
j ij

Cproc c ET= (4)

In Eq (5), we suppose that Ctransij is associated with ijc transfer cost per unit time and transij

transferring time used on the link Lij , where ijc is proportional to the average bandwidth BWij , transij is

the size of task L_Taski divided by average bandwidth BWij in Eq (6),

 * .ij ij ij
Ctrans c trans= (5)

_

i

ij

ij

trans
L Task

BW
= (6)

Last, in some situation, there is a great number of tasks submitted to the cloud. The tasks have to be

buffered in the waiting queue for later processing, so we suppose that the average waiting time follows

Poisson distribution [31]. Waitij denotes the average waiting time for task j that waits for execution on

VMj. Therefore, the task j completion time on VMj. WETij is the sum of execution time ETij and Waitij, Eq

(7),

 W ij ij
ij

WET ait ET + .= (7)

2.3 Problem Description

As we have given the system model and task scheduling model above, for the basic task scheduling

model, there is n number of independent tasks and m number of virtual machines, the objective is to

minimize the makespan while mapping the tasks to the virtual machines. Thus, the problem for the basic

task scheduling (BTSC) on the scenario can be defined as follows,

1 2

: {max(, ,...,)}.
m

objective MinimizeMK CT CT CT= (8)

1

. ., .

n

j ij ij

i

s t CT ET x

=

= ⋅∑ (8.a)

 0 1.
ij
x or= (8.b)

1

1, [1,].
m

ij

j

x i n

=

= ∈∑ (8.c)

An Efficient Task Scheduling Algorithm Based on Particle Swarm Optimization with Self-Learning Strategy and Neighbor Heuristic Mechanism on the Cloud

184

where constraint (8.a) is the completion time on certain VMj. (8.b) denotes the task i whether maps to the

VMj. (8.c) represents the task j must be assigned to one of the virtual machines VMj.

Moreover, we are going to describe the problem of complex task scheduling (CTSC) on the scenario.

Since the users’ expense is a key factor on the cloud, the objective on CTSC becomes minimizing the

user’s expense and makespan under the task deadline constraint D and users’ expense budget B, while

mapping n tasks onto m virtual machines. CTSC can be defined as,

1 2

:

.

objective

Minimize w MK w TUEΘ = ⋅ + ⋅
 (9)

1 2

. .,

{max(, ,...,)}m

s t

MK CT CT CT=

 (9.a)

1

.

n

j ij ij

i

CT WET y
=

= ⋅∑
 (9.b)

0 1.
ij
y or=

 (9.c)

1

1, [1,].
m

ij

j

y i n
=

= ∈∑
 (9.d)

.MK D≤
 (9.e)

.TUE B≤
 (9.f)

1 2 1 2
1, , [0,1].w w w w+ = ∈

 (9.g)

where the makspan MK is gained on each VM after all tasks completed. jCT is the VMj completion

time while mapping a set of tasks. (9.c) denotes the task i whether maps to the VMj. (9.d) represents the

task j must be assigned to one of the virtual machines VMj. Constraint (9.e) and (9.f) stand for the

deadline constraint and expense budget, respectively. Constraint (9.g) is the weight parameters for the

relative importance of makespan and users’ expense.

3 The Proposed SLNPSO Algorithm

3.1 Overview

For PSO algorithm in the past literatures [29, 32], it has shown great improvement in efficiency for task

scheduling in the cloud. Our algorithm is an improved version for the task scheduling based on PSO

algorithm. In this paper, we proposed a particle swarm optimization scheduling algorithm with the SLS

and the NHM. The proposed algorithm has advantages of fastening the speed of convergence and search.

The SLS is adopted to improve the diversity of population, and the NHM can accelerate the convergence

speed. Moreover, a GP was designed and applied to quickly improve the quality of the initial solutions.

In this paper, our proposed algorithm is compared with four state-of-the-art algorithms. Therefore, we

have compared various scheduling methods to highlight our algorithm difference in Table 1. In Table 1,

simple particle position (SPP) represents the policy of simplifying particle position update, fastening

position updating (FPU) presents the strategy of fastening position updating, space shared (SS) is the

policy of space shared. The SLS and NHM and are applied to SLNPSO algorithm. The comparison

includes initialization methods, the strategy of jumping out of local optimum (JLO), the scheduling

objectives, the strategy of optimizing global optimum (OGO) and scheduling models. References are the

traditional PSO algorithm [22], SPSO algorithm [20], the greedy particle swarm optimization (G&PSO)

Journal of Computers Vol. 31 No. 2, 2020

185

algorithm [29], the space-shared genetic algorithm (SSGA) [14] and SLNPSO algorithm.

Table 1. Comparison of various scheduling methods

Scheduling Objectives Scheduling ModelAlgorithms Initialization JLO
Expense Makespan System Load Balance

OGO
Basic Complex

PSO random — — √ — — √ —
SPSO random SPP — √ — — √ —

G&PSO GP FPU — √ √ — √ —
SSGA random — √ √ — SS — √

SLNPSO GP NHM √ √ √ SLS √ √

3.2 Greedy Policy

Population initialization based the GP is introduced to improve the quality of the initial solution. For the

traditional PSO algorithm applied to the task scheduling, the initialization of particles is random. In this

paper, a GP [29] is introduced to improve the quality of the initial solution. It quickly finds the initial

solution Gov and the expected total completion time Gct. Also, the global optimum value (gbest) is

initialize by Gct.

The GP is effective in the basic scheduling model. However, due to heterogeneity and uncertainty of

resources bring challenges to resource allocation in the cloud, which requires an efficient task scheduling

method to adapt complex scheduling environment. So, the effectiveness of the GP is also to be verified in

the complex scheduling model. Moreover, we are going to test the efficiency in the complex scheduling

scenario.

In this paper, the fitness function of basic model and complex model are described as follow Eq (10)

and Eq. (11), respectively. Where MK is from Eq. (2), makespan and expense (ME) is the sum of the

weighted values of the makespan from Eq (3) and the expense from Eq (7).

 1
.FitMK

MK
= (10)

 1
.FitME

ME
= (11)

3.3 Neighbor Heuristic Mechanism

The standard PSO algorithm is slow convergence speed and easily trapped into the local optima because

limitations of itself. A new neighbor heuristic mechanism in [33] is introduced to overcome these defects.

The new velocity updating equation is not only influenced by the local optimum value (pbest) of particle

and gbest of particle, but also directed by the better position in the neighborhood. The i particle’s

neighbor heuristic particle is denoted by mi, shorten for mparticle in Eq. (12). The neighbor information

of the current particle feeds back into the velocity updating equation, which is given by Eq. (13), the

particle’s position updating is calculated by Eq. (14). And the linearly varying inertia weight w was

introduced to control the search speed [34] in Eq. (15).

1

.

k
t

jd
jt

id

n

m
k

=

∑

= (12)

 1 2 1 3 2(() () ()).
t+1 t t t t t t t

id id gd id id id id idv wv c r p x r u p x r u m x= + − + − + − (13)

 1
.

t+1 t t

id id id
x x v

+

= + (14)

 () .max max minw w w w

t

T
= − − (15)

An Efficient Task Scheduling Algorithm Based on Particle Swarm Optimization with Self-Learning Strategy and Neighbor Heuristic Mechanism on the Cloud

186

where w is inertia weight, T is the maximum number of iterations, t is the current iteration, wmax and wmin

are the maximal weight and minimal weight. The number of mparticles is denoted by k. c is acceleration

coefficient, other specific parameters refer the document [33]. The process of mparticles can be described

by Function 1.

Function 1. process of mparticles
Input: position of the particle Pi, the size of population N

Output: new position NPi

1. function Mparticle()

2. Calculate Fitness of particles according to Eq.(10) or Eq.(11);

3. for i =1 to N do

4. for j =1 to N do

5. If (Fitness (j) > = Fitness (i)) then

6. Psum + = Pj;

7. sum++;

8. end if

9. end for

10. NPi = Psum /sum;

11. end for

12. end function

13. Return new position NPi;

In Function 1. The input is the position of i particle denoted iP , the size of population denoted N. The

output is the new position of i particle denoted NPi. The process is aimed to find the i particle’s neighbor

heuristic particles (lines 3-11), i, j represents i and j particle, Psum is the sum of particle position and sum

is the number of particles, Sum will be cumulated when the fitness value better than the i particle in the

whole population.

3.4 Self-Learning Strategy

The GP is used to quickly improve the quality of the initial solution and the NHM is used to accelerate

the convergence speed of the particle in this above section. However, the diversity of the population will

be decreased in the process simultaneously. Therefore, to avoid particles attracting too fast toward the

best particles, the SLS was proposed in this section.

The SLS is used to improve the diversity of population by self-learning strategy of gbest particle.

Differ from other particles, the gbest has no exemplars to learn as well as is easily fall into local optimal.

In this paper, we design the SLS considering the characteristics of the cloud computing task scheduling.

It is proposed to help gbest push itself out to a potential better area and obtain the global optimum. If

such area is found, the rest of the population will follow the leader to jump out of local optima and

converge to the new area. The processing of gbest are expressed by Eq. (16), Eq. (17).

 (1,).d random D= (16)

 .

d d
p pnew= (17)

D is the dimension of particals, Pd is transformed randomly from [1, VMnum], VMnum is the number of

VMs. The SLS randomly chooses one dimension from gbest’s historic best position by Eq. (16), which is

denoted by Pd for the d dimension. As every dimension has the same probability to be chosen, the SLS

operation can be regarded as the same probability to perform on every dimension. And SLS’s pseudo

code is shown in Function 2.

Journal of Computers Vol. 31 No. 2, 2020

187

Function 2. self-learning process SLS
Input: global best position set gP

Output: new global best position set newP

1. function learnProcess()

2. calculate fit1 to Eq.(10) or Eq.(11)

3. pd ,d ← according to Eq.(16), Eq.(17);

4. for i = 1 to K do

5. for j =1 to VMnum do

6. if (j! =pd) then

7. calculate fit2 to Eq.(10) or Eq.(11)← new set;

8. if (fit2 > fit1) then

9. pd = j;

10. calculate newP ← new set;

11. end if

12. end if

13. end for

14. end for

15. end function

16. Return new global best position set newP

In function 2, the input is a global best position set denoted gP, which is the set of virtual machines

that tasks are mapped, the fitness function value is fit1. The output is a new global best position collection

denoted newP, which is the new set of virtual machines that tasks are mapped, the new fitness function

value is fit2. Where pd is the virtual machine of d dimension. K is the maximum number of learning. The

new global best set is generated (lines 4-14). Then, a new position set is obtained, and the new position

will be accepted only when its fitness is better than the current gP.

3.5 SLNPSO

We have proposed an efficient task scheduling algorithm based on the PSO algorithm with a self-learning

strategy and neighbor heuristic mechanism. The SLNPSO algorithm employs three strategies, namely

SLS, NHM and GP. The self-learning strategy can improve the diversity of population, and the neighbor

heuristic mechanism is applied to accelerate the convergence speed. The proposed algorithm has

advantages of fastening the speed of convergence and search. Meanwhile, a greedy policy has been

introduced to the proposed algorithm that improves the quality of the initial solution. The main steps of

SLNPSO are described in Algorithm 1.

Algorithm 1. SLNPSO
Input: population size N , max number of iteration M

Output: a best assign set of tasks S;

1. Uniformly randomly initialize each particle position Xi and

velocity of particle Vi;

2. Use greedy strategy initialize pbesti and gbest;

3. While iterations < M do

4. for i = 1 to N do

5. Calculate mi according to Eq.(12);

6. Caculate the velocity of particle Vi according to Eq.(13);

7. Update the position of particle Xi according to Eq.(14);

8. Update pbesti and gbest;

9. end for

. /* globally best particle learning */

10. for k = 1 to K do

11. Calculate new globally best particle position to

 Eq.(16),Eq.(17);

12. if Fitness(newP) > Fitness(gbest) then

An Efficient Task Scheduling Algorithm Based on Particle Swarm Optimization with Self-Learning Strategy and Neighbor Heuristic Mechanism on the Cloud

188

13. S = newP;

14. end if

15. k++;

16. end for

17. Iterations++;

18. end while

19. Return a best assign set of tasks S;

In algorithm 1, the input is the population size denoted N, the maximum number of iteration denoted M.

The output is a best assign set of tasks denoted S. Where Xi denotes the i particle position, Vi denotes the i

particle velocity, newP is the set of new positions, K represents the maximum number of learning. The

particle position and velocity are initialized by randomly, and pbesti and gbest are initialized by a greedy

policy (lines1-2). The objective is obtaining a set of approximate solution in iterative process of particle

swarm (lines 3-18). The update process of particles is calculated in (lines 4-9). The learning process of

global best particle learning is showed in (lines 10-16). SLS improves the gbest in each iteration so that

we can get the optimal combination.

3.6 Analysis of Complexity

The time complexity is often used to evaluate the effectiveness of the algorithm. So, we evaluate the time

complexity of the algorithm 1. The algorithm is divided into two parts. In first part, particles are

initialized (lines 1-2), the time complexity is the population size denoted O(N). The second part is the

iterative process of particles (lines 3-18), which include the particle update process and the particle

learning process in each iterative. In the particle update process (lines 4-9), the time complexity is related

to the size of population denoted O(N). After all the particles are updated, the learning process begins

(lines 10-16). The time complexity of the learning process is related to particle’s learning opportunities

denoted K. In the process, we need calculate the new global best particle newP, the number of virtual

machines is denoted VMnum, time complexity of newP has to do with VMnum. So, the time complexity of

learning process is O(K*VMnum). In entire iteration process, the time complexity is O(M*K*VMnum) +

O(M*N).

4 Performance Evaluation

In this section, we are going to detail the experimental setup, parameters and results for two task

scheduling scenarios.

4.1 Experimental Setup

To validate the feasibility and performance of the SLNPSO algorithm in terms of scheduling ability in

the cloud, we used the cloud computing simulation platform Cloudsim [30]. It is a framework developed

by the GRIDS laboratory of university of Melbourne which enables seamless modelling, simulation and

experimenting on designing cloud computing. It supports the modeling and simulations of large cloud

computing node, and includes service brokers, resource provisioning, datacenters and allocation policies.

In this paper, we extended Cloudsim-3.0.3 to implement cloud scheduling algorithm, by modifying the

Datacenter Broker in a class method, implement SLNPSO algorithm in the application of cloud task

scheduling. Eclipse 4.4.0 IDE was used for the implementation. The proposed experiment is performed

on two different scheduling scales: (1) small-scale and large-scale in the basic and complex task

scheduling scenarios, simultaneously.

In the basic task scheduling scenario, we set only one CPU for each virtual machine (each virtual

machine can only handle one task at one time and each has different properties). The number of virtual

machines is set 5. Task number is set {10, 20, 30, 40, 50} on small-scale taskset, and task number is set

{100, 200, 300, 400, 500} on large-scale taskset. The other parameters setting refer the document [29] in

the basic task scheduling scenario. We evaluate makespan and the system load balance in the basic task

scheduling of the cloud.

Journal of Computers Vol. 31 No. 2, 2020

189

In the complex task scheduling scenario, the number of virtual machines is set 5, task number is set

{20, 40, 60, 80, 100} on small-scale taskset. The task number is set {200, 300, 500, 600, 700}, and the

number of VMs is set 50 on large-scale taskset. We set the computation price ranging from [0.001, 0.01]

per second and the transfer overhead price ranging from [0.1, 0.7] per Gigabyte (GB). The main

parameter settings of Cloudsim is shown in Table 2, and main parameters of the algorithm is shown in

Table 3. The other parameters setting refer the document [35]. In table 2, Million Instructions Per Second

(MIPS) denotes the capacity of the virtual machine. In our experiment, the population size is set 100, the

maximum number of iterations is 200, the maximum number of learning times(k) is 5, the inertial factor

(w) is ranging from [0.4, 0.9].

Table 2. Parameters setting of Cloudsim

Entity Type Parameters Values

 The number of cloud tasks [20,100], [200, 600]

Task The length of tasks [1000, 20,000]

 File size of tasks [200, 400] MB

 Output file size 300MB

 The number of VMs 5, 50

Virtual Machine vCPU capacity [500, 2000] MIPS

 vRAM [256, 2048] MB

 Bandwidth [500, 1000] MB/s

 The number of hosts 6

Host memory 4096 MB

 bandwidth 2660 MB/s

In this paper, we have done many experiments, we have seen that the makespan and the users’ expense

can be reduced simultaneously, when wt is set 0.6 and wc is set 0.4. We evaluate the fitness value, average

makespan, users’ expense and the average waiting time in the complex task scheduling scenario of the

cloud.

4.2 Comparative Algorithm

The values in these experiments represent the average result with twenty independent runs on each taskset. The

proposed algorithm is compared with the state-of-the-art algorithms, traditional PSO algorithm [22], it is

one of the most important algorithms in evolutionary algorithms and often applied to task scheduling in

the cloud. G&PSO algorithm [29] is proposed to reduce the makespan as well as improve the system

balance by combining PSO algorithm and a greedy policy in the cloud. SPSO algorithm [20] is

simplifying the processing of particle position update to minimize the makespan and improve the

convergence rate. SSGA [14] is proposed to reduce the makespan and users’ expense by combining GA

and the space-share strategy. Above algorithms, they are compared with the proposed algorithm in the

experiment.

Table 3. Parameters of the algorithm

Parameter Values

Population size NP 100

Maximum number of iterations 200

Maximum number of learning times(k) 5

Inertial factor (w) [0.4,0.9]

wt, wc 0.6, 0.4

4.3 Experimental Results

Comparision Results of the Basic Task Scheduling in Cloud. In this section, we are going to

demonstration and analysis of experimental results in the basic task scheduling scenario. In the scenario,

we only consider the makespan as the optimization goal. Since the load balance is a crucial metric for the

An Efficient Task Scheduling Algorithm Based on Particle Swarm Optimization with Self-Learning Strategy and Neighbor Heuristic Mechanism on the Cloud

190

cloud system, so we also observe the load balance degree while minimizing the makespan. The load

balance degree can be defined as follows Eq (18),

1

 1

.

i

j

i n VMT
level

j n VMT

min Load
Load

max Load

≤ ≤

≤ ≤

= (18)

where n denotes the number of tasks, 1 ii n VMTmin Load≤ ≤ is the minimum time for all the virtual machines

to complete all the tasks above, and 1 jj n VMTmax Load≤ ≤ is the maximum time for all the virtual machines

to complete all the tasks above. And Loadlevel is greater than 0 and less than 1, the closer to 1, the better.

When Loadlevel = 0 means that there are idle virtual machines, and Loadlevel =1 means that the system load

balance is the best.

Small-scale. The result of the average makespan is depicted in Fig. 2. They are admitted to task scheduler,

which utilizes the CPU gap to minimize idle time and improve throughput. The lowest makespan

improvement is obtained from SLNPSO. On average, the average makespan of the SLNPSO algorithm is

9%, 8%, 3% lower than PSO, SPSO and G&PSO, respectively. The proposed SLNPSO algorithm can

efficiently utilize the resources, which enables more tasks to complete in shorter time.

The load balance in systems is measured by the load balance degree, which is calculated by Eq (18).

The load balance degree is depicted in Fig. 3. In this paper, the greater the load balance degree, more

balanceable the system. We can see that the load becomes more balanceable with the increasing number

of tasks. The most imp provement for the load balance is SLNPSO. To summarize, the load balance

degree of the SLNPSO algorithm is 31%, 29%, 9% higher than SPSO, PSO and G&PSO, respectively.

The proposed SLNPSO algorithm can efficiently improve the system load balance.

Fig. 2. Average Makespan with different tasks Fig. 3. System load balancing degree

Large-scale. Fig. 4 depicts the average makespan for the PSO, SPSO, G&PSO and SLNPSO algorithm.

As we can see, the trend of the figure indicated that the average makesapn is increasing with a growing

number of tasks. The minimal average makespan is obtained from SLNPSO algorithm and the maximal

average makespan is obtained from PSO algorithm. In sum up, the average makepsan of the SLNPSO

algorithm is 12%, 10%, 2% lower than PSO, SPSO, G&PSO, respectively. The SLNPSO algorithm

outperforms other algorithms in terms of the average makespan, and it represents the most reliable

scheduling algorithm.

For large-scale, the load balance degree is depicted in Fig. 5. We observe that the system balance

degree is increasing with a growing number of tasks. On average, the load balance degree of the

SLNPSO algorithm is 33%, 31%, 2% higher than SPSO, PSO, G&PSO, respectively. Our proposed

SLNPSO algorithm can efficiently improve the system load balance and void the workload overload on

virtual machine.

Compared with other algorithms, when scheduling large-or-small scale tasks, the proposed algorithm

shows a stronger ability within the optimization process, and it has a better scheduling efficiency on

reducing the makespan and improving the system load balance degree in the basic scheduling scenario.

Comparision results of the complex task scheduling in cloud. In this section, we are going to

demonstration and analysis of experimental results in complex task scenario.

Journal of Computers Vol. 31 No. 2, 2020

191

Fig. 4. Average Makespan with different tasks Fig. 5. System load balancing degree

Small-scale. In this paper, the fitness value is calculated by Eq (11), and the greater the fitness value, the

result the better. The fitness value is shown in Fig. 6. We can see that the fitness value is decreasing with

the number of tasks for all algorithms. The fitness value is determined by the makespan and users’

expense, we observe that the proposed algorithm has the maximum average fitness in each taskset, so the

proposed algorithm can reduce the makespan and users’ expense, simultaneously. Results for large-scale

taskset are shown from Fig. 6 to Fig. 9.

The average makespan has been shown in Fig. 7. The proposed algorithm has gained the minimum

average makespan compared other algorithms. In sum up, the average makespan of the SLNPSO

algorithm shows 66%, 45%, 29% and 15% over the SPSO, SSGA, PSO and G&PSO, respectively. We

observe that SLNPSO algorithm is more efficient to reduce users’ expense, and it shows the better

scalability with the increasing number of tasks.

Fig. 6. Fitness value with different tasks Fig. 7. Average Makespan with different tasks

The users’ expense is evaluated with the different tasks in Fig. 8. As we can see, the minimal users’

expense is obtained from SLNPSO. To summarize, the users’ expense of the SLNPSO algorithm is 26%,

17%, 12%, 8% lower than SPSO, G&PSO, PSO and SSGA, respectively. SLNPSO algorithm

outperforms other algorithms in terms of the users’ expense.

The task average waiting time is depicted in Fig. 9. We observe that the SLNPSO algorithm

outperforms other algorithms in terms of the average waiting time. In a word, SLNPSO is 24% over both

the SPSO and SSGA, 14 %, 4% over the PSO, G&PSO, respectively.

An Efficient Task Scheduling Algorithm Based on Particle Swarm Optimization with Self-Learning Strategy and Neighbor Heuristic Mechanism on the Cloud

192

Fig. 8. Total users’ expense with different tasks Fig. 9. Average waiting time with different tasks

Large-scale. In Table 4, we list the evaluation result of all the algorithms in large-scale experiment, the

best result in bold face. Results for large-scale taskset are shown from Fig. 10 to Fig. 13.

Table 4. Evaluation result of algorithms

Evaluation metrics Tasks PSO SPSO G&PSO SSGA SLNPSO

200 0.0184 0.0150 0.0275 0.0231 0.0291

300 0.0126 0.0107 0.0192 0.0142 0.0224

400 0.0098 0.0098 0.0142 0.0100 0.0161

500 0.0074 0.0068 0.0132 0.0075 0.0136

Fitness

600 0.0062 0.0071 0.0108 0.0072 0.0113

200 76.7486 94.6411 43.5127 57.0668 41.7154

300 109.3291 133.1240 60.5572 96.0385 53.0628

400 134.9671 139.1253 84.7094 133.9124 73.6540

500 185.1845 203.4213 88.8206 178.9497 82.2871

Makespan

600 220.9361 189.0902 107.1317 184.1522 100.8606

200 24.2764 26.2023 25.7580 22.9842 23.2928

300 36.8867 36.2321 39.6317 32.9008 32.1015

400 54.3589 48.7912 49.2638 50.5143 44.6342

500 64.5431 65.4863 56.2947 63.7998 54.6566

Expense

600 76.3660 71.3066 71.4317 71.9718 69.3025

200 16.8450 19.3073 11.7958 15.6398 13.9423

300 26.7738 27.9749 20.3806 26.8268 18.8224

400 33.5578 32.5457 30.8218 37.0671 29.0612

500 50.0237 48.6857 35.1102 47.3558 34.5330

Waiting Time

600 56.4754 46.9777 43.9637 55.6709 42.5856

The fitness value is shown in Fig. 10. The greater the fitness value, the better the result. We observe

that the fitness value is decreasing with the number of tasks. the maximum average fitness is obtained

from SLNPSO, and it has the maximum average in each taskset.
The average makespan is shown in Fig. 11. The minimum average makespan is obtained from SLNPSO. As we

can see from Fig. 11, the average makespan of the SLNPSO algorithm is less than compared other algorithms with

the increasing of number of tasks. To summarize, the average makespan of the SLNPSO algorithm shows 54% over

both the SPSO and SSGA, 50%, 9% over the PSO, G&PSO, respectively.

Journal of Computers Vol. 31 No. 2, 2020

193

Fig. 10. Fitness value with different tasks Fig. 11. Average Makespan with different task

The users’ expense with the different tasks is shown in Fig. 12. In comparison with other algorithms,

the minimum average users’ expense is gained by SLNPSO algorithm. On average, the users’ expense of

the SLNPSO algorithm is 16%, 13%, 10%, 9% lower than SSGA, PSO, SPSO and G&PSO, respectively.

The proposed algorithm outperforms other algorithms to reduce the users’ expense.

The task average waiting time is depicted in Fig. 13. As we can see, the SLNPSO algorithm exhibits a

better waiting time in most tasksets. In sum up, the SLNPSO algorithm shows 44%, 23% and 22% over

SSGA, PSO, SPSO, respectively.

Fig. 12. Total users’ expense with different tasks Fig. 13. Average waiting time with different tasks

4.4 Discussion

As we can find from Fig.2 to Fig.5 in the basic task scheduling scenario, the proposed algorithm is

efficient to reduce the makespan, as well as improve the system load balance. With the increasing of task

number, we also find that the proposed algorithm can make the system load balanced while reducing the

makespan. It can be shown from Fig.6 to Fig.13 for the complex task scheduling scenario, the proposed

algorithm has the best performance compared with other alternative algorithms: traditional PSO

algorithm, SPSO, G&PSO and SSGA algorithm in minimizing makespan and reducing the total users’

expense.

Because the greedy policy is used in population initialization, the value of global optimum is shrunken

to a reasonable range. By using the neighbor heuristic mechanism and the self-learning strategy, those

fasten the proposed algorithm speed for search and convergence to eventually gain the global optimum.

Furthermore, compared with other algorithms, our algorithm has been shown fastening convergence

speed and strong global search performance. The proposed algorithm can jump the local optimum and

obtain the global optimum within a reasonable time. Therefore, we can conclude that the proposed

An Efficient Task Scheduling Algorithm Based on Particle Swarm Optimization with Self-Learning Strategy and Neighbor Heuristic Mechanism on the Cloud

194

algorithm has the better performance for global search that gains the optimal results on small-scale and

large-scale tasksets.

For the proposed algorithm, the task scheduling model is more complex than other compared

algorithms. In fact, the cloud environment is complex, and it is important to design a more suitable model

in the cloud environment. So, the proposed algorithm is feasibility and availability for the task scheduling

on the cloud.

To sum up, the proposed algorithm has demonstrated the best performance for the task scheduling in

the basic and complex scenario. The self-learning strategy and neighbor heuristic mechanism facilitates

the algorithm to avoid trapping into the local optimal solution and fastens the speed of convergence.

Meanwhile, by integrating with the greedy policy, we gain a group of initial solutions with better quality,

so that making a further improvement for the efficiency of the proposed algorithm.

5 Conclusions and Future Work

In this paper, we have made a deep insight to the issue of tasks scheduling in the cloud. Firstly, we

established a robust cloud task scheduling model, which takes heterogeneity, deadline, overheads of

transmission and the cost into account. Then, we proposed a particle swarm optimization scheduling

algorithm with the self-learning strategy and the neighbor heuristic mechanism. In our proposed

algorithm, the self-learning strategy can improve the diversity of population, and the neighbor heuristic

mechanism is adopted to accelerate the convergence speed. Meanwhile, a greedy policy was designed

and applied to quickly improve the quality of the initial solutions. Lastly, we have conducted the

experiment on Cloudsim to verify the feasibility of the proposed algorithm. Experiment is implemented

in the basic and complex task scheduling scenario on both small-scale and large-scale tasksets. The goal

in the basic scenario is to minimize the makespan, the latter is to optimize the task scheduling to meet the

minimum requirements of deadline and total users’ expense. The results have demonstrated that the

proposed algorithm outperforms than that of the state-of-the-art algorithms traditional PSO algorithm,

SPSO, G&PSO and SSGA algorithm in both small-scale and large-scale tasksets. And in the complex

task scheduling scenario, the average makespan of the proposed algorithm shows 60%, 50%, 40%, 12%

over the SPSO, SSGA, PSO and G&PSO algorithm, respectively. The users’ expense of the proposed

algorithm is 18%,13%, 13% and 12% better than the SPSO, PSO, G&PSO and SSGA algorithm,

respectively.

There are serval avenues in our future work. In the complex scenario of the task scheduling, we

consider the resource heterogeneity for task scheduling with the aim of minimizing makespan to meet the

deadline and reducing the total users’ expense. However, this complex scenario for task scheduling can

be further extended. Since the energy consumption and reliability are two important factors for task

scheduling on cloud, these can be accounted for the extension work. Also, this paper is an initial work of

our group to do the task scheduling on the cloud. The experiment has been implemented on the

Simulation tool Cloudsim. We will extend the experiment to the real cloud system.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 61563012, 61802085,

61203109), Guangxi Natural Science Foundation (2014GXNSFAA118371, 2015GXNSFBA139260),

Guangxi Key Laboratory of Embedded Technology and Intelligent System Foundation (Grant No.

2018A-04), Guangxi Key Laboratory of Trusted Software Foundation (Grant No. kx201926).

References

[1] Y. Cui, R. Buyya, J. Liu, Guest editorial: cloud computing, China Communications 11(4)(2014) i-ii.

[2] H. Yuan, J. Bi, W. Tan, B.-H. Li, Temporal task scheduling with constrained service delay for profit maximization in

hybrid clouds, IEEE Trans. Automation Science and Engineering 14(1)(2017) 337-348.

Journal of Computers Vol. 31 No. 2, 2020

195

[3] A.-N. Toosi, R.-O. Sinnott, R. Buyya, Resource provisioning for data-intensive applications with deadline constraints on

hybrid clouds using Aneka, Future Generation Computer Systems 79(2018) 765-775.

[4] H.G.E.D.H. Ali, I.-A. Saroit, A.-M. Kotb, Grouped tasks scheduling algorithm based on QoS in cloud computing network,

Egyptian Informatics Journal 18(1)(2017) 11-19.

[5] A. Bamini, S. Enoch, Dynamic scheduling and resource allocation in cloud, International Journal of Control Theory and

Applications 10(3)(2017) 63-72.

[6] S. Mittal, A. Katal, An optimized task scheduling algorithm in cloud computing, in: Proc. 2016 IEEE 6th International

Conference on Advanced Computing (IACC), 2016.

[7] C.-C Kao, Mapping virtual tasks onto physical devices for cloud computing, Journal of Computers 29(1)(2018) 40-46.

[8] J. Chase, D. Niyato, Joint optimization of resource provisioning in cloud computing, IEEE Transactions on Services

Computing 10(3)(2017) 396-409.

[9] P.-Y. Zhang, M.-C. Zhou, Dynamic cloud task scheduling based on a two-stage strategy, IEEE Transactions on Automation

Science and Engineering 15(2)(2018) 772-783.

[10] M. Kumar, K. Dubey, S.-C. Sharma, Job Scheduling algorithm in cloud environment considering the priority and cost of

job, in: Proc. Sixth International Conference on Soft Computing for Problem Solving, 2017.

[11] X. Tang, X. Li, Z. Fu, Budget-constraint stochastic task scheduling on heterogeneous cloud systems, Concurrency and

Computation: Practice and Experience 29(19)(2017), e4210.

[12] S.-G. Domanal, G.R.M. Reddy, An efficient cost optimized scheduling for spot instances in heterogeneous cloud

environment, Future Generation Computer Systems 84(2018) 11-21.

[13] X.-Q. Pham, N.-D. Man, N.D.T. Tri, N.Q. Thai, E.-N. Huh, A cost-and performance-effective approach for task scheduling

based on collabo-ration between cloud and fog computing, International Journal of Distributed Sensor Networks

13(11)(2017) 1550147717742073.

[14] H. Aziza, S. Krichen, Bi-objective decision support system for task-scheduling based on genetic algorithm in cloud

computing, Computing 100(2)(2018) 65-91.

[15] Z. Zheng, R. Wang, H. Zhong, X. Zhong, An approach for cloud resource scheduling based on parallel genetic algorithm,

in: Proc. 3rd International Conference on Computer Research and Development, 2011.

[16] Y.-K. Lin, C.-S. Chong, Fast GA-based project scheduling for computing resources allocation in a cloud manufacturing

system, Journal of Intelligent Manufacturing 28(5)(2017) 1189-1201.

[17] K. Duan, S. Fong, S. Siu, W. Song, S. Guan, Adaptive incremental genetic algorithm for task scheduling in cloud

environments, Symmetry 10(5)(2018) 168.

[18] M.-A. Tawfeek, A. El-Sisi, A.-E. Keshk, F.-A. Torkey, Cloud task scheduling based on ant colony optimization, in: Proc.

8th International Conference on Computer Engineering & Systems (ICCES), 2013.

[19] A. Khalili, S.-M. Babamir, Makespan improvement of PSO-based dynamic scheduling in cloud environment, in: Proc. 23rd

Iranian Conference on Electrical Engineering, 2015.

[20] I. Attiya, X. Zhang, A simplified particle swarm optimization for job scheduling in cloud computing, International Journal

of Computer Applications 163(9)(2017) 0975-8887.

[21] J. Ge, S. Sheng, Y. Fang, Cloud resource scheduling algorithm based on improved LDW particle swarm optimization

algorithm, in: Proc. Information Technology and Mechatronics Engineering Conference (ITOEC), 2017.

An Efficient Task Scheduling Algorithm Based on Particle Swarm Optimization with Self-Learning Strategy and Neighbor Heuristic Mechanism on the Cloud

196

[22] R. Eberhart, J. Kennedy, Particle swarm optimization, in: Proc. the IEEE International Conference on Neural Networks,

1995.

[23] S. Volke, S. Bin, D. Zeckzer, M. Middendorf, G. Scheuermann, Visual analysis of discrete particle swarm optimization

using fitness landscape, in: H. Richter, A. Engelbrecht (Eds.), Recent Advances in the Theory and Application of Fitness

Landscapes, Vol. 6, Springer, Berlin, Heidelberg, 2014, pp. 487-507.

[24] V. Priyatharsini, S. Grahalakshmi, Load balancing with multiple cloud services using PSO Techniques, in: Proc. 2017

IEEE International Conference on Electrical, Instrumentation and Communication Engineering (ICEICE), 2017.

[25] S. Asghari, N.-J. Navimipour, Review and comparison of meta-heuristic algorithms for service composition in cloud

computing, Majlesi Journal of Multimedia Processing 4(4)(2016) 28-34.

[26] A. Salman, I. Ahmad, S. Al-Madani, Particle swarm optimization for task assignment problem, Microprocessors and

Microsystems 26(8)(2002) 363-371.

[27] S. Xue, W. Shi, X. Xu, A heuristic scheduling algorithm based on PSO in the cloud computing environment, International

Journal of u-and e-Service, Science and Technology 9(1)(2016) 349-62.

[28] S.-S. Gill, R. Buyya, I. Chana, M. Singh, A. Abraham, BULLET: particle swarm optimization based scheduling technique

for provisioned cloud resources, Journal of Network and Systems Management 26(2)(2018) 361-400.

[29] Z. Zhong, K. Chen, X. Zhai, S. Zhou, Virtual machine-based task scheduling algorithm in a cloud computing environment,

Tsinghua Science and Technology 21(6)(2016) 660-667.

[30] R. Buyya, R. Ranjan, R.-N. Calheiros, Modeling and simulation of scalable Cloud computing environments and the

CloudSim toolkit: Challenges and opportunities, in: Proc. International Conference on High Performance Computing &

Simulation, 2009.

[31] J. Medhi, Waiting time distribution in a Poisson queue with a general bulk service rule, Management Science 21(7)(1975)

777-782.

[32] Z. Zhou, J. Chang, Z. Hu, J. Yu, F. Li, A modified PSO algorithm for task scheduling optimization in cloud computing,

Concurrency and Computation: Practice and Experience 30(24)(2018) e4970.

[33] D. Zhan, H. Lu, W. Hao, D. Jin, Improving particle swarm optimization: using neighbor heuristic and Gaussian cloud

learning, Intelligent Data Analysis 20(1)(2016) 167-182.

[34] Y. Shi, R.-C. Eberhart, Empirical study of particle swarm optimization, in: Proc. Proceedings of the 1999 Congress on

Evolutionary computation-CEC99 (Cat. No. 99TH8406), 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

